
SIO4/8
Four/Eight Channel High Speed Serial I/O

All SIO4 and SIO8 Models
All Form Factors

All Standard Zilog Versions

HDLC Protocol Library
Reference Manual

Manual Revision: March 19, 2024

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

SIO4/8, HDLC Protocol Library, Reference Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2013-2024, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or

software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Although extensive editing and reviews are performed before release, General Standards Corporation assumes no

responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are

made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this

documentation.

General Standards Corporation does not assume any liability arising out of the application or use of

documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or

any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,

software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

Zilog and Z16C30 are trademarks of Zilog, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

SIO4/8, HDLC Protocol Library, Reference Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 7

1.1. Purpose ... 7

1.2. Acronyms .. 7

1.3. Definitions ... 7

1.4. Software Overview .. 7

1.5. Hardware Overview .. 7

1.6. Exclusions ... 8

1.6.1. Global Rx FIFO Full Configuration ... 8

1.7. Reference Material .. 8

2. The HDLC Serial Protocol .. 9

2.1. Description .. 9

2.2. History.. 9

3. Library Interface Files ... 11

3.1. Header File .. 11

3.2. Static Library Files .. 11

4. Library Interface .. 12

4.1. Functions ... 12

4.1.1. sio4_hdlc_close() .. 12

4.1.2. sio4_hdlc_get() ... 12

4.1.3. sio4_hdlc_init() ... 12

4.1.4. sio4_hdlc_init_data() .. 13

4.1.5. sio4_hdlc_ioctl() .. 14

4.1.6. sio4_hdlc_open() .. 15

4.1.7. sio4_hdlc_rx_flush() ... 16

4.1.8. sio4_hdlc_rx_frame() .. 16

SIO4/8, HDLC Protocol Library, Reference Manual

4

General Standards Corporation, Phone: (256) 880-8787

4.1.9. sio4_hdlc_set() ... 19

4.1.10. sio4_hdlc_show() .. 20

4.1.11. sio4_hdlc_tx_abort() ... 20

4.1.12. sio4_hdlc_tx_break() .. 21

4.1.13. sio4_hdlc_tx_flush() .. 21

4.1.14. sio4_hdlc_tx_frame() .. 22

4.1.15. sio4_hdlc_tx_status() .. 24

4.1.16. sio4_hdlc_tx_wait() ... 25

4.2. Data Structures ... 26

4.2.1. sio4_hdlc_t.. 26

5. Operating Information .. 50

5.1. Basic Illustration ... 50

5.2. Getting Started .. 50

5.2.1. Cable Validation ... 50

5.2.2. Customizing the Configuration ... 51

5.3. Debugging Aids .. 51

5.3.1. Device Identification ... 52

5.3.2. sio4_hdlc_show() .. 52

5.3.3. Detailed Register Dump ... 52

5.3.4. Status Return Values .. 53

5.4. Tx Abort (Transmitter Abort Sequence) ... 53

5.5. Tx Preamble (Transmitter Frame Preamble) .. 53

5.6. Tx CRC (Transmitter Frame Check Sequence) .. 53

5.7. Rx CRC (Receiver Frame Check Sequence) .. 54

5.8. Basic Transmission Requirements ... 54

5.8.1. Send Data as a Single Complete Frame .. 54

5.8.2. Tx Short Frame Status and Preload ... 55

SIO4/8, HDLC Protocol Library, Reference Manual

5

General Standards Corporation, Phone: (256) 880-8787

5.8.3. Complete Frame Transmission Before Returning .. 55

5.8.4. Transmit Frames ASAP .. 56

5.9. Clocking Configurations .. 56

5.9.1. Four Signal Configuration: Cable Tx Clock is Used, Cable Rx Clock is Used 57

5.9.2. Three Signal Configuration #1: Cable Tx Clock is Unused, Cable Rx Clock is Used 58

5.9.3. Three Signal Configuration #2: Cable Tx Clock is Used, Cable Rx Clock is Unused 59

5.9.4. Two Signal Configuration: Cable Tx Clock is Unused, Cable Rx Clock is Unused 60

5.10. Cable Configuration Modes ... 61

5.10.1. DCE/DTE Mode .. 61

5.10.2. Legacy Mode .. 61

5.11. Error and Status Detection .. 61

5.11.1. Interrupt Events .. 61

5.11.2. Rx Status Word .. 62

Document History ... 63

SIO4/8, HDLC Protocol Library, Reference Manual

6

General Standards Corporation, Phone: (256) 880-8787

Table of Figures

Figure 1 The HDLC Frame format. ... 9

Figure 2 A functional illustration of an SIO4B or later model board. ... 50

Figure 3 The clock routing produced when the Cable Tx Clock is used and the Cable Rx Clock is used. 57

Figure 4 The clock routing produced when the Cable Tx Clock is unused and the Cable Rx Clock is used. 58

Figure 5 The clock routing produced when the Cable Tx Clock is used and the Cable Rx Clock is unused. 59

Figure 6 The clock routing produced when the signals Cable Tx Clock and Cable Rx Clock are unused. 60

SIO4/8, HDLC Protocol Library, Reference Manual

7

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

1.1. Purpose

This purpose of this document is to give a complete description of the HDLC Protocol Library programming

interface.

1.2. Acronyms

The following is a list of commonly occurring acronyms used throughout this document.

Acronyms Description

CRC Cyclic Redundancy Check

DMA Direct Memory Access

DPLL Digital Phase Lock Loop

FCS Frame Check Sequence

GSC General Standards Corporation

HDLC High-level Data Link Control

PCI Peripheral Component Interconnect

PMC PCI Mezzanine Card

RCC Receive Character Counter

USC Universal Serial Controller

1.3. Definitions

The following is a list of commonly occurring terms used throughout this document.

Term Definition

Application Application means the user mode process, which runs in user space with user mode privileges.

Driver Driver means the executable providing the direct access to the SIO4 hardware.

Frame This term refers to a block of data, with overhead, sent using the HDLC protocol.

Library Depending on context, this is a general reference to the HDLC Protocol Library.

RCC FIFO This is an internal USC FIFO that records the length of received frames.

SIO4

This is used as a general reference to any Zilog based board supported by this driver. This includes

both SIO4 and SIO8 model boards. It is also used to refer to revisions of the board that do not

include a suffix following the ‘4’, such as SIO4A or SIO4B.

1.4. Software Overview

The HDLC Protocol Library is a statically linked library providing an HDLC centric interface to the SIO4 device

driver. The library is provided in source form and must be built before being used. The library is a thin software

layer that sits between an SIO4 application and the SIO4 API Library. The interface provided by the library is

HDLC specific and is a simplified rendition of the IOCTL services that are part of the overall driver interface. The

library exists in parallel with the driver interface.

1.5. Hardware Overview

NOTE: The SIO8 boards appear to the system as two SIO4 boards.

The SIO4 is a four channel high-speed serial interface I/O board. This board provides for bi-directional serial data

transfers between two computers, or one computer and an external peripheral. Once the data link between the two

devices is established, the desired transfers can be performed and will become transparent to the user. The SIO4

board includes two DMA controllers and comes with a maximum of 256K Bytes of FIFO storage, which is 32K per

SIO4/8, HDLC Protocol Library, Reference Manual

8

General Standards Corporation, Phone: (256) 880-8787

channel direction (32K * 2 * 4). Each DMA controller is capable of transferring data to and from host memory;

whereas the FIFO help maintain continuous data transfer at the cable interface. The FIFO configuration can vary

greatly from one SIO4 version to another (i.e. 32K * 2 * 4 to 1K * 2 *1 to none at all). The SIO4 comes with

transceivers that are fixed as RS232 or RS485/422, or with transceivers that are configurable. The SIO4 comes in

two basic varieties; SYNC models or Zilog models, which are based on two Z16C30 dual USC chips. Later model

SIO4 boards support both models with the mode being software controlled on a per channel basis. The SIO4 also

provides for interrupt generation for various states of the board like Sync Character detection, FIFO empty, FIFO

full and DMA complete.

NOTE: Software selection of SYNC or Zilog mode of operation is not at this time explicitly

supported by the Protocol Libraries, the SIO4 API Library or the device driver. The operating

mode is controlled by the model ordered.

1.6. Exclusions

1.6.1. Global Rx FIFO Full Configuration

The global Rx FIFO Full Configuration setting (see SIO4_IOCTL_RX_FIFO_FULL_CFG_GLB in

sio4.h) is not included as part of the HDLC Protocol Library. It is excluded because the setting overrides

the channel specific settings for all four channels.

1.7. Reference Material

The following reference material may be of particular benefit in using the SIO4 and this driver. The specifications

provide the information necessary for an in depth understanding of the specialized features implemented on this

board.

• ISO/IEC 13239, Information technology – Telecommunications and information exchange between

systems – High-level data link control (HDLC) procedures

• The applicable SIO4/SIO8 User Manual from General Standards Corporation.

• The applicable SIO4/SIO8 Driver User Manual from General Standards Corporation.

• The PCI Bus Master Interface Chip data handbook for the PCI9056 or PCI9080 from PLX

Technology, Inc.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com/

• The Z16C30 USC User’s Manual from Zilog.

Zilog, Inc.

910 E Hamilton Ave

Campbell, California 95008 USA

Phone: 1-408-558-8500

WEB: Thttp://www.zilog.com/

http://www.plxtech.com/
http://www.zilog.com/

SIO4/8, HDLC Protocol Library, Reference Manual

9

General Standards Corporation, Phone: (256) 880-8787

2. The HDLC Serial Protocol

2.1. Description

HDLC is a bit oriented serial transmission protocol centered about what is called the Flag. The Flag is a series of

eight bits whose values are 01111110. The Flag is used to signal the beginning and end of a Frame. Refer to Figure

1 below for the basic layout of an HDLC Frame. The only other special bit sequences are the Aborts, which consists

of a zero followed by seven or more ones, and the Break, which is an Abort that is typically many milliseconds in

duration. When sending out other than these special sequences, the transmitter performs bit stuffing by converting

any 011111 sequence into 0111101. The receiver performs the reverse operation by converting the sequence

0111101 to 011111. In this way, the HDLC protocol places no restriction on the content of the serial data.

Flag Data
Control

(Optional)

Address

(Optional)

FCS

(Optional)
Flag

8 bits x bits8x bits8x bits 16/32 bits 8 bits

Figure 1 The HDLC Frame format.

Within a Frame, everything but the data is always in multiples of eight bits. The Flags are always eight bits wide.

All Address characters, Control characters and FCS characters are always in multiples of eight bits. The data though,

when present, is in multiples of from one to eight bits. All data characters within a Frame are the same size, except

for the last data character, which may be smaller.

The Address field may be a fixed size or a variable size. When variable, it contains a fixed sized portion that is

conditionally followed by additional Address bytes. The last byte of the fixed size portion and every byte thereafter

is checked to see if the following byte is part of the Address field. The check examines the least significant bit of the

byte. (The hardware checks the first bit received even if software has configured the device for Most Significant Bit

First reception.) If the least significant bit is clear, then the next byte is included as part of the variable sized Address

field. Though the Address field may contain a number of bytes, only the first byte is used by the SIO4 hardware for

address comparison. If the first byte is all ones or if the value matches a preset address value, then the Frame is

captured. Otherwise the Frame is ignored.

The captured Control field may also be a fixed size or a variable size. When variable, it contains a fixed sized

portion that is conditionally followed by additional Control bytes. The last byte of the fixed size portion and every

byte thereafter is checked to see if the following byte is part of the Control field. The check examines the most

significant bit of the byte. (The hardware checks the last bit received even if software has configured the device for

Most Significant Bit First reception.) If the most significant bit is set, then the next byte is included as part of the

variable sized Control field. After this, one additional byte is included in the Control field.

The FCS, or Frame Check Sequence, is a CRC calculated over the content of frame from the first Address byte to

the last Data byte. The SIO4 can generate CRCs of 16 or 32 bits. The FCS is inserted automatically by the

transmitter as the frame is being sent. On reception, the calculated FCS is compared against the received FCS. The

result of the comparison is included in the frame status.

While a frame is not being transmitted, the transmitter is typically configured to output a continuous stream of Flag

sequences. These are repeated until the next Frame is sent. At the very minimum, individual frames may be

separated by only a single Flag sequence. This results in the sequence FCS-Flag-Address. The SIO4 transmitter can

also be configured to create a minimum inter-frame delay consisting of up to 10 Flag sequences.

2.2. History

The current official HDLC specification is documented by ISO 13239. This was preceded by a number of other ISO

specifications. There are also a number of additional specifications for various HDLC subsets, derivatives and other

SIO4/8, HDLC Protocol Library, Reference Manual

10

General Standards Corporation, Phone: (256) 880-8787

aspects of implementation. The origin for HDLC is SDLC, which was designed by IBM in 1975 for use with its

SNA traffic. SDLC was subsequently submitted by IBM for codification. After some modifications it was renamed

HDLC and was standardized by ISO 3309, which was eventually replaced by ISO 13239.

SIO4/8, HDLC Protocol Library, Reference Manual

11

General Standards Corporation, Phone: (256) 880-8787

3. Library Interface Files

This section gives general information on the HDLC Protocol Library interface files.

3.1. Header File

The library’s interface is defined via the header file shown below. To use the HDLC Protocol Library applications

must include this header file in their sources. Including this header file pulls in all other pertinent SIO4 specific

header files. Therefore, sources may include only this one SIO4 header and make files may reference only this one

SIO4 include directory.

File Location
sio4_hdlc.h …/sio4/include

3.2. Static Library Files

The executable code for the API defined for the HDLC Protocol Library is contained in the static library file

sio4_hdlc.a, which is identified below. Using this library however, requires linking in other SIO4 specific static

libraries. For this reason, and for ease of use, it is recommended that application make files link in the SIO4 Main

Library instead of the HDLC static library along with all of its dependencies. The result is that application make

files reference only a single SIO4 static library and only a single SIO4 static library path.

Library File Location

HDLC Protocol Library sio4_hdlc.a …/sio4/lib

SIO4 Main Library sio4_main.a * …/sio4/lib

* Refer to the SIO4 API Library Reference Manual for clarification when using multiple GSC product types in the

same application.

