

SIO4/8
Four/Eight Channel High Speed Serial I/O

All SIO4 and SIO8 Models
All Form Factors

All Standard Fast Async
Firmware Versions

Fast Async Protocol Library

Reference Manual

Manual Revision: March 19, 2024

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

SIO4/8, Fast Async Protocol Library, Reference Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2024, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or

software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Although extensive editing and reviews are performed before release, General Standards Corporation assumes no

responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are

made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this

documentation.

General Standards Corporation does not assume any liability arising out of the application or use of

documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or

any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,

software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

SIO4/8, Fast Async Protocol Library, Reference Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 7

1.1. Purpose .. 7

1.2. Acronyms ... 7

1.3. Definitions .. 7

1.4. Software Overview .. 7

1.5. Hardware Overview .. 8

1.6. Reference Material .. 8

2. The Fast Async Serial Protocol .. 9

2.1. Description ... 9

2.2. History.. 9

3. Library Interface Files ... 10

3.1. Header File .. 10

3.2. Static Library Files ... 10

4. Library Interface .. 11

4.1. Functions.. 11
4.1.1. sio4_fasync_close() .. 13
4.1.2. sio4_fasync_get() ... 14
4.1.3. sio4_fasync_gpio_rx() .. 15
4.1.4. sio4_fasync_gpio_tx() .. 16
4.1.5. sio4_fasync_init_api() .. 17
4.1.6. sio4_fasync_init_data() .. 18
4.1.7. sio4_fasync_ioctl() ... 19
4.1.8. sio4_fasync_open() ... 20

4.1.8.1. Access Modes ... 20
4.1.9. sio4_fasync_read() ... 22
4.1.10. sio4_fasync_reset() ... 23
4.1.11. sio4_fasync_rx_fifo_reset() .. 24
4.1.12. sio4_fasync_rx_io_abort() .. 25
4.1.13. sio4_fasync_set() .. 26
4.1.14. sio4_fasync_show() .. 27
4.1.15. sio4_fasync_tx_fifo_reset() .. 28
4.1.16. sio4_fasync_tx_io_abort() .. 29
4.1.17. sio4_fasync_verify() ... 30
4.1.18. sio4_fasync_wait_cancel() ... 31
4.1.19. sio4_fasync_wait_event() ... 32
4.1.20. sio4_fasync_wait_status() .. 33
4.1.21. sio4_fasync_write() .. 34
4.1.22. Low Level Functions .. 35

4.2. Macros.. 35
4.2.1. Registers ... 36

4.2.1.1. Firmware Registers ... 36
4.2.1.2. PCI Configuration Registers ... 36
4.2.1.3. PLX Feature Set Registers.. 37

SIO4/8, Fast Async Protocol Library, Reference Manual

4

General Standards Corporation, Phone: (256) 880-8787

4.2.2. Other Macros .. 37

4.3. Data Types ... 37
4.3.1. gsc_wait_t ... 37

4.3.1.1. gsc_wait_t.flags .. 37
4.3.1.2. gsc_wait_t.main .. 37
4.3.1.3. gsc_wait_t.gsc .. 38
4.3.1.4. gsc_wait_t.alt .. 38
4.3.1.5. gsc_wait_t.io .. 38
4.3.1.6. gsc_wait_t.timeout_ms ... 39
4.3.1.7. gsc_wait_t.count ... 39

4.3.2. sio4_fasync_action_t .. 39
4.3.3. sio4_fasync_error_t .. 39

4.3.3.1. sio4_fasync_error_t.ret ... 40
4.3.3.2. sio4_fasync_error_t.msg .. 40
4.3.3.3. sio4_fasync_error_t.name .. 40
4.3.3.4. sio4_fasync_error_t.file .. 40
4.3.3.5. sio4_fasync_error_t.function .. 40
4.3.3.6. sio4_fasync_error_t.line ... 40

4.3.4. sio4_fasync_init_t ... 40
4.3.4.1. sio4_fasync_init_t.bitrate ... 40

4.3.5. sio4_fasync_t .. 40
4.3.5.1. sio4_fasync_t.bitrate ... 43
4.3.5.2. sio4_fasync_t.board_leds ... 44
4.3.5.3. sio4_fasync_t.chan_leds ... 45
4.3.5.4. sio4_fasync_t.fw_type .. 46
4.3.5.5. sio4_fasync_t.osc_program .. 47
4.3.5.6. sio4_fasync_t.stop_bits .. 48
4.3.5.7. sio4_fasync_t.cable.enable ... 49
4.3.5.8. sio4_fasync_t.cable.gpio_a ... 50
4.3.5.9. sio4_fasync_t.cable.gpio_b .. 51
4.3.5.10. sio4_fasync_t.cable.gpio_c ... 52
4.3.5.11. sio4_fasync_t.cable.gpio_d .. 53
4.3.5.12. sio4_fasync_t.cable.loopback ... 54
4.3.5.13. sio4_fasync_t.cable.mode ... 55
4.3.5.14. sio4_fasync_t.cable.protocol .. 56
4.3.5.15. sio4_fasync_t.cable.term .. 57
4.3.5.16. sio4_fasync_t.irq.direction ... 58
4.3.5.17. sio4_fasync_t.irq.enable ... 59
4.3.5.18. sio4_fasync_t.parity.enable .. 60
4.3.5.19. sio4_fasync_t.parity.type .. 61
4.3.5.20. sio4_fasync_t.tx.cts .. 62
4.3.5.21. sio4_fasync_t.tx.data .. 63
4.3.5.22. sio4_fasync_t.tx.enable .. 64
4.3.5.23. sio4_fasync_t.tx.gap ... 65
4.3.5.24. sio4_fasync_t.tx.status .. 66
4.3.5.25. sio4_fasync_t.tx.fifo.ae .. 67
4.3.5.26. sio4_fasync_t.tx.fifo.af ... 68
4.3.5.27. sio4_fasync_t.tx.fifo.bytes .. 69
4.3.5.28. sio4_fasync_t.tx.fifo.empty_cfg ... 70
4.3.5.29. sio4_fasync_t.tx.fifo.overflow .. 71
4.3.5.30. sio4_fasync_t.tx.fifo.size .. 72
4.3.5.31. sio4_fasync_t.tx.fifo.status ... 73
4.3.5.32. sio4_fasync_t.tx.io.dma_threshold ... 74
4.3.5.33. sio4_fasync_t.tx.io.mode .. 75
4.3.5.34. sio4_fasync_t.tx.io.overflow .. 76

SIO4/8, Fast Async Protocol Library, Reference Manual

5

General Standards Corporation, Phone: (256) 880-8787

4.3.5.35. sio4_fasync_t.tx.io.pio_threshold ... 77
4.3.5.36. sio4_fasync_t.tx.io.timeout .. 78
4.3.5.37. sio4_fasync_t.rx.enable .. 79
4.3.5.38. sio4_fasync_t.rx.frame_err_cfg .. 80
4.3.5.39. sio4_fasync_t.rx.parity_err_cfg .. 81
4.3.5.40. sio4_fasync_t.rx.rts .. 82
4.3.5.41. sio4_fasync_t.rx.sb2_err_cfg.. 83
4.3.5.42. sio4_fasync_t.rx.status ... 84
4.3.5.43. sio4_fasync_t.rx.fifo.ae .. 85
4.3.5.44. sio4_fasync_t.rx.fifo.af ... 86
4.3.5.45. sio4_fasync_t.rx.fifo.bytes ... 87
4.3.5.46. sio4_fasync_t.rx.fifo.full_cfg ... 88
4.3.5.47. sio4_fasync_t.rx.fifo.overflow ... 89
4.3.5.48. sio4_fasync_t.rx.fifo.size .. 90
4.3.5.49. sio4_fasync_t.rx.fifo.status ... 91
4.3.5.50. sio4_fasync_t.rx.fifo.underflow ... 92
4.3.5.51. sio4_fasync_t.rx.io.dma_threshold ... 93
4.3.5.52. sio4_fasync_t.rx.io.mode .. 94
4.3.5.53. sio4_fasync_t.rx.io.overflow .. 95
4.3.5.54. sio4_fasync_t.rx.io.pio_threshold... 96
4.3.5.55. sio4_fasync_t.rx.io.timeout .. 97
4.3.5.56. sio4_fasync_t.rx.io.underflow .. 98

5. Operating Information ... 99

5.1. Getting Started .. 99
5.1.1. Cable Validation ... 99
5.1.2. Customizing the Configuration... 99

5.2. Debugging Aids ... 100
5.2.1. Device Identification .. 100
5.2.2. sio4_fasync_show() .. 100
5.2.3. Detailed Register Dump ... 100
5.2.4. Status Return Values .. 101

5.3. Cable Configuration Modes ... 102

5.4. Error and Status Detection .. 102
5.4.1. Interrupt Events .. 102

5.5. Preloading Tx Data ... 102

5.6. Waiting for the Transmitter or Receiver to Finish .. 103

Document History ... 104

SIO4/8, Fast Async Protocol Library, Reference Manual

6

General Standards Corporation, Phone: (256) 880-8787

Table of Figures

Figure 1 A depiction of a Fast Async data stream. .. 9

SIO4/8, Fast Async Protocol Library, Reference Manual

7

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

This document provides information on the Fast Async Protocol Library, which is a library designed to facilitate use

of the Fast Async versions of the SIO4 and SIO8.

1.1. Purpose

The purpose of this document is twofold. First, it is intended to give a basic description of the Fast Async protocol

implementation of the SIO4. Second, it is intended to give a complete description of the Fast Async Protocol Library

programming interface.

1.2. Acronyms

The following is a list of commonly occurring acronyms used throughout this document.

Acronyms Description

CTS Clear To Send (This is a cable interface signal used for hardware flow control.)

DCE
Data Communications Equipment (This is a configuration option that affects the organization of

signals at the cable interface.)

DMA Direct Memory Access

DTE
Data Terminal Equipment (This is a configuration option that affects the organization of signals at

the cable interface.)

GSC General Standards Corporation

PCI Peripheral Component Interconnect

PCIE PCI Express

PMC PCI Mezzanine Card

RTS Request To Send (This is a cable interface signal used for hardware flow control.)

1.3. Definitions

The following is a list of commonly occurring terms used throughout this document.

Term Definition

Application Application means the user mode process, which runs in user space with user mode privileges.

Driver Driver means the executable providing direct access to the SIO4 hardware.

FASYNC This refers to the Fast Async serial protocol implementation.

Library This is a general reference to the Fast Async Protocol Library.

RxD This refers to the Receive Data signal.

SIO4

This is used as a general reference to any board supported by this driver. This includes both SIO4

and SIO8 model boards. It is also used to refer to revisions of the board that do not include a suffix

following the ‘4’, such as PMC-SIO4-RS232.

TxD This refers to the Transmit Data signal.

1.4. Software Overview

The Fast Async Protocol Library is a statically linked library providing a software interface to the Fast Async

version of the SIO4. The Library is provided in source form and must be built before being used. The Library is a

software layer that sits between an SIO4 application and the SIO4 API Library. While the other SIO4 Protocol

Libraries present a tailored interface to the driver API, this Protocol Library contains functionality which has not

been incorporated into the driver. Like the other Protocol Libraries though, this Library exists in parallel with and

can be used with the SIO4 API Library.

SIO4/8, Fast Async Protocol Library, Reference Manual

8

General Standards Corporation, Phone: (256) 880-8787

1.5. Hardware Overview

NOTE: The SIO8 boards appear to the system as two SIO4 boards.

The SIO4 is a four-channel high-speed serial interface I/O board. This board provides for bi-directional serial data

transfers between a computer and an external peripheral. Once the data link between the two devices is established,

the desired transfers can be performed and will become transparent to the user. The SIO4 board includes two DMA

controllers and comes with a maximum of 256K Bytes of FIFO storage, which is 32K per channel direction (32K *

2 * 4). Each DMA controller is capable of transferring data to and from host memory; whereas the FIFO helps

maintain continuous data transfer at the cable interface. The FIFO configuration can vary greatly from one SIO4

version to another (i.e., 32K * 2 * 4 to 1K * 2 *1 to none at all). The SIO4 comes with transceivers that are fixed as

RS232 or RS485/422, or with transceivers that are configurable. The SIO4 comes in a variety of configurations:

SYNC models, Fast Async models, and Zilog models, which are based on two Z16C30 dual USC chips. Later model

SIO4 boards support multiple models with the mode being software controlled on a per channel basis. The SIO4 also

provides for interrupt generation for various states of the board like Sync Character detection, FIFO empty, FIFO

full and DMA complete.

NOTE: Software selection of Fast Async, SYNC or Zilog mode of operation is not at this time

explicitly supported by the Protocol Libraries, the SIO4 API Library or the device driver. The

operating mode is controlled by the model ordered. When supported by firmware, the application

is responsible for making the selection.

1.6. Reference Material

The following reference material may be of particular benefit in using the SIO4 and this driver. The specifications

provide the information necessary for an in depth understanding of the specialized features implemented on this

board.

• The applicable Fast Async SIO4/SIO8 User Manual from General Standards Corporation.

• The applicable SIO4 API Library Reference Manual from General Standards Corporation.

• The applicable SIO4 Driver User Manual from General Standards Corporation.