SIO4/8, HDLC Protocol Library, Reference Manual

12

General Standards Corporation, Phone: (256) 880-8787

4. Library Interface

The library interface is defined via the header file sio4_hdlc.h, which is located in the …/sio4/include/

directory.

4.1. Functions

The library header defines the complete HDLC interface offered by the library, which includes the following

function declarations.

4.1.1. sio4_hdlc_close()

This function is the entry point to close a connection previously opened to an SIO4 for HDLC operation. All

resources allocated by the library for the opened device are released as part of the close operation. This includes

freeing allocated memory and closing access to the SIO4.

Prototype

int sio4_hdlc_close(int fd);

Argument Description
fd This is a file descriptor obtained from sio4_hdlc_open() (section 4.1.6, page 15).

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.2. sio4_hdlc_get()

This function retrieves the current settings from the SIO4 for each of the referenced structure’s fields.

Prototype

int sio4_hdlc_get(int fd, sio4_hdlc_t* hdlc, const char** err);

Argument Description

fd This is a file descriptor obtained from sio4_hdlc_open() (section 4.1.6, page 15).

hdlc

This is the structure where the settings are to be recorded. Any field pertaining to an

unsupported feature will be set to -1. The value -2 indicates a setting that is invalid. (Refer

to section 4.2.1, page 26.)

err
In the event of an error this will be set to identify the source of the error. This may be

NULL.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.3. sio4_hdlc_init()

This function initializes the HDLC Protocol Library and must be the first call into the library.

NOTE: This function is NOT multithread safe. All other HDLC Protocol Library calls are thread

safe AFTER this function completes successfully.

SIO4/8, HDLC Protocol Library, Reference Manual

13

General Standards Corporation, Phone: (256) 880-8787

NOTE: This service initializes the HDLC Protocol Library as well as the SIO4 API Library.

NOTE: This function may be called more than once, but only the first successful call initializes

the library. Any subsequent call has no effect.

NOTE: This function does not alter the state of the SIO4 being accessed or any of its settings.

This call does not place the channel in an HDLC state and does not alter the state that the device is

in.

Prototype

int sio4_hdlc_init(void);

Argument Description

None The function has no arguments.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.4. sio4_hdlc_init_data()

This function initializes an sio4_hdlc_t structure according to the capabilities of the accessed device and some

basic caller preferences. The sio4_hdlc_t bit-rate related fields are initialized according to the content of the

provided sio4_hdlc_init_t structure. The non-bit-rate related fields are set either to defaults consistent with

HDLC operation of the channel or to defaults required to satisfy clocking signal use as specified in the

sio4_hdlc_init_t structure. Upon return from this call sio4_hdlc_t fields may be modified to meet

application requirements.

NOTE: This function does not alter the state of the SIO4 being accessed or any of its settings.

This call does not place the channel in an HDLC state and does not alter the state that the device is

in.

Prototype

int sio4_hdlc_init_data(

 int fd,

 const sio4_hdlc_init_t* init,

 sio4_hdlc_t* hdlc,

 const char** err);

Argument Description

fd This is a file descriptor obtained from sio4_hdlc_open() (section 4.1.6, page 15).

init
This structure provides the basic information needed to initialize numerous fields in the next

structure. See below for more information.

hdlc
This is the structure that the call will initialize. Any field pertaining to an unsupported

feature will be set to -1. (Refer to section 4.2.1, page 26.)

err
In the event of an error this will be set to identify the source of the error. This may be

NULL.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

SIO4/8, HDLC Protocol Library, Reference Manual

14

General Standards Corporation, Phone: (256) 880-8787

Data Type

This structure contains information used to configure HDLC clocking for the USC transmitter and receiver.

NOTE: For additional information refer to Clocking Configuration (section 5.9, page 56), which

gives information on initializing this structure.

typedef struct

{

 s32 tx_bit_rate;

 s32 rx_bit_rate;

 s32 cbl_txc;

 s32 cbl_rxc;

 s32 osc_prog;

} sio4_hdlc_init_t;

Field Description

tx_bit_rate
This is the desired bit rate for the transmitter. This value must be greater than or equal

to one, and less than or equal to 20,000,000.

rx_bit_rate
This is the desired bit rate for the receiver. This value must be greater than or equal to

one, and less than or equal to 20,000,000.

cbl_txc

This field is used to indicate if the Cable Tx Clock signal is required to output the

transmit clock. Valid values are given in the table below.

Values Description

SIO4_HDLC_CBL_TXC_UNUSED
The transmit clock is not routed to the Cable

Tx Clock signal. The signal may be used for

some other purpose.

SIO4_HDLC_CBL_TXC_USED
The transmit clock is routed to the Cable Tx

Clock signal.

cbl_rxc

This field is used to indicate if the receiver will receive its clock from the cable’s Rx

Clock signal. Valid values are given in the table below.

Values Description

SIO4_HDLC_CBL_RXC_UNUSED
The Cable Rx Clock signal is not used to

clock data into the receiver. The signal may

be used for some other purpose.

SIO4_HDLC_CBL_RXC_USED
The Cable Rx Clock signal is driven by

external equipment to clock data into the

receiver.

osc_prog
This is the frequency to which the channel’s on-board oscillator is to be programmed.

Refer to the clocking options for additional information (section 5.9, page 56).

4.1.5. sio4_hdlc_ioctl()

This function is the entry point to performing IOCTL operations on the device. Refer to the driver reference manual

for complete information on the driver’s set of IOCTL services.

Prototype

int sio4_hdlc_ioctl(int fd, int request, void* arg);

SIO4/8, HDLC Protocol Library, Reference Manual

15

General Standards Corporation, Phone: (256) 880-8787

Argument Description
fd This is a file descriptor obtained from sio4_hdlc_open() (section 4.1.6, page 15).

request This is an IOCTL macro contained in sio4.h or sio4_usc.h.

arg This is the argument type required for the above referenced IOCTL service.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.6. sio4_hdlc_open()

This function is the entry point to open a connection to an SIO4 serial channel for HDLC operation. The handle

returned by this call is used for all subsequent access to the specified channel. The file descriptor returned can be

used for access to the library functions and the driver interface.

NOTE: Open requests will fail if the referenced device does not support the HDLC Serial

Protocol. This applies to all SYNC and other non-Z16C30 DUART based boards.

NOTE: With a successful open the device is placed in an initialized, non-HDLC state. Placing the

device in an HDLC state is done either through the sio4_hdlc_set() function (section 4.1.9,

page 19) or through corresponding sio4_hdlc_ioctl()services (section 4.1.5, page 14).

NOTE: If the value of the index argument is specified as -1, then the function opens the file

/proc/sio4 for reading. In this case the share argument is ignored.

NOTE: If the value of the index argument is specified as -1 then applications can retrieve

information about the driver and the devices detected. Refer to the SIO4 Reference Manual for

additional information. The file descriptor returned when the -1 value is provided can be used

only with sio4_hdlc_rx_frame() (section 4.1.8, page 16) and sio4_hdlc_close()

(section 4.1.1, page 12). It may also be used with the SIO4 API functions sio4_read() and

sio4_close() (refer to the SIO4 Reference Manual). The file descriptor cannot be used with

any other services.

Prototype

int sio4_hdlc_open(int index, int share, int* fd);

Argument Description
index This is the zero based index of the SIO4 serial channel to access.

share
Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).

fd

The device handle is returned here. The pointer cannot be NULL. Values returned are as

follows.

Value Description
>= 0 This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

Return Value Description
>= 0 A valid file access handle.
< 0 An error occurred. This is a negative errno.h value.

4.1.6.1. Access Modes

SIO4/8, HDLC Protocol Library, Reference Manual

16

General Standards Corporation, Phone: (256) 880-8787

The value of the share argument determines the device access mode, as follows.

Shared Access Mode:

If the share argument is non-zero the device in opened in Shared Access Mode. The first such open request will

succeed and return with the device in an initialized state. Subsequent such open requests will also succeed, but will

not alter the device state. Once opened in Shared Access Mode, device access remains in this mode until all Shared

Access Mode open requests release the device with a corresponding close request.

Exclusive Access Mode:

If the share argument is zero the device in opened in Exclusive Access Mode. In this mode, only one application

at a time can access the device. The first such open request will succeed and return with the device in an initialized

state. Subsequent open requests, regardless of the share argument value, will fail until the device is released with a

corresponding close request.

4.1.7. sio4_hdlc_rx_flush()

This function flushes the entire receive side of the channel, both hardware and software wise, in case the application

receives status indicating that data has been lost or corrupted. This may be called for in cases of a data overrun, a

frame overrun, a CRC error or any other condition as reported when the frame is read. All receive data is discarded

when this call is made. This includes data in the library’s buffer, data in the SIO4’s Rx FIFO, and data in the USC

receiver.

NOTE: While a device file descriptor can be used with both the library’s read services and the

driver’s read services, it is recommended that an application not use both simultaneously.

NOTE: All Rx Frame and Rx Flush requests are serialized and processed on a first come first

served basis.

Prototype

int sio4_hdlc_rx_flush(int fd);

Argument Description
fd This is a file descriptor obtained from sio4_hdlc_open() (section 4.1.6, page 15).

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.8. sio4_hdlc_rx_frame()

This function requests that an HDLC frame be read from the serial channel. The request will return either when it

has been fulfilled or the read timeout expires, whichever occurs first. This is a blocking call.

Always consult the referenced structure’s fields for completion status. This structure will always indicate the

number of bytes retrieved, even with a failure return status. The status flags are set by the HDLC Protocol Library

and may represent post data transfer status.

NOTE: While a device file descriptor can be used with both the library’s read services and the

driver’s read services, it is recommended that an application not use both simultaneously.

SIO4/8, HDLC Protocol Library, Reference Manual

17

General Standards Corporation, Phone: (256) 880-8787

NOTE: All Rx Frame and Rx Flush requests are serialized and processed on a first come first

served basis.

NOTE: On a device handle obtained for device index -1 the data will be returned as if it were an

HDLC frame.

Prototype

int sio4_hdlc_rx_frame(int fd, sio4_hdlc_rx_frame_t* rx);

Argument Description

fd This is a file descriptor obtained from sio4_hdlc_open() (section 4.1.6, page 15).

rx
This structure provides information to the library and is where information is returned by the

library. See below.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

Data Type

This structure is used when reading an HDLC frame from a serial channel. All fields must be initialized before

passing this structure to the protocol library.

typedef struct

{

 // All fields are initialized to zero before the call.

 // These are all filled in by the library after the transfer.

 u32 status; // See documentation.

 u32 size; // byte count without CRC and RSB

 s32 last; // SIO4_HDLC_RX_LAST_CHAR_LEN_*

 u32 received; // byte count with CRC and RSB

 u16 rsb; // Receive Status Block (RSB)

 // "size + CRC and RSB" should equal "received".

 // They may be different in case of an error condition.

 u8 buffer[0xFFFF + 2]; // data + CRC + 16-bit RSB

} sio4_hdlc_rx_frame_t;

Field Description

status

This field reports status information about the transfer. This is reported by the library with

each frame read request. The application must initialize this to zero. Valid bitwise options

are given in the following tables.

size
This is the size of the frame, excluding the CRC and the RSB. The application must

initialize this to zero. *

last

This is the size of the last character of the frame. The application must initialize this to

zero. The length specified does not include the Parity Bit Parity is enabled. Valid values are

given in the table below. †

Value Description
SIO4_HDLC_RX_LAST_CHAR_LEN_1 It is 1-bit wide.
SIO4_HDLC_RX_LAST_CHAR_LEN_2 It is 2-bits wide.
SIO4_HDLC_RX_LAST_CHAR_LEN_3 It is 3-bits wide.
SIO4_HDLC_RX_LAST_CHAR_LEN_4 It is 4-bits wide.
SIO4_HDLC_RX_LAST_CHAR_LEN_5 It is 5-bits wide.
SIO4_HDLC_RX_LAST_CHAR_LEN_6 It is 6-bits wide.

SIO4/8, HDLC Protocol Library, Reference Manual

18

General Standards Corporation, Phone: (256) 880-8787

SIO4_HDLC_RX_LAST_CHAR_LEN_7 It is 7-bits wide.
SIO4_HDLC_RX_LAST_CHAR_LEN_8 It is 8-bits wide.

received
This is the size of the frame, including the CRC and the RSB. The application must

initialize this to zero. *

rsb
This is the value reported by the USC receiver in the RSB. This is provided for

informational purposes only. The application must initialize this to zero. *
buffer The frame content is placed in this buffer.

* The CRC is appended to the frame by the transmitter. The RSB (Receive Status Block) is 16-bits of data

appended to the frame by the USC receiver. This is used by the API to acquire status information of the

received frame. The RSB is reported to the application for informational purposes only.

† The last field value excludes the Parity bit. However, this is uncommon as parity checking is not

normally used with HDLC.

This table lists the bitwise flags used in the structure’s status field.

NOTE: For additional information refer to function _eval_rx_status() in the hdlcc2c

sample application’s transfer.c file.

This following set of flags represent status computed by the HDLC Protocol Library based on status generated in

response to interrupts (see below) and status reported by the USC in the Receive Status Block (see further below).

Value Description

SIO4_HDLC_RX_STAT_ERROR_BIG
The current frame’s content exceeds the allowable frame

size. The input stream is likely corrupt. *

SIO4_HDLC_RX_STAT_ERROR_PART
The current frame was only partially received. The input

stream is likely corrupt. *

SIO4_HDLC_RX_STAT_FRAME_FULL
The current frame was received in its entirety. This is the

primary status to look for to verify that a frame has been

received.

SIO4_HDLC_RX_STAT_OVER
The SIO4 channel’s external Rx FIFO has experienced an

overrun. Data has been lost. *

SIO4_HDLC_RX_STAT_TIMEOUT

A complete frame was not received within the Rx I/O

Timeout period. If the receiver began to receive a frame, then

that frame is incomplete. If so, then the input stream is now

likely corrupt. *

SIO4_HDLC_RX_STAT_UNDER
The SIO4 channel’s external Rx FIFO was read when it was

empty. The input stream may be corrupt. *

This following set of flags represent status gathered in response to interrupts generated by the USC. The receive

frame logic uses some of these to guide reception of the frame.