• The PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com/

http://www.plxtech.com/

SIO4/8, Fast Async Protocol Library, Reference Manual

9

General Standards Corporation, Phone: (256) 880-8787

2. The Fast Async Serial Protocol

2.1. Description

The Fast Async serial communications protocol is an asynchronous, byte-oriented serial transmission protocol

consisting of a Start Bit, a number of data bits, an optional Parity Bit, and one or two Stop Bits. For successful data

transfer the provider and recipient must agree upon the transmission rate, the number of data bits, the use and type of

parity, and the minimum length of the Stop Bit period. Refer to Figure 1 below. When no data is being transmitted

the line is idle. When idle the line is held in the high or Mark state (a 1 bit). On the receiving side, a transition from

high to low signals the beginning of a Start Bit. The line level is then examined four times over the first half of a

single bit period. If any of those instances are high, then the high to low transition is ignored as noise and the

receiver goes back to waiting for another high to low transition. If all four instances are low (the Space state, which

is a 0 bit), then the receiver accepts the transition as a valid Start Bit. Decoding then continues per the byte size, use

of parity and Stop Bits. Each of these is examined at the center of the bit period. If parity is used then the Parity Bit

is evaluated with the data. If the evaluation fails, then the result is a Parity Error. After the last data bit and optional

Parity Bit, the Stop Bit period begins. If the line is low when either Stop Bit is sampled, then the result is a Framing

Error.

Clock

Data

One Clock Cycle

Start Bit
Parity Bit

(optional)
1 or 2 Stop Bits8 Data Bits Extra Stop Bits then Idle Period

Figure 1 A depiction of a Fast Async data stream.

The minimum signals needed for full-duplex communication are TxD and RxD. Hardware flow control is supported

by way of the RTS/CTS signal pair. The Fast Async board supports the use of high-speed RS-422/RS-485

transceivers. The arrangement of the cable signals is configurable as DCE or DTE. The upper baud rate limit is

10Mbps.

2.2. History

The asynchronous serial communications protocol has its origins prior to 1920, back in the days of the early

electromechanical teletypewriter. At that time byte sizes were typically five-bits and the Stop Bit period was

typically 1.5 times the bit period. Since then, byte size support typically ranges from five to eight bits, and the Stop

Bit period may be configurable in fractional increments beginning at just over ½ bit period.

SIO4/8, Fast Async Protocol Library, Reference Manual

10

General Standards Corporation, Phone: (256) 880-8787

3. Library Interface Files

This section gives general information on the Fast Async Protocol Library interface files.

3.1. Header File

The library’s interface is defined via the header file shown below. To use the Fast Async Protocol Library

applications must include this header file in their sources. Including this header file pulls in all other pertinent SIO4

specific header files. Therefore, sources may include only this one SIO4 header and make files may reference only

this one SIO4 include directory.

File Location
sio4_fasync.h …/sio4/include

3.2. Static Library Files

The executable code for the API defined for the Fast Async Protocol Library is contained in the static library file

identified below. Using this library however, requires linking in other SIO4 specific static libraries. For this reason,

and for ease of use, it is recommended that application make files link in the SIO4 Main Library instead of the Fast

Async static library along with all of its dependencies. The result is that application make files reference only a

single SIO4 static library and only a single SIO4 static library path.

Library File Location

Fast Async Protocol Library sio4_fasync.a …/sio4/lib

SIO4 Main Library sio4_main.a † …/sio4/lib

† Refer to the SIO4 API Library Reference Manual for clarification when using multiple GSC product types in the

same application.

SIO4/8, Fast Async Protocol Library, Reference Manual

11

General Standards Corporation, Phone: (256) 880-8787

4. Library Interface

The library interface is defined via the header file sio4_fasync.h, which is located in the …/sio4/include/

directory. The library interface is made up of the following content types.

NOTE: All Fast Async specific API content includes a prefix of “sio4_fasync_” or

“SIO4_FASYNC_”. The lower-case version is used with functions and data types. The upper-case

version is used with macros.

Content Description

Functions

There are primary, high-level functions and secondary, low-level functions. The high-level

functions are those that either deal with overall configuration or are not configuration related. Refer

to section 4.1, page 11. The low-level functions deal specifically with accessing individual device

configuration features. These are presented with the associated sio4_fasync_t structure fields

with which each pertains (section 4.3.4, page 40).

Macros

These define registers and data values for the numerous configuration features. Refer to section 4.2,

page 35. The configuration option macros are documented with the sio4_fasync_t data

structure, which is the primary structure used for device configuration. Refer to section 4.3.5, page

40.

Data Types
This includes the enumerations and structures used by the various API functions. Refer to section

4.3, page 37.

4.1. Functions

The interface includes the high-level functions described in the following sections. All function return values reflect

the completion status of the requested operation.

Return Values

A return value less than zero always reflects an error condition. The table below summarizes the error status values.

For the I/O functions, read and write, non-negative return values reflect the number of bytes transferred between the

application and the interface. A positive value equal to the requested transfer size indicates complete success. Return

values less than the requested transfer size indicate that the I/O timeout expired. For the other, non-I/O, function

calls a return value of zero indicates success.

Return Value Description

-1 to -499 This is the value “(-errno)” (see errno.h).

Calling Restrictions

Applying configuration settings in mass should be done using the Set API service (sio4_fasync_set(), section

4.1.13, page 26). This is recommended both for application of initial settings and for bulk configuration updates.

Thereafter, application should consider using the low-level services. However, many of the low-level services for

the hardware-based features have restrictions on when they can be called. Calling restrictions are documented with

each API function.

Multi-Thread Safe Operation

All API services are multi-thread safe, except as follows. This includes both the high-level and low-level services.

1. The API Initialize call (sio4_fasync_init_api(), section 4.1.5, page 17) is multi-thread safe only after

initialization has been successful.

SIO4/8, Fast Async Protocol Library, Reference Manual

12

General Standards Corporation, Phone: (256) 880-8787

2. The Wait Event call (sio4_fasync_wait_event(), section 4.1.19, page 32) is serialized with all other

services, but controlled access is released prior to the driver being called.

3. Read requests (sio4_fasync_read(), section 4.1.9, page 22) are serialized separately within the Library.

4. Write requests (sio4_fasync_write(), section 4.1.21, page 34) are serialized separately within the

Library.

SIO4/8, Fast Async Protocol Library, Reference Manual

13

General Standards Corporation, Phone: (256) 880-8787

4.1.1. sio4_fasync_close()

This function is the entry point to close a connection previously opened to an SIO4. All resources allocated by the

Library for the opened device are released as part of the close operation. This includes freeing semaphores, allocated

memory and closing access to the SIO4 serial channel.

NOTE: Any attempt to close a connection will fail if the device handle is still in use by another

API call.

Prototype

int sio4_fasync_close(int fd, sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

There are no restrictions on calling this function. However, the function will fail if the Library is still busy servicing

any other API calls.

SIO4/8, Fast Async Protocol Library, Reference Manual

14

General Standards Corporation, Phone: (256) 880-8787

4.1.2. sio4_fasync_get()

This is the API’s Get function, which retrieves the current settings from the SIO4 for each of the referenced

structure’s fields. This function operates mostly by calling the low-level functions corresponding to each field of the

sio4_fasync_t structure.

Prototype

int sio4_fasync_get(

 int fd,

 sio4_fasync_t* fasync,

 sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

fasync This required structure is where the current settings are recorded (section 4.3.5, page 40).
error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

15

General Standards Corporation, Phone: (256) 880-8787

4.1.3. sio4_fasync_gpio_rx()

This function reads the cable interface signals GPIO A through GPIO D. The operation is performed by reading the

Pin Status Register. The value returned reflects how each cable signal is driven and is independent of how each

cable signal is configured, whether it be as GPIO input, output or otherwise.

NOTE: The value obtained is the full 32-bit value read from the register, not just the lower four

bits.

Prototype

int sio4_fasync_gpio_rx(int fd, u32* get, sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

get The value obtained is reported via this required pointer.
error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

16

General Standards Corporation, Phone: (256) 880-8787

4.1.4. sio4_fasync_gpio_tx()

This function updates the state of the cable interface signals configured as GPIO outputs. Those cable signals

configured as other than GPIO outputs are unaffected. Bit D0 corresponds to GPIO A, D1 to GPIO B and so on.

NOTE: It is not an error if none of the GPIO signals are configured as GPIO output.

Prototype

int sio4_fasync_gpio_tx(int fd, u32 set, sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

set
This is the value to be applied to the GPIO outputs. Only the lower four bits are used. All

others are ignored.
error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

17

General Standards Corporation, Phone: (256) 880-8787

4.1.5. sio4_fasync_init_api()

This function initializes the Fast Async Protocol Library and must be the first call into the Library.

NOTE: This service is not multi-thread safe until after it has successfully initialized the Library.

NOTE: This service initializes the Fast Async Protocol Library as well as the SIO4 API Library.

NOTE: This function may be called more than once, but only the first successful call initializes

the API. Any subsequent call has no effect.

Prototype

int sio4_fasync_init_api(sio4_fasync_error_t* error);

Argument Description
error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

This must be the first API call. All other API calls will fail until this function completes successfully.

SIO4/8, Fast Async Protocol Library, Reference Manual

18

General Standards Corporation, Phone: (256) 880-8787

4.1.6. sio4_fasync_init_data()

This is the API’s Init Data function, which initializes an sio4_fasync_t structure according to the capabilities

of the accessed device and some basic caller preferences. This function operates mostly by calling the low-level

functions corresponding to each field of the sio4_fasync_t structure.

Prototype

int sio4_fasync_init_data(

 int fd,

 const sio4_fasync_init_t* init,

 sio4_fasync_t* fasync,

 sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

init
This required structure (section 4.3.3.1, page 40) provides the basic information needed to

initializing the fasync argument structure.

fasync

This required structure is initialized per the init argument and Library defaults. (section

4.3.5, page 40). Most fields can be assigned a value of -1 to retrieve the current setting

rather than to apply a setting.
error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

19

General Standards Corporation, Phone: (256) 880-8787

4.1.7. sio4_fasync_ioctl()

This function is the entry point to performing IOCTL operations on the device. Refer to the SIO4 API Library

Reference Manual for complete information on the supported set of IOCTL services. There are no Fast Async

specific IOCTL services.

NOTE: The Library performs no validation of which IOCTL services are or are not supported by

the accessed device. Any validation performed is done by the driver. Applications should avoid

requesting services which are not specifically known to be supported by the accessed device.

Doing so could result in unexpected behavior due to the driver’s limited awareness of Fast Async

device features.

Prototype

int sio4_fasync_ioctl(

 int fd,

 int request,

 void* arg,

 sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

request
This is an IOCTL macro contained in sio4.h or sio4_usc.h. Most services which take

an argument type of s32* will accept a value of -1 to retrieve the feature’s current setting.

arg This is the argument type required for the above referenced IOCTL service.
error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

There are no restrictions on calling this function. However, applications should not call this function using the

SIO4_IOCTL_WAIT_EVENT IOCTL service. If this is done then it will prevent use of most other API services

until this call returns. This is because all API services are serialized and because this is a blocking service, which

will not return till after the specified event criteria occurs or the timeout expires.

SIO4/8, Fast Async Protocol Library, Reference Manual

20

General Standards Corporation, Phone: (256) 880-8787

4.1.8. sio4_fasync_open()

This function is the entry point to opening a connection to an SIO4 serial channel. The handle returned by this call is

used for all subsequent access to the specified channel.

NOTE: The file descriptor returned can be used with all services in both this Library and the SIO4

API Library. The reverse is not supported.

NOTE: If the value of the index argument is -1, then the function opens the file /proc/sio4.

In this case the share argument is ignored. In addition, the file descriptor is valid only with the

read and close Library services.

Prototype

int sio4_fasync_open(

 int index,

 int share,

 int* fd,

 sio4_fasync_error_t* error);

Argument Description
index This is the zero-based index of the SIO4 serial channel to access.

share
Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).

fd

The device handle is returned here. If this argument is NULL, then an error is reported.

Values returned are as follows.

Value Description
>= 0 This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

There are no restrictions on calling this function.

4.1.8.1. Access Modes

The value of the share argument determines the device access mode, as follows.

Shared Access Mode:

If the share argument is non-zero the device in opened in Shared Access Mode. The first such open request will

succeed and return with the device in an initialized state. Subsequent such open requests will also succeed, but will

not alter the device state. Once opened in Shared Access Mode, device access remains in this mode until all Shared

Access Mode open requests release the device with a corresponding close request.

SIO4/8, Fast Async Protocol Library, Reference Manual

21

General Standards Corporation, Phone: (256) 880-8787

Exclusive Access Mode:

If the share argument is zero the device in opened in Exclusive Access Mode. In this mode, only one application

at a time can access the device. The first such open request will succeed and return with the device in an initialized

state. Subsequent open requests, regardless of the share argument value, will fail until the device is released with a

corresponding close request.

SIO4/8, Fast Async Protocol Library, Reference Manual

22

General Standards Corporation, Phone: (256) 880-8787

4.1.9. sio4_fasync_read()

This function requests that a buffer of data be read from the serial channel. The request will return either when it has

been fulfilled or the read timeout expires, whichever occurs first. This is a blocking call. Read requests are serialized

separately from all other API services.

Prototype

int sio4_fasync_read(

 int fd,

 void* dst,

 size_t bytes,

 sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

dst The data read is placed here.
bytes Read up to this number of bytes.
error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description

0 to bytes

The operation succeeded. This is the number of bytes placed in the buffer. A value less

than bytes generally indicates that the I/O timeout period lapsed before the entire

request could be satisfied.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

There are no restrictions on calling this function. However, because read requests are serialized separately from all

other API services, applications must exercise care with regard to how all other services might impact ongoing read

operations.

SIO4/8, Fast Async Protocol Library, Reference Manual

23

General Standards Corporation, Phone: (256) 880-8787

4.1.10. sio4_fasync_reset()

This function performs a reset of the serial channel. This includes all settings, both hardware and software based.

However, this does not reprogram the oscillator and thus it does not affect the configured bitrate. The reset operation

takes place immediately and does not wait for the transmitter or receiver to finish a byte in progress.

NOTE: If an application must wait for transmission or reception to complete before performing a

reset, then refer to section 5.6, page 103.

Prototype

int sio4_fasync_reset(int fd, sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

24

General Standards Corporation, Phone: (256) 880-8787

4.1.11. sio4_fasync_rx_fifo_reset()

This function clears the Rx FIFO of its content and clears the overflow and underflow status, if either or both are set.

This operation has no effect on the receiver’s operation if it is in the process of receiving a byte.

Prototype

int sio4_fasync_rx_fifo_reset(int fd, sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

25

General Standards Corporation, Phone: (256) 880-8787

4.1.12. sio4_fasync_rx_io_abort()

This function aborts a read request, if one is active.

Prototype

int sio4_fasync_rx_io_abort(

 int fd,

 s32* get,

 sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

get The results of the operation are recorded here, if non-NULL. See result options below.
error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Results

Upon success, the function returns one of the below values.

Value Description
SIO4_FASYNC_IO_ABORT_NO A read request was not aborted.
SIO4_FASYNC_IO_ABORT_YES A read request was aborted.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

26

General Standards Corporation, Phone: (256) 880-8787

4.1.13. sio4_fasync_set()

This is the API’s Set function, which configures an SIO4 channel according to the settings of the referenced

sio4_fasync_t structure. All fields are validated before any settings are applied. This function operates mostly

by calling the low-level functions corresponding to each field of the sio4_fasync_t structure.

NOTE: Before calling this function, the structure should, at minimum, be initialized by calling the

sio4_fasync_init_data() function (section 4.1.6, page 14).

NOTE: The cable transceivers, the transmitter and the receiver are disabled while the

configuration settings are being applied.

Prototype

int sio4_fasync_set(

 int fd,

 sio4_fasync_t* fasync,

 sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

fasync

This required structure contains the settings to be applied (section 4.3.5, page 40). The value

in fields which are read-only are ignored and are overwritten by the current setting. Fields

with a value of -1 also retrieve the current setting.

error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

27

General Standards Corporation, Phone: (256) 880-8787

4.1.14. sio4_fasync_show()

This is the API’s Show function, which reports the content of the referenced sio4_fasync_t structure to the

specified file. This is provided to assist debugging efforts. This function operates mostly by calling the low-level

functions corresponding to each field of the sio4_fasync_t structure.

Prototype

int sio4_fasync_show(

 int fd,

 const sio4_fasync_t* fasync,

 FILE* file,

 sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

fasync This required structure holds the content to be reported (section 4.3.5, page 40).

file

This is a file pointer to which the output is sent. If this is NULL, then no output is generated.

If this is stdout, then the output is sent to the terminal window. Output will otherwise be

written to the referenced file.
error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

28

General Standards Corporation, Phone: (256) 880-8787

4.1.15. sio4_fasync_tx_fifo_reset()

This function clears the Tx FIFO of its content and clears the overflow status, if it is set. This operation has no effect

on the transmitter’s operation if it is in the process of transmitting a byte.

Prototype

int sio4_fasync_tx_fifo_reset(int fd, sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

29

General Standards Corporation, Phone: (256) 880-8787

4.1.16. sio4_fasync_tx_io_abort()

This function aborts a write request, if one is active.

Prototype

int sio4_fasync_tx_io_abort(

 int fd,

 s32* get,

 sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

get The results of the operation are recorded here, if non-NULL. See result options below.
error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Results

Upon success, the function returns one of the below values.

Value Description
SIO4_FASYNC_IO_ABORT_NO A write request was not aborted.
SIO4_FASYNC_IO_ABORT_YES A write request was aborted.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

30

General Standards Corporation, Phone: (256) 880-8787

4.1.17. sio4_fasync_verify()

This is the API’s Verify function, which verifies the values in each field of the referenced sio4_fasync_t

structure. All fields are validated. This function operates mostly by calling the low-level functions corresponding to

each field of the sio4_fasync_t structure.

NOTE: Before calling this function, the structure should, at minimum, be initialized by calling the

sio4_fasync_init_data() function (section 4.1.6, page 14).

Prototype

int sio4_fasync_verify(

 int fd,

 const sio4_fasync_t* fasync,

 sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

fasync

This required structure contains the settings to be verified (section 4.3.5, page 40). The value

in fields which are read-only are ignored and are overwritten by the current setting. Fields

with a value of -1 also retrieve the current setting.

error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

31

General Standards Corporation, Phone: (256) 880-8787

4.1.18. sio4_fasync_wait_cancel()

This function cancels all active Wait Event requests meeting any of the specified criteria. Cancelation is based on

any matching criteria as described below. The cancel is performed by resuming the blocked thread. All active Wait

Event requests are checked.

Prototype

int sio4_fasync_wait_cancel(

 int fd,

 gsc_wait_t* wait,

 sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

wait
This required structure specifies the criteria for which any matching Wait Event requests are

to be canceled (section 4.3.1, page 37).
error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Wait Structure Usage

NOTE: The alt field is the only field validated by the Fast Async Protocol Library. Any other

validation performed is carried out by the SIO4 API Library and the SIO4 device driver.

The wait structure is used as follows.

Field Description
flags This field is not used and should be zero upon return.

main
This field specifies any of the GSC_WAIT_MAIN_* flags to be checked against active

Wait Event requests. Refer to section 4.3.1.2, page 37.

gsc
This field specifies any of the SIO4_FASYNC_WAIT_GSC_* flags to be checked

against active Wait Event requests. Refer to section 4.3.1.3, page 38.
alt This field must be set to zero.

io
This field specifies any of the SIO4_FASYNC_WAIT_IO_* flags to be checked

against active Wait Event requests. Refer to section 4.3.1.5, page 38.
timeout_ms This field is ignored and should be zero upon return.

count
This is ignored on input and, upon return, is set to the number of Wait Event requests

that were cancelled.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

32

General Standards Corporation, Phone: (256) 880-8787

4.1.19. sio4_fasync_wait_event()

This function suspends the calling thread while waiting for any of the specified events to occur, or until a timeout

lapses, whichever occurs first. Any number or combination of events may be specified, but resumption occurs based

on the first event that matches any of the specified criteria. All fields must be valid and at least one criterion must be

specified. There is no restriction on the number of simultaneously active Wait Event requests.

Prototype

int sio4_fasync_wait_event(

 int fd,

 gsc_wait_t* wait,

 sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

wait This required structure specifies the criteria to wait on (section 4.3.1, page 37).
error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Wait Structure Usage

NOTE: The alt field is the only field validated by the Fast Async Protocol Library. Any other

validation performed is carried out by the SIO4 API Library and the SIO4 device driver.

The wait structure is used as follows.

Field Description

flags
On input, this must be zero. Upon return, one of the GSC_WAIT_FLAG_* flags will be

set to indicate the reason that the thread was resumed. Refer to section 4.3.1.1, page 37.

main
This field specifies any of the GSC_WAIT_MAIN_* criteria to wait for. Refer to section

4.3.1.2, page 37.

gsc
This field specifies any of the SIO4_FASYNC_WAIT_GSC_* criteria to wait for. Refer

to section 4.3.1.3, page 38.
alt This field must be set to zero.

io
This field specifies any of the SIO4_FASYNC_WAIT_IO_* criteria to wait for. Refer

to section 4.3.1.5, page 38.

timeout_ms

This specified the maximum amount of time, in milliseconds, that the thread is to wait

for any of the referenced events. A value of zero means do not timeout at all. If non-

zero, then upon return the value will be the approximate amount of time actually waited.
count This is unused by Wait Event operations and must be zero.

Calling Restrictions

There are no restrictions on calling this function.

NOTE: This function is serialized with most other API calls. However, the semaphore used to

serialize access is released before the Library passes control off the SIO4 API Library.

SIO4/8, Fast Async Protocol Library, Reference Manual

33

General Standards Corporation, Phone: (256) 880-8787

4.1.20. sio4_fasync_wait_status()

This function retrieves a count of threads waiting on any of the specified criteria. A match is made when a waiting

thread’s wait criteria matches any of the criteria specified in the structure passed to this service.

Prototype

int sio4_fasync_wait_status(

 int fd,

 gsc_wait_t* wait,

 sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

wait This required structure specifies the criteria to wait on (section 4.3.1, page 37).
error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description in section 4.1, page 11.

Wait Structure Usage

NOTE: The alt field is the only field validated by the Fast Async Protocol Library. Any other

validation performed is carried out by the SIO4 API Library and the SIO4 device driver.

The wait structure is used as follows.

Field Description
flags This is ignored and should be zero upon return.

main
This field specifies the GSC_WAIT_MAIN_* criteria whose matching Wait Event

requests are to be counted. Refer to section 4.3.1.2, page 37.

gsc
This field specifies any of the SIO4_FASYNC_WAIT_GSC_* criteria whose matching

Wait Event requests are to be counted. Refer to section 4.3.1.3, page 38.
alt This is ignored and should be zero upon return.

io
This field specifies any of the SIO4_FASYNC_WAIT_IO_* criteria whose matching

Wait Event requests are to be counted. Refer to section 4.3.1.5, page 38.
timeout_ms This is ignored and should be zero upon return.

count
This is ignored on input. Upon return this indicates the number of Wait Event requests

that met any of the specified criteria.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

34

General Standards Corporation, Phone: (256) 880-8787

4.1.21. sio4_fasync_write()

This function requests that a buffer of data be written to the serial channel. The request will return either when it has

been fulfilled or the write timeout expires, whichever occurs first. This is a blocking call.

Prototype

int sio4_fasync_write(

 int fd,

 const void* src,

 size_t bytes,

 sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

src This is the source for the data to write.
bytes This is the number of bytes to write.
error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Return Value Description

0 to bytes

The operation succeeded. This is the number of bytes written from the buffer. A value

less than bytes generally indicates that the I/O timeout period lapsed before the entire

request could be satisfied.
< 0 An error occurred. See error value description in section 4.1, page 11.

Calling Restrictions

There are no restrictions on calling this function. However, because write requests are serialized separately from all

other API services, applications must exercise care with regard to how all other services might impact ongoing write

operations.

SIO4/8, Fast Async Protocol Library, Reference Manual

35

General Standards Corporation, Phone: (256) 880-8787

4.1.22. Low Level Functions

The low-level functions provide access to the board features reflected by the individual fields of the

sio4_fasync_t structure (section 4.3.5, page 40). This structure is used to access all of the board configuration

features that are part of the API. For each structure field there is a corresponding board feature and an associated

low-level function. When calling the high-level functions that use the sio4_fasync_t structure, the high-level

functions perform their work by calling the low-level functions for each respective structure field. This is especially

useful for activities such as structure initialization and board configuration. Following high level configuration of

the board though, there are times when an application may need to access features represented by only a subset of

the sio4_fasync_t structure fields. This is where an application can make use of the low-level functions. All of

the low-level functions follow the prototype pattern shown below. The function naming convention includes the

prefix “sio4_fasync_t_” followed by the C style field name, but with the periods (“.”) replaced by underscores

(“_”).

Prototype

void sio4_fasync_t_field_name(

 int fd,

 s32* arg,

 sio4_fasync_action_t action,

 FILE* file,

 sio4_fasync_error_t* error);

Argument Description

fd This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page 20).

arg
This required pointer refers to the feature specific value passed to or returned from the

function.

action
This identifies the specific action to be carried out in regards to the referenced feature

(section 4.3.2, page 39).

file

This is a file pointer used by the Show service (section 4.1.14, page 27) to where the output

is directed. If this is NULL, then no output is generated. For output to a terminal screen

stdout should be used. Otherwise, the output is written to the specified file.

error This API uses this optional structure to report detailed error status (section 4.3.3, page 39).

Examples

For simplicity’s sake a low-level function name can easily be derived given any field name, as shown in the below

examples. The individual low-level function names are identified with the corresponding structure fields beginning

in section 4.3.5, page 40.

Field Function
sio4_fasync_t.cable.loopback sio4_fasync_t_cable_loopback()

sio4_fasync_t.rx.enable sio4_fasync_t_rx_enable()

sio4_fasync_t.tx.io.timeout sio4_fasync_t_tx_io_timeout()

4.2. Macros

The API includes the following macros. The Fast Async specific macros are defined in sio4_fasync.h. The

header for any other macros is identified below with the macro descriptions.

SIO4/8, Fast Async Protocol Library, Reference Manual

36

General Standards Corporation, Phone: (256) 880-8787

4.2.1. Registers

The following gives the complete set of Fast Async registers.

4.2.1.1. Firmware Registers

The following table gives the complete set of Fast Async specific firmware registers. For detailed definitions of

these registers refer to the appropriate SIO4 FASYNC User Manual. Please note that the set of registers supported

by any given board may vary according to model and firmware version. For the set of supported registers and

detailed definitions of these registers please refer to the appropriate SIO4 User Manual.

NOTE: Refer to the output of the “id” sample application (…/id/) for a complete list of the

registers supported by the device being accessed.