Value Description

SIO4_HDLC_RX_STAT_F_ABORT
An interrupt was generated because an abort sequence was

detected on the Cable Rx Data line. The data stream may be

corrupt. *

SIO4_HDLC_RX_STAT_F_ABORT_PE
An interrupt was generated because an abort sequence was

detected on the Cable Rx Data line. The data stream may be

corrupt. * †

SIO4_HDLC_RX_STAT_F_DPLL_DESYN
An interrupt was generated because the DPLL became

desynchronized. Data may have been lost. *

SIO4_HDLC_RX_STAT_F_RCC_UNDER
An interrupt was generated because software read from the

USC’s RCC FIFO when it was empty. The input stream may

be corrupt. *

SIO4/8, HDLC Protocol Library, Reference Manual

19

General Standards Corporation, Phone: (256) 880-8787

SIO4_HDLC_RX_STAT_F_RX_BOUND
An interrupt was generated for the last frame character

preceding an Abort sequence or an ending Flag. This is

normal operation and is not indicative of an error.

SIO4_HDLC_RX_STAT_F_RX_FRAME
An interrupt was generated when the receiver detected the

end of a frame. This is normal operation and is not indicative

of an error.

SIO4_HDLC_RX_STAT_F_RX_OVERRUN
An interrupt was generated because the internal USC Rx data

FIFO experienced an overrun. Data has been lost. *

SIO4_HDLC_RX_STAT_F_SW_OVERRUN
The driver’s internal software RCC FIFO experienced an

overrun. The input stream has become corrupt following the

current frame. *‡

This following set of flags represent status reported by the USC in the 16-bit Receive Status Block used by the HPDC

Protocol Library.

Value Description

SIO4_HDLC_RX_STAT_R_CRC_FE
The USC detected a CRC error. The input stream is corrupt.

*

SIO4_HDLC_RX_STAT_R_EOF
The USC detected the end of a frame. This is normal

operation and is not indicative of an error.

SIO4_HDLC_RX_STAT_R_FIFO_OVER
The USC internal Rx data FIFO experiencing an overrun.

Data has been lost. *

SIO4_HDLC_RX_STAT_R_FRAME_SHORT
The USC detected premature termination of a frame. The

input stream is corrupt. *

SIO4_HDLC_RX_STAT_R_PE
The USC detected a parity error. The input stream is corrupt.

* †

SIO4_HDLC_RX_STAT_R_RCCF_OVER
The USC RCC FIFO experiencing an overrun. Data has been

lost. *

* Each of these status flags represents a condition that calls for resynchronization of the data stream. The current

frame may be affected and possibly a number of subsequent frames.

† Each of these refers to a Parity Error having been detected. However, this is uncommon as parity checking is not

normally used with HDLC.

‡ The generally indicates that a high number of very small frames is being received. The driver’s internal RCC

FIFO accommodates 256 frames.

4.1.9. sio4_hdlc_set()

This function configures an SIO4 channel according to the settings of the referenced sio4_hdlc_t structure. All

fields are validated before any settings are applied.

NOTE: Before calling this function, the structure should be initialized by calling the

sio4_hdlc_init_data() function (section 4.1.3, page 12).

Prototype

int sio4_hdlc_set(

 int fd,

 const sio4_hdlc_t* hdlc,

 const char** err);

Argument Description

fd This is a file descriptor obtained from sio4_hdlc_open() (section 4.1.6, page 15).

hdlc This is the structure containing the settings to be applied (section 4.2.1, page 26).

err
In the event of an error this will be set to identify the source of the error. The caller may

provide a NULL pointer.

SIO4/8, HDLC Protocol Library, Reference Manual

20

General Standards Corporation, Phone: (256) 880-8787

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.10. sio4_hdlc_show()

This function displays the content of the referenced sio4_hdlc_t structure to the screen. This is provided to

assist debugging efforts.

Prototype

int sio4_hdlc_show(

 int fd,

 const sio4_hdlc_t* hdlc,

 FILE* file,

 const char** err);

Argument Description

fd This is a file descriptor obtained from sio4_hdlc_open() (section 4.1.6, page 15).

hdlc This is the structure whose content will be displayed. (Refer to section 4.2.1, page 26.)

file

This is a file pointer to which the output is sent. If this is NULL, then no output is generated.

If this is stdout, then the output is sent to the terminal window. Output will otherwise be

written to the referenced file.

err
In the event of an error this will be set to identify the source of the error. The caller may

provide a NULL pointer.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.11. sio4_hdlc_tx_abort()

This function immediately initiates a Tx Abort sequence on the cable’s output data signal. The call does not wait for

completion. The Abort sequence generated is the long version if the transmitter is configured to send the long abort

sequence when it runs out of data in the middle of a frame. With any other configuration setting, the short abort

sequence is sent.

NOTE: All Tx Abort and Tx Break requests are serialized and performed on a first-come, first-

served basis. If Tx Abort or Tx Break requests are initiated too close to one another, then the USC

may not fulfill requests which are effectively overlapping.

NOTE: If a Tx Abort request is made too close to the end of a frame, then the USC may end the

frame prematurely. When this occurs, the USC may omit some frame data, the CRC Sent

notification and the EOF Sent notification.

Prototype

int sio4_hdlc_tx_abort(int fd);

Argument Description
fd This is a file descriptor obtained from sio4_hdlc_open() (section 4.1.6, page 15).

SIO4/8, HDLC Protocol Library, Reference Manual

21

General Standards Corporation, Phone: (256) 880-8787

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.12. sio4_hdlc_tx_break()

This function immediately initiates a Break condition on the cable’s output data signal of a caller specified duration.

The call waits for completion before returning.

NOTE: All Tx Abort and Tx Break requests are serialized and performed on a first-come, first-

served basis. If Tx Abort or Tx Break requests are initiated too close to one another, then the USC

may not fulfill requests which are effectively overlapping.

NOTE: A Tx Break supersedes the Tx Data signal’s normal operation, thus preventing the

transmitter’s normal activity from appearing at the cable interface. The transmitter continues to

generate requested Tx Abort sequences and it continues to serialize available data from the Tx

FIFO. But while the Tx Break is active the Abort and serialized data do not appear at the cable

interface.

Prototype

int sio4_hdlc_tx_break(int fd, int ms);

Argument Description

fd This is a file descriptor obtained from sio4_hdlc_open() (section 4.1.6, page 15).

ms
This is the desired duration of the Tx Break. The valid range is from zero to 60,000

milliseconds.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.13. sio4_hdlc_tx_flush()

This function flushes the entire transmit side of the channel. This is typically done as part of an error recovery

process in the event of a Tx frame error. All buffered transmit data is discarded when this call is made and all

transmit status is cleared from the transmitter.

NOTE: All Tx Frame, Tx Flush and Tx Status requests are serialized and processed on a first

come first served basis.

Prototype

int sio4_hdlc_tx_flush(int fd);

Argument Description
fd This is a file descriptor obtained from sio4_hdlc_open() (section 4.1.6, page 15).

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

SIO4/8, HDLC Protocol Library, Reference Manual

22

General Standards Corporation, Phone: (256) 880-8787

4.1.14. sio4_hdlc_tx_frame()

This function requests that an HDLC frame be written to the serial channel. The request will return either when it

has been fulfilled or the write timeout expires, whichever occurs first. This is a blocking call.

In all cases, applications must examine the status and the sent fields (see below) for a full picture of the

completion status.

NOTE: The Tx FIFO Overrun condition, as an error, is checked prior to writing any data to the Tx

FIFO.

NOTE: All Tx Frame, Tx Flush and Tx Status requests are serialized and processed on a first

come first served basis.

NOTE: Successful completion of a Tx frame means all data was written to the Tx FIFO and any

required waiting were all completed within the write I/O timeout period.

NOTE: The driver may poll when waiting for various status conditions. The wait interval is one

system timer tick between checks.

Prototype

int sio4_hdlc_tx_frame(int fd, sio4_hdlc_tx_frame_t* tx);

Argument Description

fd This is a file descriptor obtained from sio4_hdlc_open() (section 4.1.6, page 15).

tx
This structure provides information to the library and is where information is returned by the

library. See below.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

Data Type

This structure is used when writing frames to the serial channel. All fields must be initialized before passing this

structure to the library.

typedef struct

{

 // These are filled in by the caller before the transfer.

 S32 preload; // Preload frame data in Tx FIFO?

 s32 send; // number of bytes to send

 const void* src; // Adress, Control, and data

 s32 last; // SIO4_HDLC_TX_LAST_CHAR_LEN_*

 s32 wait; // Wait on these status conditions.

 // These are filled in by the library after the transfer.

 s32 sent; // Number of bytes transferred.

 u32 status; // status conditions at end of service

} sio4_hdlc_tx_frame_t;

SIO4/8, HDLC Protocol Library, Reference Manual

23

General Standards Corporation, Phone: (256) 880-8787

Field Description

preload

If set to one, the library waits for the previous Tx Frame to complete then preloads the

present frame data into the Tx FIFO before beginning transmission. If set to zero, the

software immediately begins writing the frame’s data to the Tx FIFO. For additional

information refer to the Operations section (section 5.8, page 54).

send

This is the number of bytes to transfer from the src field. This refers to the number of total

bytes (address, control and data) from the source buffer irrespective of the configured word

size. The value must be from two to 0xFFFF. The specified size must accommodate the CRC

being added, if enabled, without the frame size exceeding 0xFFFF bytes.
src This is the source for the data to include in the frame. This cannot be NULL.

last

This is the size of the last character of the frame. The application must specify this before

requesting the transfer. Valid values are given in the table below. The length specified does

not include the Parity Bit, if Parity is enabled. The active data bits for the last byte must be

right justified.

Value Description
SIO4_HDLC_TX_LAST_CHAR_LEN_1 It is 1-bit wide.
SIO4_HDLC_TX_LAST_CHAR_LEN_2 It is 2-bits wide.
SIO4_HDLC_TX_LAST_CHAR_LEN_3 It is 3-bits wide.
SIO4_HDLC_TX_LAST_CHAR_LEN_4 It is 4-bits wide.
SIO4_HDLC_TX_LAST_CHAR_LEN_5 It is 5-bits wide.
SIO4_HDLC_TX_LAST_CHAR_LEN_6 It is 6-bits wide.
SIO4_HDLC_TX_LAST_CHAR_LEN_7 It is 7-bits wide.
SIO4_HDLC_TX_LAST_CHAR_LEN_8 It is 8-bits wide.

wait

This is a bit field which tells the API Library what conditions to wait for before returning to

the caller. The value may be zero. The status for the corresponding conditions is checked,

but not cleared. See the status field below for additional descriptions. The field is cleared

upon return except for the condition detected, if any. This field essentially reflects different

levels of certainty that an application may require with respect to transmission of the frame.

Value Description

0

This means do not wait for any

completion status. This status indicates

that all Tx frame data has been written

to the device’s main Tx FIFO.

SIO4_HDLC_TX_FRAME_STATUS_M_FIFO

Wait for the SIO4’s main Tx FIFO to

become empty. This status indicates

that all Tx frame data has been handed

over to the USC.

SIO4_HDLC_TX_FRAME_STATUS_U_FIFO

Wait for the USC’s internal Tx FIFO to

become empty. This status indicates

that the last Tx frame byte is being

processed by the USC.

SIO4_HDLC_TX_FRAME_STATUS_CRC *

Wait for the CRC Sent status to be

asserted. This status indicates that the

transmitter has completed sending of

the CRC out the cable interface.

SIO4_HDLC_TX_FRAME_STATUS_EOF *

Wait for the EOF Sent status to be

asserted. This status indicates that the

transmitter has completed sending of

the frame out the cable interface.

* This status is produced for each frame segment should a Tx frame request not be

transmitted as a single contiguous frame.

SIO4/8, HDLC Protocol Library, Reference Manual

24

General Standards Corporation, Phone: (256) 880-8787

sent
This is the number of bytes from the src field that have been transferred to the SIO4. This

must be initialized to zero.

status

This is a bit field which reports status information about the transfer. Valid bit values are

given in the table below. This must be initialized to zero.

NOTE: These Tx Status macros are defined in sio4_usc.h.

NOTE: For additional information refer to function _eval_tx_status() in the

hdlcc2c sample application’s transfer.c file.

Value Description

SIO4_HDLC_TX_FRAME_STATUS_ABORT

The Abort Sent status was asserted,

meaning an Abort sequence was sent

out the cable interface. No user action

is required upon receiving this status.

SIO4_HDLC_TX_FRAME_STATUS_CRC

The CRC Sent status was asserted,

meaning the frame CRC was sent out

the cable interface. No user action is

required upon receiving this status.

SIO4_HDLC_TX_FRAME_STATUS_EOF

The EOF Sent status was asserted,

meaning a frame’s closing Flag was

sent out the cable interface. No user

action is required upon receiving this

status.

SIO4_HDLC_TX_FRAME_STATUS_M_FIFO

The SIO4’s main Tx FIFO is empty.

No user action is required upon

receiving this status.

SIO4_HDLC_TX_FRAME_STATUS_M_OVER

There was a main Tx FIFO overrun.

The status is reported, but not cleared.

This is an error condition and requires

some type recovery action.

Applications should never see this

status.

SIO4_HDLC_TX_FRAME_STATUS_PREAMB

The Preamble Sent status was asserted,

meaning a frame preamble was sent out

the cable interface. No user action is

required upon receiving this status.

SIO4_HDLC_TX_FRAME_STATUS_SHORT

A Tx Frame ended prematurely. This is

because the Tx FIFO ran out of data

when the USC required more data.

This is an error condition and requires

some type recovery action. For

additional information refer to the

Operations section (section 5.8, page

54).

SIO4_HDLC_TX_FRAME_STATUS_U_FIFO

The USC’s internal Tx FIFO is empty.

No user action is required upon

receiving this status.

4.1.15. sio4_hdlc_tx_status()

This function’s purpose is to report the current transmitter status. When the function returns all applicable bits are

set. Transient states are cleared. Error conditions are not cleared and require some sort of recovery operation.

SIO4/8, HDLC Protocol Library, Reference Manual

25

General Standards Corporation, Phone: (256) 880-8787

NOTE: All Tx Frame, Tx Flush and Tx Status requests are serialized and processed on a first

come first served basis.