Macros Description
SIO4_FASYNC_ACSR Asynchronous Control/Status Register (ACSR)
SIO4_FASYNC_BCR Board Control Register (BCR)
SIO4_FASYNC_BSR Board Status Register (BSR)
SIO4_FASYNC_CSR Control/Status Register (CSR)
SIO4_FASYNC_FCR FIFO Count Register (FCR)
SIO4_FASYNC_FDR FIFO Data Register (FDR)
SIO4_FASYNC_FR Features Register (FR)
SIO4_FASYNC_FRR Firmware Revision Register (FRR)
SIO4_FASYNC_FSR FIFO Size Register (FSR)
SIO4_FASYNC_FTR Firmware Type Register (FTR)
SIO4_FASYNC_ICR Interrupt Control Register (ICR)
SIO4_FASYNC_IELR Interrupt Edge/Level Register (IELR)
SIO4_FASYNC_IHLR Interrupt High/Low Register (IHLR)
SIO4_FASYNC_ISR Interrupt Status Register (ISR)
SIO4_FASYNC_POCSR Programmable Oscillator Control/Status Register (POCSR)
SIO4_FASYNC_PORAR Programmable Oscillator RAM Address Register (PORAR)
SIO4_FASYNC_PORD2R Programmable Oscillator RAM Data 2 Register (PORD2R)
SIO4_FASYNC_PORDR Programmable Oscillator RAM Data Register (PORDR)
SIO4_FASYNC_PSRCR Pin Source Register (PSRCR)
SIO4_FASYNC_PSTSR Pin Ststus Register (PSTSR)
SIO4_FASYNC_RAR Rx Almost Register (RAR)
SIO4_FASYNC_TAR Tx Almost Register (TAR)
SIO4_FASYNC_TGR Tx Gap Register (TGR)

4.2.1.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of the PCI

register identifiers refer to header file gsc_pci9056.h, which is automatically included via

sio4_fasync_api.h.

SIO4/8, Fast Async Protocol Library, Reference Manual

37

General Standards Corporation, Phone: (256) 880-8787

4.2.1.3. PLX Feature Set Registers

Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX

register identifiers refer to header file gsc_pci9056.h, which is automatically included via

sio4_fasync_api.h.

4.2.2. Other Macros

All other macros are defined along with the structure fields and/or functions with which they are used.

4.3. Data Types

4.3.1. gsc_wait_t

This structure is used by the Library to process Wait Event, Wait Cancel and Wait Status requests. The structure is

defined in the header file gsc_common.h.

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

4.3.1.1. gsc_wait_t.flags

This field is used by the Library to report the results of Wait Event requests. On input, this field must be zero for

Wait Event requests and is ignored for Wait Cancel and Wait Status requests. Upon return, this field will be one of

the values from the table below for Wait Event requests and zero for Wait Cancel and Wait Status requests.

Valid Values

This field reports the reason that Wait Event requests were resumed. The results will include one of the options

given below.

Value Description
GSC_WAIT_FLAG_CANCEL The wait was cancelled.

GSC_WAIT_FLAG_DONE
The wait was completed successfully. The event which completed the request is

reported through one of the Wait Event macros given below.
GSC_WAIT_FLAG_TIMEOUT The timeout period expired.

4.3.1.2. gsc_wait_t.main

This field is used to specify which of the below listed event types are of interest.

Valid Values

The main events are as follows.

SIO4/8, Fast Async Protocol Library, Reference Manual

38

General Standards Corporation, Phone: (256) 880-8787

Value Description
GSC_WAIT_MAIN_ALL This refers to all of the below event types.
GSC_WAIT_MAIN_DMA0 This refers to a DMA Done interrupt from the first DMA engine.
GSC_WAIT_MAIN_DMA1 This refers to a DMA Done interrupt from the second DMA engine.
GSC_WAIT_MAIN_GSC This refers to any and all GSC based firmware interrupts.

GSC_WAIT_MAIN_OTHER
This refers to other interrupts known to the PLX PCI bridge chip, but which

are not itemized here.
GSC_WAIT_MAIN_PCI This refers to any and all PCI based device interrupts.

GSC_WAIT_MAIN_SPURIOUS
This refers to interrupts which are supported by the driver, but not used by the

SIO4.
GSC_WAIT_MAIN_UNKNOWN This refers to interrupts the driver could not identify.

4.3.1.3. gsc_wait_t.gsc

This field is used to specify GSC firmware-based interrupts. It is the application’s responsibility to enable these

interrupts in preparation for Wait Event requests.

Valid Values

The firmware interrupt events are as follows.

Value Description
SIO4_FASYNC_WAIT_GSC_ALL This refers to all of the below event types.
SIO4_FASYNC_WAIT_GSC_RX_FIFO_AF This refers to the Rx FIFO becoming Almost Full.
SIO4_FASYNC_WAIT_GSC_RX_FIFO_E This refers to the Rx FIFO becoming empty.
SIO4_FASYNC_WAIT_GSC_RX_FIFO_F This refers to the Rx FIFO becoming full.
SIO4_FASYNC_WAIT_GSC_RX_FRAM_ERR This refers to an Rx FIFO frame error.
SIO4_FASYNC_WAIT_GSC_RX_PAR_ERR This refers to an Rx FIFO parity error.
SIO4_FASYNC_WAIT_GSC_TX_FIFO_AE This refers to the Tx FIFO becoming Almost Empty.
SIO4_FASYNC_WAIT_GSC_TX_FIFO_E This refers to the Tx FIFO becoming empty.
SIO4_FASYNC_WAIT_GSC_TX_FIFO_F This refers to the Tx FIFO becoming full.

4.3.1.4. gsc_wait_t.alt

This field is unused by the Fast Async Protocol Library. It should be zero for Wait Event requests and is ignored for

Wait Cancel and Wait Status requests.

4.3.1.5. gsc_wait_t.io

This field is used to specify I/O based events.

Valid Values

The I/O events are as follows.

Value Description
SIO4_FASYNC_WAIT_IO_ALL This refers to all of the below event types.

SIO4_FASYNC_WAIT_IO_RX_ABORT
This refers to a read request being aborted (section 4.1.9, page

24).
SIO4_FASYNC_WAIT_IO_RX_DONE This refers to read request being completed successfully.
SIO4_FASYNC_WAIT_IO_RX_ERROR This refers to a read request being ended due to an error.
SIO4_FASYNC_WAIT_IO_RX_TIMEOUT This refers to a read request being ended due to a timeout.

SIO4_FASYNC_WAIT_IO_TX_ABORT
This refers to a write request being aborted (section 4.1.21, page

28).

SIO4/8, Fast Async Protocol Library, Reference Manual

39

General Standards Corporation, Phone: (256) 880-8787

SIO4_FASYNC_WAIT_IO_TX_DONE This refers to write request being completed successfully.
SIO4_FASYNC_WAIT_IO_TX_ERROR This refers to a write request being ended due to an error.
SIO4_FASYNC_WAIT_IO_TX_TIMEOUT This refers to a write request being ended due to a timeout.

4.3.1.6. gsc_wait_t.timeout_ms

This field is used for Wait Event requests only. It is used to specify the upper limit on the amount of time, in

milliseconds, the application is willing to wait for the specified request. This field is ignored for Wait Cancel and

Wait Status requests and should be zero upon return.

4.3.1.7. gsc_wait_t.count

This field is used for Wait Cancel and Wait Status requests. Upon return, this field indicates either the number

waiting threads that were cancelled or the number of waiting threads that met any of the specified status criteria.

This field is ignored for Wait Event requests and should be zero upon return.

4.3.2. sio4_fasync_action_t

This enumeration identifies the specific action desired when a low-level function is called.

typedef enum

{

 SIO4_FASYNC_ACTION_GET,

 SIO4_FASYNC_ACTION_INIT,

 SIO4_FASYNC_ACTION_SET,

 SIO4_FASYNC_ACTION_SHOW,

 SIO4_FASYNC_ACTION_VERIFY

} sio4_fasync_action_t;

Value Description
SIO4_FASYNC_ACTION_GET This requests the current setting.
SIO4_FASYNC_ACTION_INIT This requests the default setting.
SIO4_FASYNC_ACTION_SET This requests that the supplied setting be applied by the device.
SIO4_FASYNC_ACTION_SHOW This requests that the supplied setting be displayed to the screen. †
SIO4_FASYNC_ACTION_VERIFY This requests that the supplied setting be validated.

† The output may be directed to a file or disabled.

4.3.3. sio4_fasync_error_t

This structure is used by the Library to provide detailed error information when an error is encountered.

Applications are not required to use this structure. When not used, applications pass in a NULL pointer. When used,

the ret field must be set to zero before calling the API. If multiple errors are encountered, this structure will always

refer to the very first that appeared. If an application makes multiple, sequential calls to the API, then the application

can choose to set the ret field to zero only before the first API call. In so doing, the API will record the first error

only as it will not overwrite the structure if the ret field is non-zero.

typedef struct

{

 int ret;

 char msg[128];

 const char* name;

 const char* file;

 const char* function;

 int line;

} sio4_fasync_error_t;

SIO4/8, Fast Async Protocol Library, Reference Manual

40

General Standards Corporation, Phone: (256) 880-8787

4.3.3.1. sio4_fasync_error_t.ret

The is the function return value as described in section 4.1, page 11.

4.3.3.2. sio4_fasync_error_t.msg

This gives a brief description of the error. This will be empty if no error is encountered.

4.3.3.3. sio4_fasync_error_t.name

This gives the name of the API component called or referenced by the function called. This may be a function or

field name and will identify either the function called by the application or the low-level function (or field) if called

by the API. This will be NULL when no error is encountered.

4.3.3.4. sio4_fasync_error_t.file

This will be the API source file name where the error appeared or NULL if no error occurred.

4.3.3.5. sio4_fasync_error_t.function

This will be the API function name where the error appeared or NULL if no error occurred.

4.3.3.6. sio4_fasync_error_t.line

This will be the API source file line number where the error appeared or zero if no error occurred.

4.3.4. sio4_fasync_init_t

This structure is used by the application to specify the data needed by the API when generating a starting, default

configuration. The structure is initialized by the application and passed to the sio4_fasync_init_data()

function (section 4.1.6, page 18).

typedef struct

{

 S32 bitrate;

} sio4_fasync_init_t;

4.3.4.1. sio4_fasync_init_t.bitrate

This field specifies the desired bitrate for the transmitter and the receiver. The Library uses this value to derive the

target frequency for the programmable oscillator. Valid values are the inclusive range from one to 10,000,000.

4.3.5. sio4_fasync_t

This structure contains all of the fields needed to configure an SIO4 Fast Async serial channel. Most fields are user

configurable, though a few are read-only and are provided for informational purposes only. All structure fields are

described in the following subsections. Each field description includes all applicable macros as well as the

associated low-level API function. All fields are filled in when the sio4_fasync_init_data() function is

called (section 4.1.6, page 17). Application modifications must be made prior to calling sio4_fasync_set()

(section 4.1.13, page 25).

typedef struct

{

 s32 bitrate; // read-only section 4.3.5.1, page 43

 s32 board_leds; section 4.3.5.2, page 44

SIO4/8, Fast Async Protocol Library, Reference Manual

41

General Standards Corporation, Phone: (256) 880-8787

 s32 chan_leds; section 4.3.5.3, page 45

 s32 fw_type; // read-only section 4.3.5.4, page 46

 s32 osc_program; section 4.3.5.5, page 47

 s32 stop_bits; section 4.3.5.6, page 48

 struct // cable

 {

 s32 enable; section 4.3.5.7, page 49

 s32 gpio_a; section 4.3.5.8, page 50

 s32 gpio_b; section 4.3.5.9, page 51

 s32 gpio_c; section 4.3.5.10, page 52

 s32 gpio_d; section 4.3.5.11, page 53

 s32 loopback; section 4.3.5.12, page 54

 s32 mode; section 4.3.5.13, page 55

 s32 protocol; section 4.3.5.14, page 56

 s32 term; section 4.3.5.15, page 57
 } cable;

 struct // irq

 {

 s32 direction; section 4.3.5.16, page 58

 s32 enable; section 4.3.5.17, page 59
 } irq;

 struct // parity

 {

 s32 enable; section 4.3.5.18, page 60

 s32 type; section 4.3.5.19, page 61
 } parity;

 struct // tx

 {

 s32 cts; section 4.3.5.20, page 62

 s32 data; section 4.3.5.21, page 63

 s32 enable; section 4.3.5.22, page 64

 s32 gap; section 4.3.5.23, page 65

 s32 status; // read-only section 4.3.5.24, page 66

 struct // tx.fifo

 {

 s32 ae; section 4.3.5.25, page 67

 s32 af; section 4.3.5.26, page 68

 s32 bytes; // read-only section 4.3.5.27, page 69

 s32 empty_cfg; section 4.3.5.28, page 70

 s32 overflow; section 4.3.5.29, page 71

 s32 size; // read-only section 4.3.5.30, page 72

 s32 status; // read-only section 4.3.5.31, page 73
 } fifo;

 struct // tx.io

 {

 s32 dma_threshold; section 4.3.5.32, page 74

 s32 mode; section 4.3.5.33, page 75

 s32 overflow; section 4.3.5.34, page 76

SIO4/8, Fast Async Protocol Library, Reference Manual

42

General Standards Corporation, Phone: (256) 880-8787

 s32 pio_threshold; section 4.3.5.35, page 77

 s32 timeout; section 4.3.5.36, page 78
 } io;

 } tx;

 struct // rx

 {

 s32 enable; section 4.3.5.37, page 79

 s32 frame_err_cfg; section 4.3.5.38, page 80

 s32 parity_err_cfg; section 4.3.5.39, page 81

 s32 rts; section 4.3.5.40, page 82

 s32 sb2_err_cfg; section 4.3.5.41, page 83

 s32 status; // read-only section 4.3.5.42, page 84

 struct // rx.fifo

 {

 s32 ae; section 4.3.5.43, page 85

 s32 af; section 4.3.5.44, page 86

 s32 bytes; // read-only section 4.3.5.45, page 87

 s32 full_cfg; section 4.3.5.46, page 88

 s32 overflow; section 4.3.5.47, page 89

 s32 size; // read-only section 4.3.5.48, page 90

 s32 status; // read-only section 4.3.5.49, page 91

 s32 underflow; section 4.3.5.50, page 92
 } fifo;

 struct // rx.io

 {

 s32 dma_threshold; section 4.3.5.51, page 93

 s32 mode; section 4.3.5.52, page 94

 s32 overflow; section 4.3.5.53, page 95

 s32 pio_threshold; section 4.3.5.54, page 96

 s32 timeout; section 4.3.5.55, page 97

 s32 underflow; section 4.3.5.56, page 98
 } io;

 } rx;

} sio4_fasync_t;

SIO4/8, Fast Async Protocol Library, Reference Manual

43

General Standards Corporation, Phone: (256) 880-8787

4.3.5.1. sio4_fasync_t.bitrate

This field reports the data transfer bitrate. This is a read-only feature, which applied to both the transmitter and the

receiver.

Valid Values

Usually, the value returned is the value passed to the sio4_fasync_init_data() function in the

sio4_fasync_t.bitrate field. However, as this is 1/8th the frequency of the programmable oscillator, the

reported bitrate will reflect that frequency if the oscillator is reprogrammed to an alternate frequency (section

4.3.5.5, page 47).

Low Level Function

int sio4_fasync_t_bitrate(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

44

General Standards Corporation, Phone: (256) 880-8787

4.3.5.2. sio4_fasync_t.board_leds

This field controls which of the board level LEDs are illuminated and which are not. These are board level resources

common to all four channels. If settings are applied by an application for one channel the setting can be overwritten

by another application accessing any of the board’s other three channels.

Valid Values

Valid values are those within the inclusive range of 0x0 through 0x7. If a bit is set, then the corresponding LED is

illuminated. If a bit is clear, then the LED is not illuminated. If a service is being used which applies a setting, then

the value -1 can be used to retrieve the current setting without applying or changing the current setting.

Low Level Function

int sio4_fasync_t_board_leds(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

45

General Standards Corporation, Phone: (256) 880-8787

4.3.5.3. sio4_fasync_t.chan_leds

This field configures the channel specific LEDs. Each channel has two LEDs whose states are configurable via this

field. Refer to the board user manual for additional information.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_CHAN_LEDS_DEFAULT This is the default value.
SIO4_FASYNC_CHAN_LEDS_BOTH_OFF Neither LED is illuminated.
SIO4_FASYNC_CHAN_LEDS_LOW_ON The lower LED is illuminated while the other is not.
SIO4_FASYNC_CHAN_LEDS_UP_ON The upper LED is illuminated while the other is not.
SIO4_FASYNC_CHAN_LEDS_BOTH_ON Both LEDs are illuminated.

Low Level Function

int sio4_fasync_t_chan_leds(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

46

General Standards Corporation, Phone: (256) 880-8787

4.3.5.4. sio4_fasync_t.fw_type

This field reports the firmware type for the attached serial channel. This is a read-only feature, which applied to both

the transmitter and the receiver. Any application specified values are ignored. The value returned is always the

firmware type for the attached serial channel.

Valid Values

Valid options returned are those from the table below.

Value Description
SIO4_FASYNC_FW_TYPE_FASYNC This is a Fast Async based SIO4.
SIO4_FASYNC_FW_TYPE_SYNC This is a -SYNC based SIO4.
SIO4_FASYNC_FW_TYPE_Z16C30 This is an SIO4 with firmware for the Z16C30 dual USC chip.

Low Level Function

int sio4_fasync_t_fw_type(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

47

General Standards Corporation, Phone: (256) 880-8787

4.3.5.5. sio4_fasync_t.osc_program

This field indicates the frequency to which the programmable oscillator will be programmed. This value will

initially be eight times the bitrate passed to the sio4_fasync_init_data() function (section 4.1.6, page 16).

If this value is modified by the application, then it will change the bitrate for both the transmitter and the receiver.

Valid Values

The default value is eight times the bitrate passed to the sio4_fasync_init_data() function (section 4.1.6,

page 16). The valid range is from eight to 80,000,000. The programmable oscillator may not produce the exact

frequency requested, but it should be very close. If a service is being used which applies a setting, then the value -1

can be used to retrieve the current setting without applying or changing the current setting.

NOTE: The library only tracks the programmed oscillator frequency through the use of this field

or low-level service. If the oscillator frequency is changed by any other means, then the frequency

reported be the Library will be incorrect.

Low Level Function

int sio4_fasync_t_osc_program(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the transmitter and receiver are

disabled. There are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

48

General Standards Corporation, Phone: (256) 880-8787

4.3.5.6. sio4_fasync_t.stop_bits

This field specifies the required number of stop-bits at the end of each byte. The setting applies both to the

transmitter and the receiver.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_STOP_BITS_1 This refers to one stop-bit.
SIO4_FASYNC_STOP_BITS_2 This refers to two stop-bits.

Low Level Function

int sio4_fasync_t_stop_bits(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the transmitter and receiver are

disabled. There are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

49

General Standards Corporation, Phone: (256) 880-8787

4.3.5.7. sio4_fasync_t.cable.enable

This field enables or disables the cable transceivers.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_CABLE_ENABLE_NO This option disables the transceivers.
SIO4_FASYNC_CABLE_ENABLE_YES This option enables the transceivers.

Low Level Function

int sio4_fasync_t_cable_enable(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the transmitter and receiver are

disabled. There are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

50

General Standards Corporation, Phone: (256) 880-8787

4.3.5.8. sio4_fasync_t.cable.gpio_a

This field configures the operation of the GPIO A cable interface signal.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_CABLE_GPIO_DISABLE This option disables the signal.
SIO4_FASYNC_CABLE_GPIO_IN This option configures the signal as an input.
SIO4_FASYNC_CABLE_GPIO_OUT_0 This option configures the signal as an output driven low (0).
SIO4_FASYNC_CABLE_GPIO_OUT_1 This option configures the signal as an output driven high (1).

Low Level Function

int sio4_fasync_t_cable_gpio_a(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

51

General Standards Corporation, Phone: (256) 880-8787

4.3.5.9. sio4_fasync_t.cable.gpio_b

This field configures the operation of the GPIO B cable interface signal.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_CABLE_GPIO_DISABLE This option disables the signal.
SIO4_FASYNC_CABLE_GPIO_IN This option configures the signal as an input.
SIO4_FASYNC_CABLE_GPIO_OUT_0 This option configures the signal as an output driven low (0).
SIO4_FASYNC_CABLE_GPIO_OUT_1 This option configures the signal as an output driven high (1).

Low Level Function

int sio4_fasync_t_cable_gpio_b(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

52

General Standards Corporation, Phone: (256) 880-8787

4.3.5.10. sio4_fasync_t.cable.gpio_c

This field configures the operation of the GPIO C cable interface signal.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_CABLE_GPIO_DISABLE This option disables the signal.
SIO4_FASYNC_CABLE_GPIO_IN This option configures the signal as an input.
SIO4_FASYNC_CABLE_GPIO_OUT_0 This option configures the signal as an output driven low (0).
SIO4_FASYNC_CABLE_GPIO_OUT_1 This option configures the signal as an output driven high (1).

Low Level Function

int sio4_fasync_t_cable_gpio_c(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

53

General Standards Corporation, Phone: (256) 880-8787

4.3.5.11. sio4_fasync_t.cable.gpio_d

This field configures the operation of the GPIO D cable interface signal.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_CABLE_GPIO_DISABLE This option disables the signal.
SIO4_FASYNC_CABLE_GPIO_IN This option configures the signal as an input.
SIO4_FASYNC_CABLE_GPIO_OUT_0 This option configures the signal as an output driven low (0).
SIO4_FASYNC_CABLE_GPIO_OUT_1 This option configures the signal as an output driven high (1).

Low Level Function

int sio4_fasync_t_cable_gpio_d(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

54

General Standards Corporation, Phone: (256) 880-8787

4.3.5.12. sio4_fasync_t.cable.loopback

This field configures the cable loopback feature, which affects the Tx and Rx Data signals, as well as the CTS and

RTS hardware flow control signals.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_CABLE_LOOPBACK_NO This option disables the loopback feature.

SIO4_FASYNC_CABLE_LOOPBACK_INT
This option enables internal loopback operation, in which the

signals are looped back within the firmware. †

SIO4_FASYNC_CABLE_LOOPBACK_EXT

This option enables external loopback operation, in which the

input signals are redirected from the input transceivers to the

input side of the corresponding output transceivers. This option

requires that the cable transceivers be enabled (section 4.3.5.7,

page 48).

† If the transceivers are enabled, then the TxD and RTS cable signals are driven accordingly.

Low Level Function

int sio4_fasync_t_cable_loopback(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the transceivers are disabled.

There are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

55

General Standards Corporation, Phone: (256) 880-8787

4.3.5.13. sio4_fasync_t.cable.mode

This field selects the between the DCE and DTE cable signal configurations. Refer to the board user manual for

clarification. This affects the cable signals for both the transmitter and the receiver.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_CABLE_MODE_DCE This option selects the DCE cable signal configuration.
SIO4_FASYNC_CABLE_MODE_DTE This option selects the DTE cable signal configuration.

Low Level Function

int sio4_fasync_t_cable_mode(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the transmitter and receiver are

disabled. There are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

56

General Standards Corporation, Phone: (256) 880-8787

4.3.5.14. sio4_fasync_t.cable.protocol

This field selects the transceiver signal protocol used at the cable interface once the cable transceivers are enabled.

This is a read-only feature.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description

SIO4_FASYNC_CABLE_PROTOCOL_RS422_RS485

This selects the RS-422/RS-485 cable signal protocol.

This is the default, and at this time, it is the only

supported option.

Low Level Function

int sio4_fasync_t_cable_protocol(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

57

General Standards Corporation, Phone: (256) 880-8787

4.3.5.15. sio4_fasync_t.cable.term

This field enables or disables the termination resisters used at the cable interface once the cable transceivers are

enabled. Refer to the board user manual for clarification.

NOTE: This feature refers to the termination resistors internal to the multi-protocol transceiver

chips used on the SIO4. These are totally separate from the socketed external termination resistor

packs which may also be present on the board.

Valid Values

Valid options are those from the table below.

Value Description
SIO4_FASYNC_CABLE_TERM_DISABLE This disables the internal termination resisters.
SIO4_FASYNC_CABLE_TERM_ENABLE This enables the internal termination resisters.

Low Level Function

int sio4_fasync_t_cable_term(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

58

General Standards Corporation, Phone: (256) 880-8787

4.3.5.16. sio4_fasync_t.irq.direction

This field configures interrupts as rising or falling edge sensitive. If a bit is set then the respective interrupt is

triggered by the condition becoming asserted (a rising edge). If a bit is clear then the respective interrupt is triggered

by the condition becoming negated (a falling edge).

Valid Values

Valid values are any combination of the Interrupt Enable options given in section 4.3.5.17, page 59. If a service is

being used which applies a setting, then the value -1 can be used to retrieve the current setting without applying or

changing the current setting.

Low Level Function

int sio4_fasync_t_irq_direction(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

59

General Standards Corporation, Phone: (256) 880-8787

4.3.5.17. sio4_fasync_t.irq.enable

This field enables or disables channel interrupts. If a bit is set, then that interrupt is enabled. The interrupt is

otherwise disabled.

Valid Values

Valid values are any combination of the macros in the following table. If a service is being used which applies a

setting, then the value -1 can be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_IRQ_ALL This refers to all of the interrupt in this table.
SIO4_FASYNC_IRQ_RX_FIFO_AF This refers to the Rx FIFO Almost Full interrupt.
SIO4_FASYNC_IRQ_RX_FIFO_EMPTY This refers to the Rx FIFO Empty interrupt.
SIO4_FASYNC_IRQ_RX_FIFO_FULL This refers to the Rx FIFO Full interrupt.
SIO4_FASYNC_IRQ_RX_FRAME_ERROR This refers to the Rx Frame Error interrupt.
SIO4_FASYNC_IRQ_RX_PARITY_ERROR This refers to the Rx Parity Error interrupt.
SIO4_FASYNC_IRQ_TX_FIFO_AE This refers to the Tx FIFO Almost Empty interrupt.
SIO4_FASYNC_IRQ_TX_FIFO_EMPTY This refers to the Tx FIFO Empty interrupt.
SIO4_FASYNC_IRQ_TX_FIFO_FULL This refers to the Tx FIFO Full interrupt.

Low Level Function

int sio4_fasync_t_irq_enable(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

60

General Standards Corporation, Phone: (256) 880-8787

4.3.5.18. sio4_fasync_t.parity.enable

This field enables or disables the use of parity. This setting applies both to the transmitter and the receiver.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_PARITY_ENABLE_NO This option disables the use of parity.
SIO4_FASYNC_PARITY_ENABLE_YES This option enables the use of parity.

Low Level Function

int sio4_fasync_t_parity_enable(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the transmitter and receiver are

disabled. There are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

61

General Standards Corporation, Phone: (256) 880-8787

4.3.5.19. sio4_fasync_t.parity.type

This field configures the type of parity used, when enabled. This setting applies both to the transmitter and the

receiver.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_PARITY_TYPE_EVEN This option refers to Even parity.
SIO4_FASYNC_PARITY_TYPE_MARK This option refers to Mark parity.
SIO4_FASYNC_PARITY_TYPE_ODD This option refers to Odd parity.
SIO4_FASYNC_PARITY_TYPE_SPACE This option refers to Space parity.