Prototype

int sio4_hdlc_tx_status(int fd, s32* status);

Argument Description

fd This is a file descriptor obtained from sio4_hdlc_open() (section 4.1.6, page 15).

status

This argument is used by the library to report information about the operation and the state

of the device at the end of the operation. The status argument will return with one flag

set, representing the first condition.

Values
Passed

to Driver
Returned By Driver

-1
This is an

error.

The service is

unsupported or HDLC Tx

frame processing is

disabled.
SIO4_HDLC_TX_FRAME_STATUS_ABORT The Abort Sent status was asserted.
SIO4_HDLC_TX_FRAME_STATUS_CRC The CRC Sent status was asserted.
SIO4_HDLC_TX_FRAME_STATUS_EOF The EOF Sent status was asserted.
SIO4_HDLC_TX_FRAME_STATUS_M_FIFO The SIO4’s main Tx FIFO is empty.
SIO4_HDLC_TX_FRAME_STATUS_M_OVER There was a main Tx FIFO overrun.
SIO4_HDLC_TX_FRAME_STATUS_PREAMB The Preamble Sent status was asserted.
SIO4_HDLC_TX_FRAME_STATUS_SHORT A Tx Frame ended prematurely.
SIO4_HDLC_TX_FRAME_STATUS_U_FIFO The USC’s internal Tx FIFO is empty.

The function return values are as follows.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.16. sio4_hdlc_tx_wait()

This function’s purpose is to wait for the first of any of the status conditions specified by the flags given in the

below table.

NOTE: The driver polls for the specified conditions and waits one system timer tick between checks.

Prototype

int sio4_hdlc_tx_wait(int fd, s32* status);

Argument Description

fd This is a file descriptor obtained from sio4_hdlc_open() (section 4.1.6, page 15).

flags

This argument is used by the library to report information about the operation and the state

of the device at the end of the operation. The flags argument will return with one or more of

the following values set.

Values
Passed

to Driver
Returned By Driver

-1 This is an The service is

SIO4/8, HDLC Protocol Library, Reference Manual

26

General Standards Corporation, Phone: (256) 880-8787

error. unsupported or HDLC Tx

frame processing is

disabled.

SIO4_HDLC_TX_FRAME_STATUS_ABORT
Wait for the Abort Sent status to be

asserted.

SIO4_HDLC_TX_FRAME_STATUS_CRC
Wait for the CRC Sent status to be

asserted.

SIO4_HDLC_TX_FRAME_STATUS_EOF
Wait for the EOF Sent status to be

asserted.

SIO4_HDLC_TX_FRAME_STATUS_M_FIFO
Wait for the SIO4’s main Tx FIFO to

become empty.
SIO4_HDLC_TX_FRAME_STATUS_M_OVER Wait for a main Tx FIFO overrun.

SIO4_HDLC_TX_FRAME_STATUS_PREAMB
Wait for the Preamble Sent status to be

asserted.

SIO4_HDLC_TX_FRAME_STATUS_SHORT
Wait for the USC transmitter to report

that a frame has been subdivided.

SIO4_HDLC_TX_FRAME_STATUS_U_FIFO
Wait for the USC’s internal Tx FIFO

to become empty.

The function return values are as follows.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.2. Data Structures

The library header file is sio4_hdlc.h. Including this header in a source file gives the source the full library and

driver interface as it includes the driver header files sio4.h and sio4_usc.h. The library header defines the

complete HDLC interface offered by the library. The interface includes several functions, a few structures, and

numerous macros. The data structures and associated macros are described below.

4.2.1. sio4_hdlc_t

This structure contains all of the parameters used to configure an SIO4 channel for HDLC operation. The structure is

initialized with default values by calling the sio4_hdlc_init_data() function (section 4.1.3, page 12).

Following this call, applications make changes to this structure’s content according to their own requirements.

Afterwards, the structure is passed to the sio4_hdlc_set() function (section 4.1.9, page 19) where the settings

are applied to the board.

typedef struct

{

 struct

 {

 s32 ref;

 s32 prog;

 } osc;

 struct

 {

 s32 enable; // PSRCR D31

 s32 mode; // PSRCR D28, DCE or DTE

 s32 protocol; // PSRSR D24-D27

SIO4/8, HDLC Protocol Library, Reference Manual

27

General Standards Corporation, Phone: (256) 880-8787

 s32 txc; // PSRCR D6-D8

 s32 txd; // PSRCR D19-D20

 s32 txaux; // PSRCR D17-D18

 s32 dcd; // PSRCR D15-D16

 s32 dtr_dsr; // PSRCR D21-D22

 s32 rts; // PSRCR D13-D14

 struct

 {

 s32 mode; // PSRCR D23, D29

 } loopback;

 struct

 {

 s32 enable; // PSRCR D30

 } term;

 struct

 {

 s32 txc; // CCR 0x3333

 s32 txd_cts; // CSR D2-D3

 s32 rxc; // CCR 0xCCCC

 s32 rxd_dcd; // CSR D4-D5

 } legacy;

 } cable;

 struct

 {

 s32 mode; // USC CMR D8-D11

 s32 enable; // USC TMR D0-D1

 s32 char_len; // USC TMR D2-D4

 s32 encoding; // USC TMR D13-D15

 s32 bit_rate; // reflects sio4_hdlc_init_t.tx_bit_rate

 s32 idle_cond; // USC TCSR D8-D10

 s32 share_0; // USC CMR D12

 s32 underrun; // USC CMR D14-D15

 s32 wait_underrun; // USC TCSR D11

 struct

 {

 s32 enable; // USC TMR D9

 s32 type; // USC TMR D11-D12

 s32 preset; // USC TMR D10

 s32 on_end; // USC TMR D8

 } crc;

 struct

 {

 s32 enable; // USC TMR D5

 s32 type; // USC TMR D6-D7

 } parity;

 struct

 {

 s32 enable; // USC CMR D13

 s32 flag; // USC CCR D12

SIO4/8, HDLC Protocol Library, Reference Manual

28

General Standards Corporation, Phone: (256) 880-8787

 s32 pattern; // USC CCR D8-D9

 s32 length; // USC CCR D10-D11

 } preamble;

 struct

 {

 s32 size; // FSR D0-D15, read-only

 s32 ae; // TAR D0-D15

 s32 af; // TAR D16-D31

 s32 empty_cfg; // CSR D18, D26

 s32 space_cfg; // CSR D4-D5, else Rx 2x

 } fifo;

 struct

 {

 s32 dma_thresh; // See notes.

 s32 mode;

 s32 pio_thresh;

 s32 timeout;

 s32 overrun;

 } io;

 } tx;

 struct

 {

 s32 mode; // USC CMR D0-D3

 s32 adrs; // USC RSR D0-D7

 s32 adrs_ctrl; // USC CMR D4-D7

 s32 enable; // USC RMR D0-D1

 s32 char_len; // USC RMR D2-D4

 s32 encoding; // USC RMR D13-D15

 s32 size_limit; // USC RCLR

 s32 bit_rate; // reflects sio4_hdlc_init_t.rx_bit_rate

 s32 queue_abort;// USC RMR D8

 s32 sync_byte; // SBR D0-D7

 s32 status_word;// CSR D3

 struct

 {

 s32 enable; // USC RMR D9

 s32 type; // USC RMR D11-D12

 s32 preset; // USC RMR D10

 } crc;

 struct

 {

 s32 enable; // USC RMR D5

 s32 type; // USC RMR D6-D7

 } parity;

 struct

 {

 s32 size; // FSR D16-D21, read-only

 s32 ae; // RAR D0-D15

 s32 af; // RAR D16-D31

 s32 full_cfg; // BCR D8

SIO4/8, HDLC Protocol Library, Reference Manual

29

General Standards Corporation, Phone: (256) 880-8787

 } fifo;

 struct

 {

 s32 dma_thresh; // See notes.

 s32 mode;

 s32 pio_thresh;

 s32 timeout;

 s32 overrun;

 s32 underrun;

 } io;

 struct

 {

 s32 enable; // CSR D2

 s32 clk_src; // BCR D22

 } time_stamp;

 } rx;

 struct

 {

 s32 mode; // USC CCAR D8-D9

 s32 txd; // USC IOCR D6-D7

 s32 cts; // PSRCR D9-D10 + USC IOCR D14-D15

 s32 cts_legacy; // USC IOCR D14-D15

 s32 dcd; // PSRCR D11-D12 + USC IOCR D12-D13

 s32 dcd_legacy; // USC IOCR D12-D13

 // All of the folling USC fields are initialized

 // by sio4_hdlc_init_data() based on the content of the

 // sio4_hdlc_init_t structure.

 struct

 {

 s32 clk_src; // USC CMCR D3-D5

 s32 txc; // PSRCR D0-D2 + USC IOCR D3-D5

 s32 txc_legacy; // USC IOCR D3-D5

 } tx;

 struct

 {

 s32 clk_src; // USC CMCR D0-D2

 s32 rxc; // PSRCR D3-D5 + USC IOCR D0-D2

 s32 rxc_legacy; // USC IOCR D0-D2

 } rx;

 struct

 {

 s32 enable; // USC HCR D0

 s32 clk_src; // USC CMCR D8-D9

 s32 divider; // USC TC1R D0-D15

 s32 mode; // USC HCR D1

 } brg0;

 struct

 {

SIO4/8, HDLC Protocol Library, Reference Manual

30

General Standards Corporation, Phone: (256) 880-8787

 s32 enable; // USC HCR D4

 s32 clk_src; // USC CMCR D10-D11

 s32 divider; // USC TC0R D0-D15

 s32 mode; // USC HCR D5

 } brg1;

 struct

 {

 s32 clk_src; // USC CMCR D12-D13

 s32 rate; // USC HCR D14-D15

 } ctr0;

 struct

 {

 s32 clk_src; // USC CMCR D14-D15

 s32 rate_src; // USC HCR D13 + ...

 } ctr1;

 struct

 {

 s32 clk_src; // USC CMCR D6-D7

 s32 mode; // USC HCR D8-D9

 s32 rate; // USC HCR D10-D11

 s32 edge; // USC CCSR D8-D9

 } dpll;

 } usc;

} sio4_hdlc_t;

4.2.1.1. sio4_hdlc_t.osc

This section describes the structure’s oscillator configuration fields.

Field Description
osc This structure configures the oscillator interface.

osc.

ref

This field specifies the frequency of the fixed onboard reference oscillator. The default is 20MHz.

However, as this parameter refers to a fixed resource on the board, the default of 20MHz is used only if

there is a problem accessing the setting from the driver.
osc.

prog

This field specifies the desired programmable oscillator frequency. This is essentially the clock frequency

provided by the onboard programmable oscillator to the USC. The default is 20MHz.

4.2.1.2. sio4_hdlc_t.cable

This section describes the structure’s cable configuration fields.

Field Description
cable This structure configures the cable interface.

cable.

enable

This field either enables or disables the cable transceivers. Valid values are given in the table

below.

Value Description
SIO4_HDLC_CABLE_ENABLE_NO Leave the cable transceivers disabled.

SIO4_HDLC_CABLE_ENABLE_YES
Enable the cable transceiver. This is the default. This

option disables all legacy cable related settings.

SIO4/8, HDLC Protocol Library, Reference Manual

31

General Standards Corporation, Phone: (256) 880-8787

cable.

mode

This field specifies the arrangement of the signals on the cable interface. Valid values are given in

the table below.

Value Description
SIO4_HDLC_CABLE_MODE_DCE Select the DCE cable signal configuration.

SIO4_HDLC_CABLE_MODE_DTE
Select the DTE cable signal configuration. This is the

default.

cable.

protocol

This field specifies the cable transceiver configuration. The options available depend on the

board’s transceiver capabilities. Valid values are given in the table below.

Value Description

SIO4_HDLC_CABLE_PROTOCOL_RS232
This selects the RS232 protocol. This

is the default.

SIO4_HDLC_CABLE_PROTOCOL_RS422_423_1
This selects the RS422/RS423 mixed

protocol version 1.

SIO4_HDLC_CABLE_PROTOCOL_RS422_423_2
This selects the RS422/RS423 mixed

protocol version 2.

SIO4_HDLC_CABLE_PROTOCOL_RS422_RS485
This selects the RS422/RS485 mixed

protocol.
SIO4_HDLC_CABLE_PROTOCOL_RS423 This selects the RS423 protocol.

SIO4_HDLC_CABLE_PROTOCOL_RS530
This selects the RS530 protocol,

version 1.

SIO4_HDLC_CABLE_PROTOCOL_RS530A
This selects the RS530 protocol,

version 2.

SIO4_HDLC_CABLE_PROTOCOL_V35
This selects the V.35 protocol, version

1.

SIO4_HDLC_CABLE_PROTOCOL_V35A
This selects the V.35 protocol, version

2.

cable.

txc

This field specifies the configuration of the cable’s Tx Clock signal. Valid values are given in the

table below.

Value Description
SIO4_HDLC_CABLE_TXC_OUT_0 This drives the signal low.
SIO4_HDLC_CABLE_TXC_OUT_1 This drives the signal high.

SIO4_HDLC_CABLE_TXC_OUT_CBL_RXA
This drives the signal from what appears at the

cable’s Rx Aux signal.

SIO4_HDLC_CABLE_TXC_OUT_CBL_RXC
This drives the signal from what appears at the

cable’s Rx Clock signal.

SIO4_HDLC_CABLE_TXC_OUT_OSC
This drives the signal from the onboard

oscillator.

SIO4_HDLC_CABLE_TXC_OUT_OSC_INV
This drives the signal from the inverted form

of the onboard oscillator.

SIO4_HDLC_CABLE_TXC_OUT_USC_RXC
This drives the signal from what appears at the

USC’s Rx Clock pin.

SIO4_HDLC_CABLE_TXC_OUT_USC_TXC
This drives the signal from what appears at the

USC’s Tx Clock pin. This is the default.

cable.

txd

This field specifies the configuration of the cable’s Tx Data signal. Valid values are given in the

table below.

Value Description
SIO4_HDLC_CABLE_TXD_OUT_0 This drives the signal low.
SIO4_HDLC_CABLE_TXD_OUT_1 This drives the signal high.

SIO4_HDLC_CABLE_TXD_OUT_USC_TXD
This drives the signal from what appears at the

USC’s Tx Data pin. This is the default.

cable. This field specifies the configuration of the cable’s Tx Aux signal. Valid values are given in the

SIO4/8, HDLC Protocol Library, Reference Manual

32

General Standards Corporation, Phone: (256) 880-8787

txaux table below.

Value Description
SIO4_HDLC_CABLE_TXAUX_OUT_0 This drives the signal low.
SIO4_HDLC_CABLE_TXAUX_OUT_1 This drives the signal high.
SIO4_HDLC_CABLE_TXAUX_OUT_OSC This drives the signal from the onboard oscillator.

SIO4_HDLC_CABLE_TXAUX_TRI
This tri-states the drive segment of the

transceivers. This is the default.

cable.

dcd

This field specifies the cable DCD signal source when the cable signal is driven. Valid values are

given in the table below.

NOTE: Refer to the usc.dcd field (section 4.2.1.5, page 42) for affecting the cable signal’s

driven state.

Value Description
SIO4_HDLC_CABLE_DCD_OUT_0 This drives the signal low.
SIO4_HDLC_CABLE_DCD_OUT_1 This drives the signal high.

SIO4_HDLC_CABLE_DCD_OUT_RTS
This drives the signal from the Rx FIFO

Almost Full status.

SIO4_HDLC_CABLE_DCD_OUT_USC_DCD
This drives the signal from what appears at the

USC’s DCD pin. This is the default.

cable.

dtr_dsr

This field specifies the configuration of the cable’s DTR/DSR signal. Valid values are given in the

table below.

Value Description
SIO4_HDLC_CABLE_DTR_DSR_OUT_0 This drives the signal low.
SIO4_HDLC_CABLE_DTR_DSR_OUT_1 This drives the signal high.
SIO4_HDLC_CABLE_DTR_DSR_IN This configures the signal as an input.

SIO4_HDLC_CABLE_DTR_DSR_TRI
This tri-states the drive segment of the

transceivers. This is the default.

cable.

rts

This field specifies the configuration of the cable’s RTS signal. Valid values are given in the table

below.

Value Description
SIO4_HDLC_CABLE_RTS_OUT_0 This drives the signal low.
SIO4_HDLC_CABLE_RTS_OUT_1 This drives the signal high.

SIO4_HDLC_CABLE_RTS_OUT_CTS
This drives the signal from what appears at the

USC’s RTS pin.

SIO4_HDLC_CABLE_RTS_OUT_RTS
This drives the signal from the Rx FIFO Almost Full

status. This is the default.

cable.

loopback
This structure configures the cable’s loopback feature.

cable.

loopback.

mode

This field specifies the loopback mode. Valid values are given in the table below.

Value Description

SIO4_HDLC_LOOPBACK_MODE_DISABLE
This disables loopback operation. This is the

default.
SIO4_HDLC_LOOPBACK_MODE_EXTERNAL This selects the external loopback mode.*†
SIO4_HDLC_LOOPBACK_MODE_INTERNAL This selects the internal loopback mode.†

* If external loopback mode is requested but not available, then the internal loopback mode is

selected.

† Both loopback modes are performed onboard the SIO4; internal inside the USC, external at the

cable interface. For external mode, enable the transceivers and disconnect cabling.
cable.

term

This structure configures the cable’s termination feature. The operation of this feature depends on

the selected cable protocol.

SIO4/8, HDLC Protocol Library, Reference Manual

33

General Standards Corporation, Phone: (256) 880-8787

cable.

term.

enable

This field specifies the configuration of the transceiver’s built-in termination capabilities. Valid

values are given in the table below.

Value Description

SIO4_HDLC_CABLE_TERM_ENABLE_NO
The built-in termination is disabled. This is the

default.
SIO4_HDLC_CABLE_TERM_ENABLE_YES The built-in termination is enabled.

cable.

legacy

This structure configures the cable’s legacy interface feature. These fields are utilized if the board

DCE/DTE cable configuration feature is absent or unused. Please also read Cable Configuration

Modes (section 5.10, page 61).

cable.

legacy.

txc

This field specifies the legacy configuration of the cable’s Tx Clock signal. Valid values are given

in the table below. Please also read Cable Configuration Modes (section 5.10, page 61).

Value Description
SIO4_HDLC_CABLE_LEGACY_TXC_DISABLE This disables the Tx Clock signal.

SIO4_HDLC_CABLE_LEGACY_TXC_BOTH
This drives the Tx Clock signal on both

the upper and lower group of pins.

SIO4_HDLC_CABLE_LEGACY_TXC_LOW
This drives the Tx Clock signal on the

lower group of pins.

SIO4_HDLC_CABLE_LEGACY_TXC_UP
This drives the Tx Clock signal on the

upper group of pins. This is the default.

cable.

legacy.

txd_cts

This field specifies the legacy configuration of the cable’s Tx Data and CTS signals. Valid values

are given in the table below. Please also read Cable Configuration Modes (section 5.10, page 61).

Value Description

SIO4_HDLC_CABLE_LEGACY_TXD_CTS_BOTH
This drives the signals on both the upper

and lower group of pins.

SIO4_HDLC_CABLE_LEGACY_TXD_CTS_LOW
This drives the signals on the lower

group of pins.
SIO4_HDLC_CABLE_LEGACY_TXD_CTS_TRI This tri-states the signals.

SIO4_HDLC_CABLE_LEGACY_TXD_CTS_UP
This drives the signals on the upper

group of pins. This is the default.

cable.

legacy.

rxc

This field specifies the legacy configuration of the cable’s Rx Clock signal. Valid values are given

in the table below. Please also read Cable Configuration Modes (section 5.10, page 61).

Value Description
SIO4_HDLC_CABLE_LEGACY_RXC_DISABLE This disables the Tx Clock signal.

SIO4_HDLC_CABLE_LEGACY_RXC_LOW
This drives the Tx Clock signal on both

the upper and lower group of pins. This is

the default.

SIO4_HDLC_CABLE_LEGACY_RXC_UP
This drives the Tx Clock signal on the

lower group of pins.

cable.

legacy.

rxd_dcd

This field specifies the legacy configuration of the cable’s Rx Data and DCD signals. Valid values

are given in the table below. Please also read Cable Configuration Modes (section 5.10, page 61).

Value Description
SIO4_HDLC_CABLE_LEGACY_RXD_DCD_DISABLE This disables the signals.

SIO4_HDLC_CABLE_LEGACY_RXD_DCD_LOW
This uses the signals as inputs from

the lower group of pins. This is the

default.

SIO4_HDLC_CABLE_LEGACY_RXD_DCD_UP
This uses the signals as inputs from

the upper group of pins.

SIO4/8, HDLC Protocol Library, Reference Manual

34

General Standards Corporation, Phone: (256) 880-8787

4.2.1.3. sio4_hdlc_t.tx

This section describes the structure’s transmitter configuration fields.

Field Description
tx This structure configures the transmitter portion of the channel.

tx.

mode

This field specifies the transmitter’s operating mode. Valid values are given in the table

below.

Value Description

SIO4_HDLC_TX_MODE_HDLC
This selects the HDLC operating mode. This is the

default and the only valid option for this library.

tx.

enable

This field specifies if the transmitter is to be enabled. When configuration is begun (see

sio4_hdlc_set(), section 4.1.9, page 19) the transmitter is initialized and disabled. The

option in this field is applied towards the end of the configuration process. Valid values are

given in the table below.

Value Description

SIO4_HDLC_TX_ENABLE_NO_AFTER
This disables the transmitter after it has

finished the transmission in progress.
SIO4_HDLC_TX_ENABLE_NO_NOW This disables the transmitter immediately.

SIO4_HDLC_TX_ENABLE_YES_NOW
This enables the transmitter immediately.

This is the default.

SIO4_HDLC_TX_ENABLE_YES_W_AE
This enables the transmitter according to the

state of any hardware flow control lines.

tx.

char_len

This field specifies if the size of transmitted characters. The length specified includes the

Parity Bit, if Parity is enabled. The data bits are the lower significant bits of the byte. (See

the Z16C30 data book for exceptions.) Valid values are given in the table below.

Value Description
SIO4_HDLC_TX_CHAR_LEN_1 Characters are 1-bit in length.
SIO4_HDLC_TX_CHAR_LEN_2 Characters are 2-bits in length.
SIO4_HDLC_TX_CHAR_LEN_3 Characters are 3-bits in length.
SIO4_HDLC_TX_CHAR_LEN_4 Characters are 4-bits in length.
SIO4_HDLC_TX_CHAR_LEN_5 Characters are 5-bits in length.
SIO4_HDLC_TX_CHAR_LEN_6 Characters are 6-bits in length.
SIO4_HDLC_TX_CHAR_LEN_7 Characters are 7-bits in length.
SIO4_HDLC_TX_CHAR_LEN_8 Characters are 8-bits in length. This is the default.

tx.

encoding

This field specifies if the encoding of the transmitted data. Valid values are given in the table

below.

Value Description
SIO4_HDLC_TX_ENCODING_BI_MARK This refers to Biphase Mark encoding.
SIO4_HDLC_TX_ENCODING_BI_LEVEL This refers to Biphase Level encoding.
SIO4_HDLC_TX_ENCODING_BI_SPACE This refers to Biphase Space encoding.

SIO4_HDLC_TX_ENCODING_D_BI_LEVEL
This refers to Differential Biphase

Level encoding.
SIO4_HDLC_TX_ENCODING_NRZ This refers to NRZ encoding.
SIO4_HDLC_TX_ENCODING_NRZB This refers to NRZB encoding.
SIO4_HDLC_TX_ENCODING_NRZI_MARK This refers to NRZI-Mark encoding.

SIO4_HDLC_TX_ENCODING_NRZI_SPACE
This refers to NRZI-Space encoding.

This is the default.

tx.

bit_rate

This specifies the desired transmission bit rate. During the sio4_hdlc_init_data()

call (section 4.1.3, page 12) this is computed from the

sio4_hdlc_init_t.tx_bit_rate field provided to the call.

SIO4/8, HDLC Protocol Library, Reference Manual

35

General Standards Corporation, Phone: (256) 880-8787

tx.

idle_cond

This field specifies what appears on the Tx Data cable signal while no data is being

transmitted. Valid values are given in the table below.

Value Description

SIO4_HDLC_TX_IDLE_COND_0
The Tx Data signal outputs a

continuous data “0” value.

SIO4_HDLC_TX_IDLE_COND_0_1
The Tx Data signal is alternately data

“0” and data “1” values.

SIO4_HDLC_TX_IDLE_COND_1
The Tx Data signal outputs a

continuous data “1” value.

SIO4_HDLC_TX_IDLE_COND_DEFAULT
The Tx Data signal is with the pattern

that is the default for the selected

serial protocol. This is the default.
SIO4_HDLC_TX_IDLE_COND_MARK The Tx Data signal is held high.

SIO4_HDLC_TX_IDLE_COND_MARK_SPACE
The Tx Data signal is alternately

driven with the high then low.
SIO4_HDLC_TX_IDLE_COND_SPACE The Tx Data signal is held low.

tx.

share_0

This field specifies if the Flag patterns driven on the Tx Data signal during idle periods will

share the intervening zero value. The transmitter never shares the zeros that appear at frame

boundaries. Valid values are given in the table below.

Value Description
SIO4_HDLC_TX_SHARE_0_NO Do not share the zero bit.
SIO4_HDLC_TX_SHARE_0_YES Do share the zero bit. This is the default.

tx.

underrun

This field specifies what the transmitter will transmit when it needs data but none is present

in its Tx FIFO. Valid values are given in the table below.

Value Description
SIO4_HDLC_TX_UNDERRUN_ABORT The transmitter sends an Abort sequence.

SIO4_HDLC_TX_UNDERRUN_CRC_F
The transmitter sends the configured CRC

followed by the Flag sequence. This is the

default.

SIO4_HDLC_TX_UNDERRUN_EXT_A
The transmitter sends an Extended Abort

sequence.
SIO4_HDLC_TX_UNDERRUN_FLAG The transmitter sends the Flag sequence.

tx.

wait_underrun

This field specifies the transmitter’s response to a Tx Underrun condition.

Value Description

SIO4_HDLC_TX_WAIT_UNDERRUN_NO
The transmitter is to end the frame

prematurely and resume transmission

when possible. This is the default.

SIO4_HDLC_TX_WAIT_UNDERRUN_YES

The transmitter is to end the frame

prematurely than wait before resuming

transmission. If this option is selected,

resuming data transmission is the

application’s responsibility.

tx.

crc
This structure configures the transmitter’s use of a CRC at the end of a Frame.

tx.

crc.

enable

This field enables or disables use of a CRC at the end of frames. Valid values are given in

the table below.

Value Description
SIO4_HDLC_TX_CRC_ENABLE_NO CRCs are not used.
SIO4_HDLC_TX_CRC_ENABLE_YES CRCs are used. This is the default.

SIO4/8, HDLC Protocol Library, Reference Manual

36

General Standards Corporation, Phone: (256) 880-8787

tx.

crc.

type

This field selects the type of CRC used, when CRC use is enabled. Valid values are given in

the table below.

Value Description
SIO4_HDLC_TX_CRC_TYPE_16 This selects the 16-bit polynomial CRC.
SIO4_HDLC_TX_CRC_TYPE_32 This selects the 32-bit polynomial CRC.

SIO4_HDLC_TX_CRC_TYPE_CCITT
This selects the 16-bit CCITT CRC. This is

the default.

tx.

crc.

preset

This field selects the CRC starting value. Valid values are given in the table below.

Value Description
SIO4_HDLC_TX_CRC_PRESET_ALL_0 Use a starting value of all zeroes.
SIO4_HDLC_TX_CRC_PRESET_ALL_1 Use a starting value of all ones. This is the

default.

tx.

crc.

on_end

This field specifies if a CRC is to be send at the end of a Frame. Valid values are given in

the table below.