Low Level Function

int sio4_fasync_t_parity_type(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the transmitter and receiver are

disabled. There are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

62

General Standards Corporation, Phone: (256) 880-8787

4.3.5.20. sio4_fasync_t.tx.cts

This field configures the operation of the Tx CTS cable interface signal.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_TX_CTS_IN The signal is an input which does not affect data transmission.

SIO4_FASYNC_TX_CTS_IN_AUTO_TX
The signal is an input which, when asserted, alerts the transmitter to

send data.

Low Level Function

int sio4_fasync_t_tx_cts(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the transmitter is disabled.

There are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

63

General Standards Corporation, Phone: (256) 880-8787

4.3.5.21. sio4_fasync_t.tx.data

This field configures the operation of the Tx Data cable interface signal.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

NOTE: The Tx Data signal is driven only when the cable transceivers are enabled (section

4.3.5.7, page 49) and are driven as configured here only when the transmitter is also enabled

(section 4.3.5.22, page 64).

Value Description
SIO4_FASYNC_TX_DATA_OUT_0 This drives the signal low.
SIO4_FASYNC_TX_DATA_OUT_1 This drives the signal high.
SIO4_FASYNC_TX_DATA_OUT_AUTO This drives the signal as necessary to trans data.

Low Level Function

int sio4_fasync_t_tx_data(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

64

General Standards Corporation, Phone: (256) 880-8787

4.3.5.22. sio4_fasync_t.tx.enable

This field enables and disables the transmitter. When requesting that the transmitter be enabled, it becomes enabled

immediately. When requesting that it be disabled, it becomes disabled immediately only if it is idle. If it is busy

sending a byte, then it becomes disabled when transmission of that byte is complete, including any added Stop Bits

(section 4.3.5.23, page 65). When disabling the transmitter, the Library will wait for up to one second for the

transmitter to become disabled. If it is not disabled within that time frame, then an error will be reported.

NOTE: The transmitter is busy if it is actively engaged in sending out a data byte or any part of it.

This includes the Start Bit, the data bits, the Parity Bit, the required Stop Bits and any extra Stop

Bits. The transmitter is otherwise idle.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_TX_ENABLE_NO This option disables the transmitter.
SIO4_FASYNC_TX_ENABLE_YES This option enables the transmitter.

Low Level Function

int sio4_fasync_t_tx_enable(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the cable transceivers are

enabled. There are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

65

General Standards Corporation, Phone: (256) 880-8787

4.3.5.23. sio4_fasync_t.tx.gap

This field specifies the number of additional stop-bit periods the transmitter inserts after sending the required stop

bits (section 4.3.5.6, page 48) for each byte.

Valid Values

Valid values are those within the inclusive range of zero to 0xFFFF. If a service is being used which applies a

setting, then the value -1 can be used to retrieve the current setting without applying or changing the current setting.

Low Level Function

int sio4_fasync_t_tx_gap(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the transmitter is disabled. The

exception to this is applying the value zero. The value zero can be applied at any time and will take effect

immediately. In addition, it will also abort the operation if it the transmitter is actively working on the configured

Gap period. There are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

66

General Standards Corporation, Phone: (256) 880-8787

4.3.5.24. sio4_fasync_t.tx.status

This field reports the state of the transmitter. This is a read-only feature.

Valid Values

Valid options returned are those from the table below.

The transmitter is busy if it is actively engaged in sending out a data byte or any part of it. This includes the Start

Bit, the data bits, the Parity Bit, the required Stop Bits and any extra Stop Bits. The transmitter is otherwise idle.

Value Description
SIO4_FASYNC_TX_STATUS_DISABLED The transmitter is disabled.
SIO4_FASYNC_TX_STATUS_IDLE The transmitter is enabled, but not in the process of sending a byte.
SIO4_FASYNC_TX_STATUS_BUSY The transmitter is enabled and in the process of sending a byte. †

† The transmitter is busy if it is actively engaged in sending out a data byte or any part of it. This includes the Start

Bit, the data bits, the Parity Bit, the required Stop Bits and any extra Stop Bits.

Low Level Function

int sio4_fasync_t_tx_status(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

67

General Standards Corporation, Phone: (256) 880-8787

4.3.5.25. sio4_fasync_t.tx.fifo.ae

This field configures the Tx FIFO Almost Empty threshold level. When applying a setting the FIFO is reset and the

current content is lost. The Tx FIFO Almost Empty status is asserted when the Tx FIFO contains Almost Empty or

fewer data values.

Valid Values

Valid values are those within the inclusive range of zero to 0xFFFF. If a service is being used which applies a

setting, then the value -1 can be used to retrieve the current setting without applying or changing the current setting.

Low Level Function

int sio4_fasync_t_tx_fifo_ae(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

68

General Standards Corporation, Phone: (256) 880-8787

4.3.5.26. sio4_fasync_t.tx.fifo.af

This field configures the Tx FIFO Almost Full threshold level. When applying a setting the Tx FIFO is reset and the

current content is lost. The Tx FIFO Almost Full status is asserted when the Tx FIFO can accept Almost Full or

fewer data values before becoming full.

Valid Values

Valid values are those within the inclusive range of zero to 0xFFFF. If a service is being used which applies a

setting, then the value -1 can be used to retrieve the current setting without applying or changing the current setting.

Low Level Function

int sio4_fasync_t_tx_fifo_af(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

69

General Standards Corporation, Phone: (256) 880-8787

4.3.5.27. sio4_fasync_t.tx.fifo.bytes

This field reports the number of bytes in the Tx FIFO. This is a read-only feature.

Valid Values

Valid values returned are those within the inclusive range of zero up through the size of the Tx FIFO.

Low Level Function

int sio4_fasync_t_tx_fifo_bytes(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

70

General Standards Corporation, Phone: (256) 880-8787

4.3.5.28. sio4_fasync_t.tx.fifo.empty_cfg

This field configures the transmitter’s response to the Tx FIFO becoming empty.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_TX_FIFO_EMPTY_CFG_DISABLE With this option, the transmitter will be disabled. †
SIO4_FASYNC_TX_FIFO_EMPTY_CFG_ENABLE With this option, the transmitter will remain enabled.

† Using this option may call for preloading Tx data into the Tx FIFO. For details see section 5.5, page 102.

Low Level Function

int sio4_fasync_t_tx_fifo_empty_cfg(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the transmitter is disabled.

There are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

71

General Standards Corporation, Phone: (256) 880-8787

4.3.5.29. sio4_fasync_t.tx.fifo.overflow

This field pertains to the Tx FIFO overflow status. The service will always return the current overflow status.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_FIFO_OVERFLOW_CLEAR This option is used to clear the overflow status.
SIO4_FASYNC_FIFO_OVERFLOW_TEST This option is used to request the overflow status.

SIO4_FASYNC_FIFO_OVERFLOW_NO
This option is returned when the current status indicates that an

overflow has not occurred.

SIO4_FASYNC_FIFO_OVERFLOW_YES
This option is returned when the current status indicates that an

overflow has occurred.

Low Level Function

int sio4_fasync_t_tx_fifo_overflow(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

72

General Standards Corporation, Phone: (256) 880-8787

4.3.5.30. sio4_fasync_t.tx.fifo.size

This field reports the size the Tx FIFO in bytes. This is a read-only feature.

Valid Values

Valid values returned should be within the inclusive range from 512 to 32,768.

Low Level Function

int sio4_fasync_t_tx_fifo_size(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

73

General Standards Corporation, Phone: (256) 880-8787

4.3.5.31. sio4_fasync_t.tx.fifo.status

This field reports the relative fill level of the Tx FIFO. This is a read-only feature.

Valid Values

Valid options returned are those from the table below.

Value Description
SIO4_FASYNC_FIFO_STATUS_EMPTY The FIFO is empty.

SIO4_FASYNC_FIFO_STATUS_AE
The FIFO is at or below the Tx FIFO Almost Empty level (section

4.3.5.25, page 67), though it is not empty.

SIO4_FASYNC_FIFO_STATUS_MEDIUM
The FIFO fill level is between the Tx FIFO Almost Empty and Tx

FIFO Almost Full levels.

SIO4_FASYNC_FIFO_STATUS_AF
The FIFO is at or above the Tx FIFO Almost Full level (section

4.3.5.26, page 68), though it is not full.
SIO4_FASYNC_FIFO_STATUS_FULL The FIFO is full.

Low Level Function

int sio4_fasync_t_tx_fifo_status(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

74

General Standards Corporation, Phone: (256) 880-8787

4.3.5.32. sio4_fasync_t.tx.io.dma_threshold

This field specifies the minimum size of Block Mode DMA transfers performed by the driver. The device driver’s

write service considers the size of the write request and the size of individual DMA requests before proceeding with

a Block Mode DMA transfer. If the Tx FIFO has sufficient space to satisfy the write request, then the driver

proceeds. Otherwise, if the size of the individual DMA request is below this threshold, then the driver will wait 1ms

for more Tx FIFO space to become available and then try again.

NOTE: The driver may break individual Block Mode DMA write requests into multiple, smaller

Block Mode DMA transfers. This is based on the size of the write request and the amount of

available space in the Tx FIFO at the moment the Tx FIFO state is examined.

Valid Values

Valid values are the inclusive range from zero to the size of the Tx FIFO. If a service is being used which applies a

setting, then the value -1 can be used to retrieve the current setting without applying or changing the current setting.

Low Level Function

int sio4_fasync_t_tx_io_dma_threshold(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

75

General Standards Corporation, Phone: (256) 880-8787

4.3.5.33. sio4_fasync_t.tx.io.mode

This field selects the data transfer mode to be used for write requests.

Valid Values

Valid options are those from the table below. These macros are defined in the header file gsc_common.h. If a

service is being used which applies a setting, then the value -1 can be used to retrieve the current setting without

applying or changing the current setting.

Value Description
GSC_IO_MODE_BMDMA This option refers to Block Mode DMA. †
GSC_IO_MODE_DMDMA This mode refers to Demand Mode DMA. †
GSC_IO_MODE_PIO This mode refers to PIO.

† The SIO4 has only two DMA engines. A BMDMA or DMDMA transfer request may fail if both DMA engines are

already in use by other SIO4 I/O requests.

Low Level Function

int sio4_fasync_t_tx_io_mode(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

76

General Standards Corporation, Phone: (256) 880-8787

4.3.5.34. sio4_fasync_t.tx.io.overflow

This field specifies if the driver’s write service should account for Tx FIFO Overflow conditions. The overflow

check, when enabled, is performed upon entry to the driver’s write service.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_IO_OVERFLOW_CHECK The driver checks for Tx FIFO overflows. †
SIO4_FASYNC_IO_OVERFLOW_IGNORE The driver does not check for Tx FIFO overflows.

† If an overflow is detected, then the write request immediately returns an error status.

Low Level Function

int sio4_fasync_t_tx_io_overflow(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

77

General Standards Corporation, Phone: (256) 880-8787

4.3.5.35. sio4_fasync_t.tx.io.pio_threshold

This field specifies the threshold below which individual DMA based write requests and individual DMA transfer

requests will instead use PIO. This mode change is made because very small DMA requests can be performed more

quickly by using PIO.

NOTE: The driver redirects individual DMA write requests and individual DMA transfer requests

to use PIO when the volume of such requests is less than the configured threshold.

Valid Values

Valid values are the inclusive range from zero to 0xFFFFFFF. A value of zero disables the change to PIO. A value

equal to or larger than the size of the Tx FIFO will essentially force all Block Mode DMA write requests to use PIO.

A value equal to or larger than the 64K (an internal driver limit) will essentially force all Demand Mode DMA write

requests to use PIO. If a service is being used which applies a setting, then the value -1 can be used to retrieve the

current setting without applying or changing the current setting.

Low Level Function

int sio4_fasync_t_tx_io_pio_threshold(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

78

General Standards Corporation, Phone: (256) 880-8787

4.3.5.36. sio4_fasync_t.tx.io.timeout

This field specifies the maximum amount of time, in seconds, that the driver permits for write requests. The driver’s

write service will return either when the request has been satisfied or when the timeout period expires, whichever

occurs first.

Valid Values

Valid options are those in the range from the minimum to the maximum, as shown below, plus the infinite option.

These macros are defined in header file sio4.h. If a service is being used which applies a setting, then the value -

1 can be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_IO_TIMEOUT_DEFAULT This is the default, which is 10 seconds.
SIO4_IO_TIMEOUT_INFINITE This tells the driver to never timeout.

SIO4_IO_TIMEOUT_MAX
This is the maximum amount of time permitted, which is 3,600 seconds, or

one hour.
SIO4_IO_TIMEOUT_MIN This is the minimum, which is zero, and is the same as the No Sleep option.

SIO4_IO_TIMEOUT_NO_SLEEP
This tells the driver not to sleep to wait for more space in the Tx FIFO. In

this case, the service returns rather than wait for more space.

Low Level Function

int sio4_fasync_t_tx_io_timeout(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

79

General Standards Corporation, Phone: (256) 880-8787

4.3.5.37. sio4_fasync_t.rx.enable

This field enables and disables the receiver. When requesting that the receiver be enabled, it becomes enabled

immediately. When requesting that it be disabled, it becomes disabled immediately only if it is idle. If it is busy

receiving a byte, then it becomes disabled when reception of that byte is complete, up through and including the

required Stop Bits. When disabling the receiver, the Library will wait for up to one second for the receiver to

become disabled. If it is not disabled within that time frame, then an error will be reported.

NOTE: The receiver is considered idle during the first half of the Start Bit, which is the point at

which the Start Bit has been verified as not being noise.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_RX_ENABLE_NO This option disables the receiver.
SIO4_FASYNC_RX_ENABLE_YES This option enables the receiver.

Low Level Function

int sio4_fasync_t_rx_enable(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the cable transceivers are

enabled and the cable mode (DCE/DTE) has been set . There are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

80

General Standards Corporation, Phone: (256) 880-8787

4.3.5.38. sio4_fasync_t.rx.frame_err_cfg

This field configures the receiver’s response to Rx Frame errors.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description

SIO4_FASYNC_RX_ERROR_CFG_DISCARD
With this option, the byte being received is discarded rather

than being transferred to the Rx FIFO.

SIO4_FASYNC_RX_ERROR_CFG_SAVE
With this option, the byte being received is transferred to the

Rx FIFO.

Low Level Function

int sio4_fasync_t_rx_frame_err_cfg(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the receiver is disabled. There

are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

81

General Standards Corporation, Phone: (256) 880-8787

4.3.5.39. sio4_fasync_t.rx.parity_err_cfg

This field configures the receiver’s response to Rx Parity errors.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description

SIO4_FASYNC_RX_ERROR_CFG_DISCARD
With this option, the byte being received is discarded rather

than being transferred to the Rx FIFO.

SIO4_FASYNC_RX_ERROR_CFG_SAVE
With this option, the byte being received is transferred to the

Rx FIFO.

Low Level Function

int sio4_fasync_t_rx_parity_err_cfg(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the receiver is disabled. There

are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

82

General Standards Corporation, Phone: (256) 880-8787

4.3.5.40. sio4_fasync_t.rx.rts

This field configures the operation of the Rx RTS cable interface signal.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

NOTE: The Rx RTS signal is driven only when the cable transceivers are enabled (section

4.3.5.7, page 49) and are driven as configured here only when the transmitter is also enabled

(section 4.3.5.22, page 64).

Value Description

SIO4_FASYNC_RX_RTS_DISABLE
The RTS signal is disabled and the cable interface signal is

driven in a negated state.
SIO4_FASYNC_RX_RTS_OUT_0 This drives the signal low.
SIO4_FASYNC_RX_RTS_OUT_1 This drives the signal high.

SIO4_FASYNC_RX_RTS_OUT_RX_ENABLE
The signal is driven hi when the receiver is enabled and is

driven low when the receiver is disabled.

SIO4_FASYNC_RX_RTS_OUT_RX_F_NAF
The signal is driven high if the Rx FIFO is not Almost Full and

is driven low when the Rx FIFO is Almost Full.

Low Level Function

int sio4_fasync_t_rx_rts(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

83

General Standards Corporation, Phone: (256) 880-8787

4.3.5.41. sio4_fasync_t.rx.sb2_err_cfg

This field specifies how the receiver should respond if two stop bits are expected, but only one is received.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_RX_SB2_ERR_CFG_ERR The occurrence should generate a frame error.
SIO4_FASYNC_RX_SB2_ERR_CFG_VAL The occurrence is valid and should be ignored.

Low Level Function

int sio4_fasync_t_rx_sb2_err_cfg(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the receiver is disabled. There

are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

84

General Standards Corporation, Phone: (256) 880-8787

4.3.5.42. sio4_fasync_t.rx.status

This field reports the state of the receiver. This is a read-only feature.

Valid Values

Valid options returned are those from the table below.

Value Description
SIO4_FASYNC_RX_STATUS_DISABLED The receiver is disabled.
SIO4_FASYNC_RX_STATUS_IDLE The receiver is enabled, but not in the process of receiving a byte.
SIO4_FASYNC_RX_STATUS_BUSY The receiver is enabled and in the process of receiving a byte. †

† The receiver is busy if it is actively engaged in taking in a data byte or any part of it. This includes the Start Bit,

the data bits, the Parity Bit and the required Stop Bits.

Low Level Function

int sio4_fasync_t_rx_status(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

85

General Standards Corporation, Phone: (256) 880-8787

4.3.5.43. sio4_fasync_t.rx.fifo.ae

This field configures the Rx FIFO Almost Empty threshold level. When applying a setting the FIFO is reset and the

current content is lost. The Rx FIFO Almost Empty status is asserted when the Rx FIFO contains Almost Empty or

fewer data values.

Valid Values

Valid values are those within the inclusive range of zero to 0xFFFF. If a service is being used which applies a

setting, then the value -1 can be used to retrieve the current setting without applying or changing the current setting.

Low Level Function

int sio4_fasync_t_rx_fifo_ae(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

86

General Standards Corporation, Phone: (256) 880-8787

4.3.5.44. sio4_fasync_t.rx.fifo.af

This field configures the Rx FIFO Almost Full threshold level. When applying a setting the Rx FIFO is reset and the

current content is lost. The Rx FIFO Almost Full status is asserted when the Rx FIFO can receive Almost Full or

fewer data values before becoming full.

Valid Values

Valid values are those within the inclusive range of zero to 0xFFFF. If a service is being used which applies a

setting, then the value -1 can be used to retrieve the current setting without applying or changing the current setting.

Low Level Function

int sio4_fasync_t_rx_fifo_af(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

87

General Standards Corporation, Phone: (256) 880-8787

4.3.5.45. sio4_fasync_t.rx.fifo.bytes

This field reports the number of bytes in the Rx FIFO. This is a read-only feature.

Valid Values

Valid values returned are those within the inclusive range of zero up through the size of the Rx FIFO.

Low Level Function

int sio4_fasync_t_rx_fifo_bytes(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

88

General Standards Corporation, Phone: (256) 880-8787

4.3.5.46. sio4_fasync_t.rx.fifo.full_cfg

This field configures the receiver’s response to the Rx FIFO becoming full.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_RX_FIFO_FULL_CFG_DISABLE With this option the receiver will be disabled.
SIO4_FASYNC_RX_FIFO_FULL_CFG_ENABLE With this option the receiver will remain enabled.

Low Level Function

int sio4_fasync_t_rx_fifo_full_cfg(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

Making a feature selection, even if it is not being changed, must be done only while the receiver is disabled. There

are otherwise no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

89

General Standards Corporation, Phone: (256) 880-8787

4.3.5.47. sio4_fasync_t.rx.fifo.overflow

This field pertains to the Rx FIFO overflow status. The service will always return the current overflow status.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_FIFO_OVERFLOW_CLEAR This option is used to clear the overflow status.
SIO4_FASYNC_FIFO_OVERFLOW_TEST This option is used to request the overflow status.

SIO4_FASYNC_FIFO_OVERFLOW_NO
This option is returned when the current status indicates that an

overflow has not occurred.

SIO4_FASYNC_FIFO_OVERFLOW_YES
This option is returned when the current status indicates that an

overflow has occurred.

Low Level Function

int sio4_fasync_t_rx_fifo_overflow(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

90

General Standards Corporation, Phone: (256) 880-8787

4.3.5.48. sio4_fasync_t.rx.fifo.size

This field reports the size the Rx FIFO in bytes. This is a read-only feature.

Valid Values

Valid values returned should be within the inclusive range from 512 to 32,768.

Low Level Function

int sio4_fasync_t_rx_fifo_size(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

91

General Standards Corporation, Phone: (256) 880-8787

4.3.5.49. sio4_fasync_t.rx.fifo.status

This field reports the relative fill level of the Rx FIFO. This is a read-only feature.

Valid Values

Valid options returned are those from the table below.

Value Description
SIO4_FASYNC_FIFO_STATUS_EMPTY The FIFO is empty.

SIO4_FASYNC_FIFO_STATUS_AE
The FIFO is at or below the Rx FIFO Almost Empty level (section

4.3.5.43, page 85), though it is not empty.

SIO4_FASYNC_FIFO_STATUS_MEDIUM
The FIFO fill level is between the Rx FIFO Almost Empty and Rx

FIFO Almost Full levels.

SIO4_FASYNC_FIFO_STATUS_AF
The FIFO is at or above the Rx FIFO Almost Full level (section

4.3.5.44, page 86), though it is not full.
SIO4_FASYNC_FIFO_STATUS_FULL The FIFO is full.

Low Level Function

int sio4_fasync_t_rx_fifo_status(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

92

General Standards Corporation, Phone: (256) 880-8787

4.3.5.50. sio4_fasync_t.rx.fifo.underflow

This field pertains to the Rx FIFO underflow status. The service will always return the current underflow status.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_FIFO_UNDERFLOW_CLEAR This option is used to clear the underflow status.
SIO4_FASYNC_FIFO_UNDERFLOW_TEST This option is used to request the underflow status.

SIO4_FASYNC_FIFO_UNDERFLOW_NO
This option is returned when the current status indicates that an

underflow has not occurred.

SIO4_FASYNC_FIFO_UNDERFLOW_YES
This option is returned when the current status indicates that an

underflow has occurred.

Low Level Function

int sio4_fasync_t_rx_fifo_overflow(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

93

General Standards Corporation, Phone: (256) 880-8787

4.3.5.51. sio4_fasync_t.rx.io.dma_threshold

This field specifies the minimum size of Block Mode DMA transfers performed by the driver. The device driver’s

read service considers the size of the read request and the size of individual DMA requests before proceeding with a

Block Mode DMA transfer. If the Rx FIFO has sufficient data to satisfy the read request, then the driver proceeds.

Otherwise, if the size of the individual DMA request is below this threshold, then the driver will wait 1ms for the Rx

FIFO to receive more data before trying again.

NOTE: The driver may break individual Block Mode DMA read requests into multiple, smaller

Block Mode DMA transfers. This is based on the size of the read request and the amount of

available data in the Rx FIFO at the moment the Rx FIFO state is examined.

Valid Values

Valid values are the inclusive range from zero to the size of the Rx FIFO. If a service is being used which applies a

setting, then the value -1 can be used to retrieve the current setting without applying or changing the current setting.

Low Level Function

int sio4_fasync_t_rx_io_dma_threshold(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

94

General Standards Corporation, Phone: (256) 880-8787

4.3.5.52. sio4_fasync_t.rx.io.mode

This field selects the data transfer mode to be used for read requests.

Valid Values

Valid options are those from the table below. These macros are defined in the header file gsc_common.h. If a

service is being used which applies a setting, then the value -1 can be used to retrieve the current setting without

applying or changing the current setting.

Value Description
GSC_IO_MODE_BMDMA This option refers to Block Mode DMA. †
GSC_IO_MODE_DMDMA This mode refers to Demand Mode DMA. †
GSC_IO_MODE_PIO This mode refers to PIO.

† The SIO4 has only two DMA engines. A BMDMA or DMDMA transfer request may fail if both DMA engines are

already in use by other SIO4 I/O requests.

Low Level Function

int sio4_fasync_t_rx_io_mode(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

95

General Standards Corporation, Phone: (256) 880-8787

4.3.5.53. sio4_fasync_t.rx.io.overflow

This field specifies if the driver’s read service should account for Rx FIFO Overflow conditions. The overflow

check, when enabled, is performed upon entry to the driver’s read service.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_IO_OVERFLOW_CHECK The driver checks for Rx FIFO overflows. †
SIO4_FASYNC_IO_OVERFLOW_IGNORE The driver does not check for Rx FIFO overflows.

† If an overflow is detected, then the read request immediately returns an error status.

Low Level Function

int sio4_fasync_t_rx_io_overflow(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

96

General Standards Corporation, Phone: (256) 880-8787

4.3.5.54. sio4_fasync_t.rx.io.pio_threshold

This field specifies the threshold below which individual DMA based read requests and individual DMA transfer

requests will instead use PIO. This mode change is made because very small DMA requests can be performed more

quickly by using PIO.

NOTE: The driver redirects individual DMA read requests and individual DMA transfer requests

to use PIO when the volume of such requests is less than the configured threshold.

Valid Values

Valid values are the inclusive range from zero to 0xFFFFFFF. A value of zero disables the change to PIO. A value

equal to or larger than the size of the Rx FIFO will essentially force all Block Mode DMA read requests to use PIO.

A value equal to or larger than the 64K (an internal driver limit) will essentially force all Demand Mode DMA read

requests to use PIO. If a service is being used which applies a setting, then the value -1 can be used to retrieve the

current setting without applying or changing the current setting.

Low Level Function

int sio4_fasync_t_rx_io_pio_threshold(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

97

General Standards Corporation, Phone: (256) 880-8787

4.3.5.55. sio4_fasync_t.rx.io.timeout

This field specifies the maximum amount of time, in seconds, that the driver permits for read requests. The driver’s

read service will return either when the request has been satisfied or when the timeout period expires, whichever

occurs first.

Valid Values

Valid options are those in the range from the minimum to the maximum, as shown below, plus the infinite option.

These macros are defined in header file sio4.h. If a service is being used which applies a setting, then the value -

1 can be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_IO_TIMEOUT_DEFAULT This is the default, which is 10 seconds.
SIO4_IO_TIMEOUT_INFINITE This tells the driver to never timeout.

SIO4_IO_TIMEOUT_MAX
This is the maximum amount of time permitted, which is 3,600 seconds, or

one hour.
SIO4_IO_TIMEOUT_MIN This is the minimum, which is zero, and is the same as the No Sleep option.

SIO4_IO_TIMEOUT_NO_SLEEP
This tells the driver not to sleep to wait for more data in the Rx FIFO. In

this case, the service returns rather than wait for more data.

Low Level Function

int sio4_fasync_t_rx_io_timeout(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

98

General Standards Corporation, Phone: (256) 880-8787

4.3.5.56. sio4_fasync_t.rx.io.underflow

This field specifies if the driver’s read service should account for Rx FIFO underflow conditions. The underflow

check, when enabled, is performed upon entry to the driver’s read service.