Value Description
SIO4_HDLC_TX_CRC_ON_END_NO Do not send a CRC.
SIO4_HDLC_TX_CRC_ON_END_YES Do send a CRC. This is the default.

tx.

parity
This structure configures the transmitter’s use of Parity checking.

tx.

parity.

enable

This field enables or disables the use of Parity. When enabled, the character size is inclusive

of the Parity Bit, except in the size specified for the last character of the Frame. When used,

the Parity Bit appears to the immediate left of the most significant data bit. Valid values are

given in the table below.

Value Description

SIO4_HDLC_TX_PARITY_ENABLE_NO
Do not generate a Parity bit. This is the

default.
SIO4_HDLC_TX_PARITY_ENABLE_YES Do generate a Parity bit.

tx.

parity.

type

This field specifies the type of Parity to use, when its use is enabled. Valid values are given

in the table below.

Value Description

SIO4_HDLC_TX_PARITY_TYPE_EVEN
This specifies Even Parity. This is the

default.
SIO4_HDLC_TX_PARITY_TYPE_ODD This specifies Odd Parity.

SIO4_HDLC_TX_PARITY_TYPE_ONE
This specifies One Parity (the parity bit is

always set).

SIO4_HDLC_TX_PARITY_TYPE_ZERO
This specifies Zero Parity (the parity bit is

always clear).

tx.

preamble

This structure configures the transmitter’s use of a Preamble sequence, which is driven on

the cable’s Tx Data signal preceding each Frame. The Preamble can be used to force a

minimum time delay between successive Frames.

tx.

preamble.

enable

This field enables or disables the use of a Preamble sequence. Valid values are given in the

table below.

Value Description

SIO4_HDLC_TX_PREAMBLE_ENABLE_NO
Do not send a Preamble sequence. This

is the default.
SIO4_HDLC_TX_PREAMBLE_ENABLE_YES Do send a Preamble sequence.

tx.

preamble.

flag

This field enables or disables the use of the Flag sequence as the Preamble Pattern. This

selection works in conjunction with the Preamble Pattern selection below. Valid values are

given in the table below.

SIO4/8, HDLC Protocol Library, Reference Manual

37

General Standards Corporation, Phone: (256) 880-8787

Value Description
SIO4_HDLC_TX_PREAMBLE_FLAG_NO Do not use the Flag sequence.

SIO4_HDLC_TX_PREAMBLE_FLAG_YES
Do use the Flag sequence. This is the

default.

tx.

preamble.

pattern

This field selects the Preamble Pattern to use, when use of a Preamble is enabled. Valid

values are given in the table below.

Value Description
SIO4_HDLC_TX_PREAMBLE_PATTERN_0 This specifies continuous zero bits.

SIO4_HDLC_TX_PREAMBLE_PATTERN_1

This specifies continuous one bits. If

the above Flag option is Yes, then this

option refers to the Flag sequence. This

is the default.

SIO4_HDLC_TX_PREAMBLE_PATTERN_01
This specifies a pattern of a zero bit

followed by a one bit.

SIO4_HDLC_TX_PREAMBLE_PATTERN_10
This specifies a pattern of a one bit

followed by a zero bit.

tx.

preamble.

length

This field specifies the length of the Preamble Pattern to use, when use of a Preamble is

enabled. Valid values are given in the table below.

Value Description

SIO4_HDLC_TX_PREAMBLE_LENGTH_8_BITS
The length is 8-bits. This is the

default.
SIO4_HDLC_TX_PREAMBLE_LENGTH_16_BITS The length is 16-bits.
SIO4_HDLC_TX_PREAMBLE_LENGTH_32_BITS The length is 32-bits.
SIO4_HDLC_TX_PREAMBLE_LENGTH_64_BITS The length is 64-bits.

tx.

fifo
This structure configures the transmitter’s FIFO parameters.

tx.

fifo.

size

This field is filled in by the sio4_hdlc_init_data() call (section 4.1.3, page 12) with

the size of the channel’s Tx FIFO. This is offered for informational purposes only.

tx.

fifo.

ae

This field specifies the Tx FIFO Almost Empty setting. The Tx FIFO Almost Empty status is

asserted (goes low) when the Tx FIFO contains this number of values, or fewer. The valid

value range is from zero to 0xFFFF. The default is 0x7.
tx.

fifo.

af

This field specifies the Tx FIFO Almost Full setting. The Tx FIFO Almost Full status is

asserted (goes low) when the Tx FIFO contains this number of free spaces, or fewer. The

valid value range is from zero to 0xFFFF. The default is 0x7.

tx.

fifo.

empty_cfg

This field configures the transmitter’s reaction to the Tx FIFO becoming empty. Valid

values are given in the table below.

Value Description

SIO4_HDLC_TX_FIFO_EMPTY_CFG_IGNORE
This specifies that the condition is

to be ignored. This is the default.

SIO4_HDLC_TX_FIFO_EMPTY_CFG_TX_OFF
This specifies that the transmitter be

disabled when the condition occurs.

tx.

fifo.

space_cfg

This field configures the FIFO space allocation between the transmitter and the receiver

when the Tx FIFO and Rx FIFO are of different sizes. Valid values are given in the table

below.

Value Description

SIO4_HDLC_TX_FIFO_SPACE_CFG_RX_2X
This specifies that the Rx FIFO be

twice as large as the Tx FIFO. This is

the default.

SIO4_HDLC_TX_FIFO_SPACE_CFG_TX_2X
This specifies that the Tx FIFO be

twice as large as the Rx FIFO.

SIO4/8, HDLC Protocol Library, Reference Manual

38

General Standards Corporation, Phone: (256) 880-8787

tx.

io

This structure configures the transmitter’s software settings. These settings are used during

sio4_hdlc_tx_frame() calls (see section 4.1.14, page 22).

tx.

io.

dma_thresh

This field configures the minimum size of DMA transfers to be performed by the write

service. If the Tx FIFO has less than the specified amount of available space, then the driver

will wait a single system timer interval before trying again. However, if the Tx FIFO can

accommodate what remains of the current request, or if the output stream appears to be idle,

then the driver will perform a transfer rather than wait for more space. The valid range is any

non-negative value up to the size of the Tx FIFO. The default is 0. Refer to the Tx I/O DMA

Threshold setting and “Operating Information” section of the SIO4 Reference Manual for

additional information.

tx.

io.

mode

This field configures the mechanism used to transfer data from host memory to the channel’s

Tx FIFO. Valid values are given in the table below.

Value Description
SIO4_HDLC_TX_IO_MODE_BMDMA This selects Block Mode DMA transfers. *
SIO4_HDLC_TX_IO_MODE_DMDMA This selects Demand Mode DMA transfers. *

SIO4_HDLC_TX_IO_MODE_PIO
This selects PIO mode transfers. This is the

default.

* The SIO4 has only two DMA engines. A BMDMA or DMDMA transfer request will fail if

both DMA engines are already in use by other SIO4 channels.
tx.

io.

pio_thresh

This field specifies the threshold for write request sizes that force the use of PIO mode. If a

write request is this size or less, then the transfer will automatically use PIO. The valid range

is any non-negative value. The default is 44.
tx.

io.

timeout

This field specifies the maximum duration of Tx Frame requests. This refers to various steps

within the HDLC Protocol Library. The valid range is from zero to 3600. The units are

seconds. The default is 10 seconds.

tx.

io.

overrun

This field tells the driver if it is to check for Tx FIFO overrun conditions before proceeding

with write requests. Valid values are given in the table below.

Value Description

SIO4_HDLC_TX_IO_OVERRUN_CHECK
This specifies that the driver should check

for overrun conditions.

SIO4_HDLC_TX_IO_OVERRUN_IGNORE

This specifies that the driver should not

check for overrun conditions. This is the

default. Overrun testing is performed by

the library and need not be performed by

the driver.

4.2.1.4. sio4_hdlc_t.rx

This section describes the structure’s receiver configuration fields.

Field Description
rx This structure configures the receiver portion of the channel.

rx.

mode

This field specifies the receiver’s operating mode. Valid values are given in the table below.

Value Description

SIO4_HDLC_RX_MODE_HDLC
This selects the HDLC operating mode. This is the

default and the only valid option for this library.

rx.

adrs

This specifies the desired receiver/station address. The receiver will ignore Frames addressed to

other stations. Valid values are from zero to 0xFF. The default is 0xFF.

rx.

adrs_ctrl

This field specifies the structure of the address and control fields expected in received Frames.

The SIO4 hardware performs address comparison only against the first byte of the address and

control field. Valid values are given in the table below.

Value Description

SIO4/8, HDLC Protocol Library, Reference Manual

39

General Standards Corporation, Phone: (256) 880-8787

SIO4_HDLC_RX_ADRS_CTRL_A1_C1
This specifies a one byte Address field and a

one byte Control field.

SIO4_HDLC_RX_ADRS_CTRL_A1_C2
This specifies a one byte Address field and a

two byte Control field.

SIO4_HDLC_RX_ADRS_CTRL_A1_C3
This specifies a one byte Address field and a

three byte Control field.

SIO4_HDLC_RX_ADRS_CTRL_AE_1_CE
This specifies an Extended Address field and

an Extended Control field, with a one byte

field between them.

SIO4_HDLC_RX_ADRS_CTRL_AE_2_CE
This specifies an Extended Address field and

an Extended Control field, with a two byte

field between them.

SIO4_HDLC_RX_ADRS_CTRL_AE_C2
This specifies an Extended Address field and

a two byte Control field.

SIO4_HDLC_RX_ADRS_CTRL_AE_C3
This specifies an Extended Address field and

a three byte Control field.

SIO4_HDLC_RX_ADRS_CTRL_OFF
This disables Address and Control field

detection. This is the default.

rx.

enable

This field specifies if the receiver is to be enabled. When configuration is begun (see

sio4_hdlc_set(), section 4.1.9, page 19) the receiver is initialized and disabled. The

option in this field is applied towards the end of the configuration process. Valid values are

given in the table below.

Value Description

SIO4_HDLC_RX_ENABLE_NO_AFTER
This disables the receiver after it has finished

the reception in progress.
SIO4_HDLC_RX_ENABLE_NO_NOW This disables the receiver immediately.

SIO4_HDLC_RX_ENABLE_YES_NOW
This enables the receiver immediately. This is

the default.

SIO4_HDLC_RX_ENABLE_YES_W_AE
This enables the receiver according to the state

of any hardware flow control lines.

rx.

char_len

This field specifies if the size of receiver characters. The length specified includes the Parity

Bit, if Parity is enabled. The data bits are the lower significant bits of the byte. (Refers to the

Z16C30 data book for exceptions.) Valid values are given in the table below.

Value Description
SIO4_HDLC_RX_CHAR_LEN_1 Characters are 1-bit in length.
SIO4_HDLC_RX_CHAR_LEN_2 Characters are 2-bits in length.
SIO4_HDLC_RX_CHAR_LEN_3 Characters are 3-bits in length.
SIO4_HDLC_RX_CHAR_LEN_4 Characters are 4-bits in length.
SIO4_HDLC_RX_CHAR_LEN_5 Characters are 5-bits in length.
SIO4_HDLC_RX_CHAR_LEN_6 Characters are 6-bits in length.
SIO4_HDLC_RX_CHAR_LEN_7 Characters are 7-bits in length.
SIO4_HDLC_RX_CHAR_LEN_8 Characters are 8-bits in length. This is the default.

rx.

encoding

This field specifies the encoding of the received data. Valid values are given in the table below.

Value Description
SIO4_HDLC_RX_ENCODING_BI_MARK This refers to Biphase Mark encoding.
SIO4_HDLC_RX_ENCODING_BI_LEVEL This refers to Biphase Level encoding.
SIO4_HDLC_RX_ENCODING_BI_SPACE This refers to Biphase Space encoding.

SIO4_HDLC_RX_ENCODING_D_BI_LEVEL
This refers to Differential Biphase Level

encoding.
SIO4_HDLC_RX_ENCODING_NRZ This refers to NRZ encoding.
SIO4_HDLC_RX_ENCODING_NRZB This refers to NRZB encoding.
SIO4_HDLC_RX_ENCODING_NRZI_MARK This refers to NRZI-Mark encoding.

SIO4/8, HDLC Protocol Library, Reference Manual

40

General Standards Corporation, Phone: (256) 880-8787

SIO4_HDLC_RX_ENCODING_NRZI_SPACE
This refers to NRZI-Space encoding. This

is the default.

rx.

size_limit

This specifies the maximum size of receive frames. The maximum is the default of 0xFFFF. At

this time the HDLC Protocol Library does not support any value other than 0xFFFF.

rx.

bit_rate

This specifies the desired receive data bit rate. During the sio4_hdlc_init() call (section

4.1.3, page 12) this is computed from the sio4_hdlc_init_t.rx_bit_rate field

provided to the call.

rx.

queue_abort

This field specifies if received Abort sequences are queued through the USC’s Rx FIFO with

the data. Valid values are given in the table below.

Value Description

SIO4_HDLC_RX_QUEUE_ABORT_NO
Retain the Abort received status, but do not

queue it through the USC Rx FIFO. *

SIO4_HDLC_RX_QUEUE_ABORT_YES
Queue the Abort received status through the

USC Rx FIFO. This is the default. †

* The Abort received status is available even if it isn’t queued through the USC Rx FIFO. In

this case the status may be reported out of sync with the data received.

† If the Abort received status is queued through the USC Rx FIFO with the data, then it inhibits

the queuing of any Parity Error status. In this case, the Parity Error status is lost.

rx.

sync_byte

This specifies the value to be compared to received data as the data enters the Rx FIFO (the one

outside the USC). This comparison can be used for interrupt generation. Valid values are from

zero to 0xFF. The default is zero.

rx.

status_word

This field controls whether the firmware will place the USC Receive Control/Status Register in

the Rx FIFO along with the received data. Valid values are given in the table below.

Value Description

SIO4_HDLC_RX_STATUS_WORD_DISABLE
The RCSR is not placed in the Rx FIFO.

This is the default.
SIO4_HDLC_RX_STATUS_WORD_ENABLE The RCSR is placed in the Rx FIFO. *

* The HDLC Protocol Library does not accommodate reading Frames with the feature enabled.

Application will have to develop their own frame reading mechanism in this case.
rx.

crc
This structure configures the receiver’s use of a CRC at the end of a Frame.

rx.

crc.

enable

This field enables or disables use of a CRC at the end of frames. Valid values are given in the

table below.