Valid Values

Valid options are those from the table below. If a service is being used which applies a setting, then the value -1 can

be used to retrieve the current setting without applying or changing the current setting.

Value Description
SIO4_FASYNC_IO_UNDERFLOW_CHECK The driver checks for Rx FIFO underflows. †
SIO4_FASYNC_IO_UNDERFLOW_IGNORE The driver does not check for Rx FIFO underflows.

† If an underflow is detected, then the read request immediately returns an error status.

Low Level Function

int sio4_fasync_t_rx_io_underflow(

 int fd,

 s32* arg,

 sio4_fasync_action_t action, section 4.3.2, page 39
 FILE* file,

 sio4_fasync_error_t* error); section 4.3.3, page 39

The function argument and return values are described in section 4.1, page 34.

Calling Restrictions

There are no restrictions on calling this function.

SIO4/8, Fast Async Protocol Library, Reference Manual

99

General Standards Corporation, Phone: (256) 880-8787

5. Operating Information

This section explains some basic operational procedures for using the SIO4 with the Fast Async Protocol Library.

This is in no way intended to be a comprehensive guide. This is simply to address a very few issues relating to its

use.

5.1. Getting Started

To configure the SIO4 for Fast Async operation meeting specific requirements, the recommended starting point is a

local, customizable copy of the fasyncc2c sample application included with the driver. This application is

designed to transfer bulk data between a Fast Async transmitter and a Fast Async receiver. The transmitter and

receiver can be from two channels on different boards, two channels on the same board, or by loopback mode using

the transmitter and receiver from the very same channel. There are two loopback configurations. Internal Loopback

performs the transfer by routing signals internal to the firmware. External Loopback performs the transfer by routing

the signals through the cable transceivers.

NOTE: When using Loopback operation, it is recommended that cabling and any remote

equipment be disconnected from the SIO4. This is because External Loopback is the default when

Internal Loopback is not supported by firmware.

5.1.1. Cable Validation

The first step in deriving a customized configuration is to verify cabling. This should be done using the application’s

default settings. It is recommended that one channel be used for loopback testing and that two other channels on the

same board be connected by the cabling to be tested. A script with the below commands is a convenient means of

repeating these tests until cabling has been verified successfully.

./fasyncc2c 0 0 -i

./fasyncc2c 0 0 -e

./fasyncc2c 1 2

5.1.2. Customizing the Configuration

The second step in deriving a customized configuration is to methodically modify the application code, one

parameter at a time, until all necessary parameter changes have been accommodated. That is, choose a parameter

from the documentation that must be changed from its default, modify the application so the required setting can be

specified from the command line, then test the resulting changes. A script with the below commands is a convenient

means of repeating these tests. In this example the “-X” represents the new command line argument for the

parameter being altered from its default. This script tests all three cabling setups both without the change and with

the change. This is done to verify that the default operation remains functional after the code modifications. In some

cases, the script may need to be expanded to test each parameter addition to ensure prior changes remain functional.

It is suggested that parameter changes be accommodated one at a time to ease the development and testing process.

./fasyncc2c 0 0 -i

./fasyncc2c 0 0 -e

./fasyncc2c 1 2 -i

./fasyncc2c 0 0 -i -X

./fasyncc2c 0 0 -e -X

./fasyncc2c 1 2 -X

NOTE: At times modifications for a parameter may need to be implemented on the transmitter or

receiver first in order to facilitate validation. At other times the transmitter and receiver may

temporarily be configured differently in order to verify that a change is implemented properly.

SIO4/8, Fast Async Protocol Library, Reference Manual

100

General Standards Corporation, Phone: (256) 880-8787

NOTE: It is best to initially test parameter additions separately, one at a time. Where there are

parameter interactions, testing parameter combinations should be completed before moving on.

The general sequence for addition of a new parameter modification is as follows.

1. Add a field for the new parameter to the args_t structure defined in main.h.

2. Add command line support for the new parameter by updating the _parse_args() function at the top of

main.c. At minimum, the list[] table must be updated to associate assignment of a setting with a command

line argument. This may also mean assigning a default to the new field following the memset() function call.

NOTE: One may have to review multiple sample applications to get a feel for how to add specific

command line argument types to the argument table.

3. Update the _setup_apply() function at the top of setup.c to apply the value from the new args_t

field to the sio4_fasync_t structure prior to calling sio4_fasync_set().

4. Now update the script steps given above for the code changes just implemented. Continue adding support for

other required parameter changes when testing is complete. Update the above script for each addition.

5.2. Debugging Aids

The SIO4 driver archive includes the following debugging aids appropriate for use with the Fast Async Protocol

Library.

5.2.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id

example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as

follows.

Description File Location

Application id …/id/

5.2.2. sio4_fasync_show()

The function sio4_fasync_show() (section 4.1.14, page 27) is part of the protocol library interface. The

purpose of this function is to produce a human readable report of all fields included in the sio4_fasync_t

structure (section 4.3.5, page 40) passed in as a function argument. The function is best used to report the structure’s

content both before it is passed to sio4_fasync_set() (section 4.1.13, page 22) and after it is passed to

sio4_fasync_get() (section 4.1.2, page 13). The output can be used to help visualize the channel

configuration reflected by the structure content. When used in conjunction with sio4_fasync_set(), the

sio4_fasync_show() output indicates the state that sio4_fasync_set() is expected to produce. When

used in conjunction with sio4_fasync_get(), the sio4_fasync_show() output indicates the channel’s

current state. This may be beneficial after calling sio4_fasync_set() in order to verify the results achieved.

The pair of calls may also be used before or after the read or write I/O calls in order to help explain the results of

individual transfer requests.

5.2.3. Detailed Register Dump

The function sio4_reg_list() is included in the SIO4 utility library. The purpose of the function is to report

the current content of registers for the referenced serial channel. The arguments control the set of registers included

in the output and the detail with which the register content is reported. This function can be called at any time to

SIO4/8, Fast Async Protocol Library, Reference Manual

101

General Standards Corporation, Phone: (256) 880-8787

report the device state, but it is most often called after completing board setup, or just before or after

sio4_fasync_read() or sio4_fasync_write() calls in order to help explain the results of individual

transfer requests.

Prototype

int sio4_reg_list(int fd, int gsc, int gsc_detail,

 int usc, int usc_detail);

Argument Description

fd
This is a file descriptor obtained from sio4_fasync_open() (section 4.1.8, page

20).

gsc
If non-zero, then the output will include a dump of all GSC_SIO4_xxx registers. Refer

to sio4.h for a complete list of these registers.

gsc_detail
If non-zero, then the dump of the GSC registers will include detailed information about

all register fields, including the field value and the meaning of the value.
usc For Fast Async boards pass in a value of zero.
usc_detail For Fast Async boards pass in a value of zero.

Return Value Description
>= 0 This is the number of errors encountered during execution of the function.

5.2.4. Status Return Values

The Fast Async Protocol Library, the SIO4 API Library and the SIO4 device driver all report the results for each of

the various interface services. The table below lists the most common error status values reported to an application.

Value errno.h Macro Description

> 0 None
This applies to read and write operations and reflects the number of bytes

successfully transferred.
0 None The operation was completed successfully.

-5 -EIO

The most likely cause is an Rx FIFO Overflow, though a Tx FIFO Overflow

or a Rx FIFO Underflow also produce this result. An Rx FIFO Overflow

error generally means the application isn’t reading data fast enough. The Tx

FIFO errors should never happen, except under dedicated test conditions.

-16 -EBUSY

An open request failed due to a conflicting share argument. This can

happen if an Exclusive open request is made when some application already

has access to the same device. This will occur when the existing access is

either Shared or Exclusive. This can also happen if a Shared request is made

when the existing access is Exclusive. This status may also be returned by

the close service if another API call is still active.

-22 -EINVAL A function argument or referenced structure field value is invalid.

-71 -EPROTO
The Fast Async Protocol Library has not been initialized. Applications must

call sio4_fasync_init_api() before making any other Library call.

-77 -EBADF

The file descriptor argument was not recognized. This indicates that the file

descriptor is invalid, was not obtained by the sio4_fasync_open()

function, or access to the referenced device has already been closed.

-93 -EPROTONOSUPPORT
This indicates that the SIO4 device doesn’t support the operation requested.

This occurs when an API function is called on an SIO4 that is not based on

the Fast Async firmware.

SIO4/8, Fast Async Protocol Library, Reference Manual

102

General Standards Corporation, Phone: (256) 880-8787

5.3. Cable Configuration Modes

Overall, the SIO4 supports three cable interfacing modes; DCE, DTE and Legacy mode. Older boards support only

Legacy mode. More recent boards support only the DCE and DTE modes. Intermediate boards support all three

modes. The Fast Async firmware supports the DCE and DTE mode selections only. The legacy mode is described in

older SIO4 board user manuals.

5.4. Error and Status Detection

The SIO4 incorporates the ability to detect a number of error and other conditions for both the transmitter and the

receiver.

5.4.1. Interrupt Events

One means of catching the various conditions, especially errors, is by use of interrupts. The basic steps for this are to

enable the interrupts of interest then have a thread wait for a corresponding Wait Event request. This is illustrated in

the following code fragments.

Thread A Thread B
For (;;)

{

 …

 read SIO4 data

 if (error recorded)

 {

 Error exists in

1) Read buffer, or
2) SIO4 Rx FIFO
Resync data stream.

 }

 else

 {

 Read buffer is error free.

 }

 …

}

For (;;)

{

 …

 Enable desired interrupts.

 Wait for an interrupt.

 if (error interrupt occurred)

 {

 Record the error.

 }

 …

}

5.5. Preloading Tx Data

As data is written to the SIO4 the Tx FIFO fill level can vary dramatically. Depending on the Tx bitrate, how rapidly

an application is able to feed data to the transmitter, and various other factors, the Tx FIFO fill level may constantly

hover around empty. As a result, the Tx FIFO may frequently, though inadvertently, become empty. If the

transmitter is configured to be disabled when it becomes empty (section 4.3.5.28, page 69), then the inadvertent

empty states can disable the transmitter prematurely. To prevent this from happening, the application may need to

preload data into the Tx FIFO before having the data transmitted. This can be accomplished with the below pseudo

code.

1. Configure the device up front with the init_data and set API functions.

2. Check to see how much data is in the Tx FIFO using the Tx FIFO Bytes function (section 4.3.5.27, page 68). If

there is sufficient data in the Tx FIFO to prevent an inadvertent and premature empty state, then skip steps three

through seven. What constitutes “sufficient data” may have to be determined experimentally.

SIO4/8, Fast Async Protocol Library, Reference Manual

103

General Standards Corporation, Phone: (256) 880-8787

3. Wait for the Tx FIFO to become empty by polling the Tx FIFO Status function (section 4.3.5.31, page 72).

Inserting a millisecond sleep between successive calls may be appropriate.

4. Pause transmission by disabling the transmitter (section 4.3.5.20, page 61). So long as the transceivers are

enabled, the TxD and RTS lines are driven to their idle states while the transmitter is disabled. While the

transmitter should already be configured to disable the transmitter due to a Tx FIFO empty state, the application

can request this via the API here as the Library will wait for the last byte to complete transmission.

5. The transmitter should now be disabled.

6. Write the necessary data to the Tx FIFO using the write API function (section 4.1.21, page 33), up to the size of

the Tx FIFO.

7. Resume transmission by enabling the transmitter (section 4.3.5.20, page 61).

8. Write the remaining data to the TX FIFO using the write API function (section 4.1.21, page 33)

5.6. Waiting for the Transmitter or Receiver to Finish

There are times when an application may need to wait for transmission or reception to complete before continuing.

For the transmitter, the simplest case is waiting for the current byte, if any, to finish. If so, then the application

should disable the transmitter (section 4.3.5.20, page 62). Afterwards, the application should poll the Tx Status

function (section 4.3.5.24, page 66) till the status is reported as idle. At this point the transmitter has finished.

If the transmitter must send out all data in the Tx FIFO, then the application must monitor the Tx FIFO state then Tx

Status for completion. The first step can be done by polling the Tx FIFO Fill Level (section 4.3.5.27, page 69),

polling the Tx FIFO Status (section 4.3.5.31, page 73) or using a Wait Event request (section 4.1.19, page 32) for a

Tx FIFO Empty interrupt. Once the Tx FIFO is empty, the application should then monitor the transmitter to

determine when the last byte has been sent out the cable interface. This can be done by calling the Tx Status

function (section 4.3.5.24, page 66) until the status is reported as idle. At this point the transmitter has finished.

NOTE: There may be a slight delay between the Tx FIFO reporting its empty state and when the

transmitter reports that it is busy sending out that last byte. Application should therefore initially

read the transmitter status twice in succession after the Tx FIFO becomes empty.

For the receiver, the simplest case is waiting for the current byte, if any, to finish. If so, then the application should

disable the receiver (section 4.3.5.37, page 79). Afterwards, the application should poll the Rx Status function

(section 4.3.5.49, page 91) till the status is reported as idle. At this point the receiver has finished.

If the receiver must receive a complete message (block or frame), then the application must monitor the received

data to determine when the message is complete. At this point the receiver can be disabled (section 4.3.5.37, page

79). Being disabled, the receiver may have already started to receive another byte. Depending on the bitrate, it is

possible that multiple bytes have already accumulated in the Rx FIFO. These can be read (section 4.1.9, page 22)

from the Rx FIFO and discarded. At this point the receiver has finished.

SIO4/8, Fast Async Protocol Library, Reference Manual

104

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

March 19, 2024 Initial release.