Value Description
SIO4_HDLC_RX_CRC_ENABLE_NO CRCs are not used.
SIO4_HDLC_RX_CRC_ENABLE_YES CRCs are used. This is the default.

rx.

crc.

type

This field selects the type of CRC used, when CRC use is enabled. Valid values are given in the

table below.

Value Description
SIO4_HDLC_RX_CRC_TYPE_16 This selects the 16-bit polynomial CRC.
SIO4_HDLC_RX_CRC_TYPE_32 This selects the 32-bit polynomial CRC.

SIO4_HDLC_RX_CRC_TYPE_CCITT
This selects the 16-bit CCITT CRC. This is the

default.

rx.

crc.

preset

This field selects the CRC starting value. Valid values are given in the table below.

Value Description
SIO4_HDLC_RX_CRC_PRESET_ALL_0 Use a starting value of all zeroes.

SIO4_HDLC_RX_CRC_PRESET_ALL_1
Use a starting value of all ones. This is the

default.

rx.

parity
This structure configures the receiver’s use of Parity checking.

SIO4/8, HDLC Protocol Library, Reference Manual

41

General Standards Corporation, Phone: (256) 880-8787

rx.

parity.

enable

This field enables or disables the use of Parity. When enabled, the character size is inclusive of

the Parity Bit, except in the size specified for the last character of the Frame. When used, the

Parity Bit appears to the immediate left of the most significant data bit. Valid values are given

in the table below.

Value Description

SIO4_HDLC_RX_PARITY_ENABLE_NO
Do not generate a Parity bit. This is the

default.
SIO4_HDLC_RX_PARITY_ENABLE_YES Do generate a Parity bit.

rx.

parity.

type

This field specifies the type of Parity to use, when its use is enabled. Valid values are given in

the table below.

Value Description
SIO4_HDLC_RX_PARITY_TYPE_EVEN This specifies Even Parity. This is the default.
SIO4_HDLC_RX_PARITY_TYPE_ODD This specifies Odd Parity.

SIO4_HDLC_RX_PARITY_TYPE_ONE
This specifies One Parity (the parity bit is

always set).

SIO4_HDLC_RX_PARITY_TYPE_ZERO
This specifies Zero Parity (the parity bit is

always clear).

rx.

fifo
This structure configures the receiver’s FIFO parameters.

rx.

fifo.

size

This field is filled in by the sio4_hdlc_init_data() call (section 4.1.3, page 12) with

the size of the channel’s Rx FIFO. This is offered for informational purposes only.

rx.

fifo.

ae

This field specifies the Rx FIFO Almost Empty setting. The Rx FIFO Almost Empty status is

asserted (goes low) when the Rx FIFO contain this number of values, or fewer. The valid value

range is from zero to 0xFFFF. The default is 0x7.
rx.

fifo.

af

This field specifies the Rx FIFO Almost Full setting. The Rx FIFO Almost Full status is

asserted (goes low) when the Rx FIFO contain this number of free spaces, or fewer. The valid

value range is from zero to 0xFFFF. The default is 0x7.

rx.

fifo.

full_cfg

This field configures the receiver’s reaction to the Rx FIFO becoming full. Valid values are

given in the table below. This field refers to the channel specific setting, when supported. The

corresponding global setting is not handled by the HDLC Protocol Library. The global setting

must be handled separately by the application.

Value Description

SIO4_HDLC_RX_FIFO_FULL_CFG_DISABLE
This specifies that the receiver be

disabled when the condition occurs.

SIO4_HDLC_RX_FIFO_FULL_CFG_OVER
This specifies that the condition be

ignored. This is the default.

rx.

io

This structure configures the receiver’s software settings. These settings are used during

sio4_hdlc_rx_frame() calls (section 4.1.8, page 16).

rx.

io.

dma_thresh

This field specifies the minimum size of DMA transfers when the driver needs to wait for

additional data to become available in the Rx FIFO. If data is available in the Rx FIFO, but it is

less than the specified threshold and won’t fulfill the request, then the driver will wait for

additional data to become available. The wait period is one system timer tick. The valid range is

any non-negative value up to the size of the Rx FIFO. The default is 0. Refer to the Rx I/O

DMA Threshold setting and “Operating Information” section of the SIO4 Reference Manual for

additional information.

rx.

io.

mode

This field configures the mechanism used to transfer data from the channel’s Rx FIFO to host

memory. Valid values are given in the table below.

Value Description
SIO4_HDLC_RX_IO_MODE_BMDMA This selects Block Mode DMA transfers. *
SIO4_HDLC_RX_IO_MODE_DMDMA This selects Demand Mode DMA transfers. *
SIO4_HDLC_RX_IO_MODE_PIO This selects PIO mode transfers. This is the default.

SIO4/8, HDLC Protocol Library, Reference Manual

42

General Standards Corporation, Phone: (256) 880-8787

* The SIO4 has only two DMA engines. A BMDMA or DMDMA transfer request will fail if

both DMA engines are already in use by other SIO4 channels.
rx.

io.

pio_thresh

This field specifies the threshold for read request sizes that force the use of PIO mode. If a read

request is this size or less, then the transfer will automatically use PIO. The valid range is any

non-negative value. The default is 44.
rx.

io.

timeout

This field specifies the maximum duration of Rx Frame requests. This refers to various steps

within the HDLC Protocol Library. The valid range is from zero to 3600. The units are seconds.

The default is 10 seconds.

rx.

io.

overrun

This field tells the driver if it is to check for Rx FIFO overrun conditions before proceeding

with read requests. Valid values are given in the table below.

Value Description

SIO4_HDLC_RX_IO_OVERRUN_CHECK
This specifies that the driver should check

for overrun conditions.

SIO4_HDLC_RX_IO_OVERRUN_IGNORE

This specifies that the driver should not

check for overrun conditions. This is the

default. Overrun testing is performed by the

library and need not be performed by the

driver.

rx.

io.

underrun

This field tells the driver if it is to check for Rx FIFO underrun conditions before proceeding

with read requests. Valid values are given in the table below.

Value Description

SIO4_HDLC_RX_IO_UNDERRUN_CHECK
This specifies that the driver should check

for underrun conditions.

SIO4_HDLC_RX_IO_UNDERRUN_IGNORE

This specifies that the driver should not

check for underrun conditions. This is the

default. Underrun testing is performed by

the library and need not be performed by

the driver.

rx.

time_stamp
This structure configures the receiver’s Time Stamp settings.

rx.

time_stamp.

enable

This field enables or disables the channels use of the Time Stamp feature. Valid values are

given in the table below.

Value Description

SIO4_HDLC_RX_TIME_STAMP_ENABLE_NO
Do not use the Time Stamp feature.

This is the default.
SIO4_HDLC_RX_TIME_STAMP_ENABLE_YES Do use the Time Stamp feature. *

* The HDLC Protocol Library does not accommodate reading Frames with this enabled.

rx.

time_stamp.

clk_src

This field selects the Time Stamp clock source. Valid values are given in the table below.

Value Description

SIO4_HDLC_RX_TIME_STAMP_CLK_SRC_EXT
Use the board’s external TTL clock

source. *

SIO4_HDLC_RX_TIME_STAMP_CLK_SRC_INT
Use the board’s internal 1us clock.

This is the default. *

* All four channels on the SIO4 use the same clock source.

4.2.1.5. sio4_hdlc_t.usc

This section describes the structure’s USC configuration fields.

SIO4/8, HDLC Protocol Library, Reference Manual

43

General Standards Corporation, Phone: (256) 880-8787

Field Description

usc

This structure configures the USC portion of the channel. These fields are filled according to the

bit rates requested for the transmitter and the receiver, and the receiver’s use, or not, of the

cable’s Rx Clock signal.

usc.

mode

This field specifies the USC’s overall operating mode. Valid values are given in the table below.

Value Description
SIO4_HDLC_USC_MODE_AUTO_ECHO This is the USC’s Auto Echo mode.
SIO4_HDLC_USC_MODE_LOOPBACK_EXT This is the USC’s external loopback mode.
SIO4_HDLC_USC_MODE_LOOPBACK_INT This is the USC’s internal loopback mode.

SIO4_HDLC_USC_MODE_NORMAL
This is the USC’s normal operating mode.

This is the default.

usc.

txd

This field configures the operation of the USC’s Tx Data pin. Valid values are given in the table

below.

Value Description
SIO4_HDLC_USC_TXD_OUT_0 The pin is driven low.
SIO4_HDLC_USC_TXD_OUT_1 The pin is driven high.

SIO4_HDLC_USC_TXD_OUT_TXD
The pin is driven from the transmitter’s Tx Data

signal. This is the default.
SIO4_HDLC_USC_TXD_TRI The pin is tri-stated.

usc.

cts

This field configures the operation of the USC’s CTS pin. Valid values are given in the table

below.

Value Description
SIO4_HDLC_USC_CTS_OUT_0 The pin is driven low.
SIO4_HDLC_USC_CTS_OUT_1 The pin is driven high.

SIO4_HDLC_USC_CTS_IN_CBL_CTS
The pin is an input driver from the cable’s CTS

signal.
SIO4_HDLC_USC_CTS_TRI The pin is tri-stated. This is the default.

usc.

cts_legacy

This field configures the operation of the USC’s CTS pin for legacy mode cable interface

configurations. Valid values are given in the table below. Please also read Cable Configuration

Modes (section 5.10, page 61).

Value Description
SIO4_HDLC_USC_CTS_LEG_IN The pin operates as an input. This is the default.
SIO4_HDLC_USC_CTS_LEG_OUT_0 The pin operates as an output driven low.
SIO4_HDLC_USC_CTS_LEG_OUT_1 The pin operates as an output driven high.

usc.

dcd

This field configures the operation of the USC’s DCD pin. Valid values are given in the table

below.

Value Description
SIO4_HDLC_USC_DCD_DISABLE The pin is disabled. This is the default.

SIO4_HDLC_USC_DCD_IN_DCD_CBL_DCD
The pin is an input for the receiver’s DCD

function and is driven from the cable’s

DCD signal.

SIO4_HDLC_USC_DCD_IN_SYNC_CBL_DCD
The pin is an input for the receiver’s

SYNC function and is driven from the

cable’s DCD signal.
SIO4_HDLC_USC_DCD_OUT_0 The pin is driven low. *
SIO4_HDLC_USC_DCD_OUT_1 The pin is driven high. *

* This option enables the cable DCD signal to be driven, though the cable.dcd field (section

4.2.1.2, page 30) may configure the cable to output an alternate signal.

usc.

dcd_legacy

This field configures the operation of the USC’s DCD pin for legacy mode cable interface

configurations. Valid values are given in the table below. Please also read Cable Configuration

SIO4/8, HDLC Protocol Library, Reference Manual

44

General Standards Corporation, Phone: (256) 880-8787

Modes (section 5.10, page 61).

Value Description

SIO4_HDLC_USC_DCD_LEG_IN_DCD
The pin operates as a DCD input. This is the

default.
SIO4_HDLC_USC_DCD_LEG_IN_SYNC The pin operates as a SYNC input.
SIO4_HDLC_USC_DCD_LEG_OUT_0 The pin operates as an output driven low.
SIO4_HDLC_USC_DCD_LEG_OUT_1 The pin operates as an output driven high.

usc.

tx
This structure configures a few of the USC’s transmitter settings.

usc.

tx.

clk_src

This field configures the source for the USC transmitter clock. Valid values are given in the table

below.

Value Description
SIO4_HDLC_USC_TX_CLK_SRC_BRG0 Select Baud Rate Generator 0.
SIO4_HDLC_USC_TX_CLK_SRC_BRG1 Select Baud Rate Generator 1.
SIO4_HDLC_USC_TX_CLK_SRC_CTR0 Select Counter 0.
SIO4_HDLC_USC_TX_CLK_SRC_CTR1 Select Counter 1.
SIO4_HDLC_USC_TX_CLK_SRC_DISABLE Disable the transmitter.
SIO4_HDLC_USC_TX_CLK_SRC_DPLL Select the DPLL.
SIO4_HDLC_USC_TX_CLK_SRC_RXC_PIN Select the Rx Clock pin.
SIO4_HDLC_USC_TX_CLK_SRC_TXC_PIN Select the Tx Clock pin. *

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

tx.

txc

This field configures the operation of the USC’s Tx Clock pin. Valid values are given in the table

below.

Value Description
SIO4_HDLC_USC_TX_TXC_IN_0 The pin is an input driven low.
SIO4_HDLC_USC_TX_TXC_IN_1 The pin is an input driven high.

SIO4_HDLC_USC_TX_TXC_IN_CBL_RXAUX
The pin is an input driven from the cable’s

Rx Aux signal.

SIO4_HDLC_USC_TX_TXC_IN_CBL_RXC
The pin is an input driven from the cable’s

Rx Clock signal.

SIO4_HDLC_USC_TX_TXC_IN_OSC
The pin is an input driven from the

onboard oscillator.

SIO4_HDLC_USC_TX_TXC_IN_OSC_INV
The pin is an input driven from the

inverted onboard oscillator.

SIO4_HDLC_USC_TX_TXC_OUT_BRG0
The pin is an output driven from Baud

Rate Generator 0.

SIO4_HDLC_USC_TX_TXC_OUT_BRG1
The pin is an output driven from Baud

Rate Generator 1.

SIO4_HDLC_USC_TX_TXC_OUT_BYTE_CLK
The pin is an output driven from the

transmitter’s Byte Clock.

SIO4_HDLC_USC_TX_TXC_OUT_CLK
The pin is an output driven from the

transmit clock. *

SIO4_HDLC_USC_TX_TXC_OUT_COMP
The pin is an output driven from the

transmit complete signal.

SIO4_HDLC_USC_TX_TXC_OUT_CTR1
The pin is an output driven from Counter

1.

SIO4_HDLC_USC_TX_TXC_OUT_DPLL_TX
The pin is an output driven from the

transmit clock from the DPLL.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

tx.

txc_legacy

This field configures the operation of the USC’s Tx Clock pin for legacy mode cable interface

configurations. Valid values are given in the table below. Please also read Cable Configuration

SIO4/8, HDLC Protocol Library, Reference Manual

45

General Standards Corporation, Phone: (256) 880-8787

Modes (section 5.10, page 61).

Value Description
SIO4_HDLC_USC_TX_TXC_LEG_IN The pin operates as an input.

SIO4_HDLC_USC_TX_TXC_LEG_OUT_BRG0
The pin is an output driven from

Baud Rate Generator 0.

SIO4_HDLC_USC_TX_TXC_LEG_OUT_BRG1
The pin is an output driven from

Baud Rate Generator 1.

SIO4_HDLC_USC_TX_TXC_LEG_OUT_BYTE_CLK
The pin is an output driven from the

transmitter’s Byte Clock.

SIO4_HDLC_USC_TX_TXC_LEG_OUT_CLK
The pin is an output driven from the

transmit clock. *

SIO4_HDLC_USC_TX_TXC_LEG_OUT_COMP
The pin is an output driven from the

transmit complete signal.

SIO4_HDLC_USC_TX_TXC_LEG_OUT_CTR1
The pin is an output driven from

Counter 1.

SIO4_HDLC_USC_TX_TXC_LEG_OUT_DPLL_TX
The pin is an output driven from the

transmit clock from the DPLL.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

rx
This structure configures a few of the USC’s receiver settings.

usc.

rx.

clk_src

This field configures the source for the USC receiver clock. Valid values are given in the table

below.

Value Description
SIO4_HDLC_USC_RX_CLK_SRC_BRG0 Select Baud Rate Generator 0.
SIO4_HDLC_USC_RX_CLK_SRC_BRG1 Select Baud Rate Generator 1.
SIO4_HDLC_USC_RX_CLK_SRC_CTR0 Select Counter 0.
SIO4_HDLC_USC_RX_CLK_SRC_CTR1 Select Counter 1.
SIO4_HDLC_USC_RX_CLK_SRC_DISABLE Disable the receiver.
SIO4_HDLC_USC_RX_CLK_SRC_DPLL Select the DPLL.
SIO4_HDLC_USC_RX_CLK_SRC_RXC_PIN Select the Rx Clock pin. *
SIO4_HDLC_USC_RX_CLK_SRC_TXC_PIN Select the Tx Clock pin.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

rx.

rxc

This field configures the operation of the USC’s Rx Clock pin. Valid values are given in the table

below.

Value Description
SIO4_HDLC_USC_RX_RXC_IN_0 The pin is an input driven low.
SIO4_HDLC_USC_RX_RXC_IN_1 The pin is an input driven high.

SIO4_HDLC_USC_RX_RXC_IN_CBL_RXAUX
The pin is an input driven from the cable’s

Rx Aux signal.

SIO4_HDLC_USC_RX_RXC_IN_CBL_RXC
The pin is an input driven from the cable’s

Rx Clock signal.

SIO4_HDLC_USC_RX_RXC_IN_OSC
The pin is an input driven from the

onboard oscillator. *

SIO4_HDLC_USC_RX_RXC_IN_OSC_INV
The pin is an input driven from the

inverted onboard oscillator.

SIO4_HDLC_USC_RX_RXC_OUT_BRG0
The pin is an output driven from Baud

Rate Generator 0.

SIO4_HDLC_USC_RX_RXC_OUT_BRG1
The pin is an output driven from Baud

Rate Generator 1.

SIO4_HDLC_USC_RX_RXC_OUT_BYTE_CLK
The pin is an output driven from the

receiver’s Byte Clock.
SIO4_HDLC_USC_RX_RXC_OUT_CLK The pin is an output driven from the

SIO4/8, HDLC Protocol Library, Reference Manual

46

General Standards Corporation, Phone: (256) 880-8787

receiver clock.

SIO4_HDLC_USC_RX_RXC_OUT_CTR0
The pin is an output driven from Counter

0.

SIO4_HDLC_USC_RX_RXC_OUT_DPLL_RX
The pin is an output driven from the

receive clock from the DPLL.

SIO4_HDLC_USC_RX_RXC_OUT_SYNC
The pin is an output driven from input

SYNC signal.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

rx.

rxc_legacy

This field configures the operation of the USC’s Rx Clock pin for legacy mode cable interface

configurations. Valid values are given in the table below. Please also read Cable Configuration

Modes (section 5.10, page 61).

Value Description
SIO4_HDLC_USC_RX_RXC_LEG_IN The pin is an input. *

SIO4_HDLC_USC_RX_RXC_LEG_OUT_BRG0
The pin is an output driven from

Baud Rate Generator 0.

SIO4_HDLC_USC_RX_RXC_LEG_OUT_BRG1
The pin is an output driven from

Baud Rate Generator 1.

SIO4_HDLC_USC_RX_RXC_LEG_OUT_BYTE_CLK
The pin is an output driven from the

receiver’s Byte Clock.

SIO4_HDLC_USC_RX_RXC_LEG_OUT_CLK
The pin is an output driven from the

receiver clock.

SIO4_HDLC_USC_RX_RXC_LEG_OUT_CTR0
The pin is an output driven from

Counter 0.

SIO4_HDLC_USC_RX_RXC_LEG_OUT_DPLL_RX
The pin is an output driven from the

receive clock from the DPLL.

SIO4_HDLC_USC_RX_RXC_LEG_OUT_SYNC
The pin is an output driven from

input SYNC signal.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

brg0
This structure configures a few of the settings for Baud Rate Generator 0 (BRG0).

usc.

brg0.

enable

This field enables or disabled BRG0. Valid values are given in the table below.

Value Description
SIO4_HDLC_USC_BRG0_ENABLE_NO This disables BRG0. *
SIO4_HDLC_USC_BRG0_ENABLE_YES This enables BRG0.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

brg0.

clk_src

This field selects the clock source for BRG0. Valid values are given in the table below.

Value Description
SIO4_HDLC_USC_BRG0_CLK_SRC_CTR0 This selects the output from Counter 0. *
SIO4_HDLC_USC_BRG0_CLK_SRC_CTR1 This selects the output from Counter 1.

SIO4_HDLC_USC_BRG0_CLK_SRC_RXC_PIN
This selects the signal present at the

USC’s Rx Clock pin.

SIO4_HDLC_USC_BRG0_CLK_SRC_TXC_PIN
This selects the signal present at the

USC’s Tx Clock pin.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

brg0.

divider

This field specifies the clock divider value for BRG0. The valid value range is from zero to

0xFFFF. The initial default is zero, though it may change to satisfy bit rate requirements.

usc.

brg0.

mode

This field specifies the BRG0 operating mode. Valid values are given in the table below.

Value Description

SIO4_HDLC_USC_BRG0_MODE_CONT
This selects continuous operation. This is the

default.

SIO4/8, HDLC Protocol Library, Reference Manual

47

General Standards Corporation, Phone: (256) 880-8787

SIO4_HDLC_USC_BRG0_MODE_SINGLE
This selects single shot mode, in which

clocking stops when the counter value reaches

zero.

usc.

brg1
This structure configures a few of the settings for Baud Rate Generator 1 (BRG1).

usc.

brg1.

enable

This field enables or disabled BRG1. Valid values are given in the table below.

Value Description
SIO4_HDLC_USC_BRG1_ENABLE_NO This disables BRG1. *
SIO4_HDLC_USC_BRG1_ENABLE_YES This enables BRG1.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

brg1.

clk_src

This field selects the clock source for BRG1. Valid values are given in the table below.

Value Description
SIO4_HDLC_USC_BRG1_CLK_SRC_CTR0 This selects the output from Counter 0.
SIO4_HDLC_USC_BRG1_CLK_SRC_CTR1 This selects the output from Counter 1. *

SIO4_HDLC_USC_BRG1_CLK_SRC_RXC_PIN
This selects the signal present at the

USC’s Rx Clock pin.

SIO4_HDLC_USC_BRG1_CLK_SRC_TXC_PIN
This selects the signal present at the

USC’s Tx Clock pin.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

brg1.

divider

This field specifies the clock divider value for BRG1. The valid value range is from zero to

0xFFFF. The initial default is zero, though it may change to satisfy bit rate requirements.

usc.

brg1.

mode

This field specifies the BRG1 operating mode. Valid values are given in the table below.

Value Description

SIO4_HDLC_USC_BRG1_MODE_CONT
This selects continuous operation. This is the

default.

SIO4_HDLC_USC_BRG1_MODE_SINGLE
This selects single shot mode, in which

clocking stops when the counter value reaches

zero.

usc.

ctr0
This structure configures a few of the settings for Counter 0 (CTR0).

usc.

ctr0.

clk_src

This field selects the clock source for CTR0. Valid values are given in the table below.

Value Description
SIO4_HDLC_USC_CTR0_CLK_SRC_DISABLE This disables CTR0. *

SIO4_HDLC_USC_CTR0_CLK_SRC_RXC_PIN
This selects the signal present at the

USC’s Rx Clock pin.

SIO4_HDLC_USC_CTR0_CLK_SRC_TXC_PIN
This selects the signal present at the

USC’s Tx Clock pin.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

ctr0.

rate

This field selects the divider rate for CTR0. Valid values are given in the table below.

Value Description
SIO4_HDLC_USC_CTR0_RATE_4X This sets the output as the input divided by four.
SIO4_HDLC_USC_CTR0_RATE_8X This sets the output as the input divided by eight.
SIO4_HDLC_USC_CTR0_RATE_16X This sets the output as the input divided by 16.
SIO4_HDLC_USC_CTR0_RATE_32X This sets the output as the input divided by 32. *

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

ctr1
This structure configures a few of the settings for Counter 1 (CTR1).

usc.

ctr1.
This field selects the clock source for CTR1. Valid values are given in the table below.

SIO4/8, HDLC Protocol Library, Reference Manual

48

General Standards Corporation, Phone: (256) 880-8787

clk_src Value Description
SIO4_HDLC_USC_CTR1_CLK_SRC_DISABLE This disables CTR1. *

SIO4_HDLC_USC_CTR1_CLK_SRC_RXC_PIN
This selects the signal present at the

USC’s Rx Clock pin.

SIO4_HDLC_USC_CTR1_CLK_SRC_TXC_PIN
This selects the signal present at the

USC’s Tx Clock pin.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

ctr1.

rate_src

This field selects the source for the rate divider used by CTR1. Valid values are given in the table

below.

Value Description
SIO4_HDLC_USC_CTR1_RATE_SRC_CTR0 This selects the rate divider used by CTR0.

SIO4_HDLC_USC_CTR1_RATE_SRC_DPLL
This selects the rate divider used by the

DPLL. *

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

dpll
This structure configures a few of the settings for the DPLL.

usc.

dpll.

clk_src

This field selects the clock source for the DPLL. Valid values are given in the table below.

Value Description
SIO4_HDLC_USC_DPLL_CLK_SRC_BRG0 This selects the output from BRG0. *
SIO4_HDLC_USC_DPLL_CLK_SRC_BRG1 This selects the output from BRG1.

SIO4_HDLC_USC_DPLL_CLK_SRC_RXC_PIN
This selects the signal present at the

USC’s Rx Clock pin.

SIO4_HDLC_USC_DPLL_CLK_SRC_TXC_PIN
This selects the signal present at the

USC’s Tx Clock pin.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

dpll.

mode

This field specifies the DPLL operating mode, which corresponds to the Rx Data Encoding

format. Valid values are given in the table below.

Value Description
SIO4_HDLC_USC_DPLL_MODE_BIPH_LVL This refers to Biphase-Level.

SIO4_HDLC_USC_DPLL_MODE_BIPH_MS
This refers to either Biphase-Mark or

Biphase Space.
SIO4_HDLC_USC_DPLL_MODE_DISABLE This disables the DPLL. *
SIO4_HDLC_USC_DPLL_MODE_NRZ_NRZI This refers to either NRZ or NRZI.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

dpll.

rate

This field selects the divider rate for the DPLL. Valid values are given in the table below.

Value Description

SIO4_HDLC_USC_DPLL_RATE_CTR1_4X

This option cannot be used if the DPLL is

utilized. This is a divide by four option, but

can be selected only if the DPLL is the

source for CTR1’s rate divider value.

SIO4_HDLC_USC_DPLL_RATE_8X
This sets the output as the input divided by

eight. *

SIO4_HDLC_USC_DPLL_RATE_16X
This sets the output as the input divided by

16.

SIO4_HDLC_USC_DPLL_RATE_32X
This sets the output as the input divided by

32.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

dpll.

edge

This field selects the source signal edges that the DPLL uses for synchronization. Valid values

are given in the table below.

Value Description

SIO4/8, HDLC Protocol Library, Reference Manual

49

General Standards Corporation, Phone: (256) 880-8787

SIO4_HDLC_USC_DPLL_EDGE_BOTH_EDGE
This selects both rising and falling edges

that the DPLL is to use for clocking

synchronization.

SIO4_HDLC_USC_DPLL_EDGE_FALL_EDGE
This selects the falling edges that the

DPLL is to use for clocking

synchronization.

SIO4_HDLC_USC_DPLL_EDGE_INHIBIT
This inhibits the DPLL from

synchronizing on the input clock. *

SIO4_HDLC_USC_DPLL_EDGE_RISE_EDGE
This selects the rising edges that the

DPLL is to use for clocking

synchronization.

* This is the initial default, though it may change to satisfy bit rate requirements.

SIO4/8, HDLC Protocol Library, Reference Manual

50

General Standards Corporation, Phone: (256) 880-8787

5. Operating Information

5.1. Basic Illustration

The below figure is included to assist individuals in the configuration of the SIO4. The figure illustrates boards with

more recent firmware. The DMA references are handled automatically by the driver to facilitate movement of data

between the USC and the on-board FIFOs.

Tx FIFO
Oscillator Inv

RxClk
0
1

TxClk

0
1

CTS

DCD

RTS0
1

AF

DCD
0
1

AuxC
0
1

TxD0
1

TxD

RxD

RxD

RxC

TxC

0
1

Rx

Tx

CTS

HiZ

HiZ

HiZ

Rx FIFO

CTR0

CTR1

TxC

RxC

Disable

BRG1

BRG0

DPLL

T
x
C

lk
R

x
C

lk

Dis

Tx

Rx

32/16/8/4

CTR0/DPLL

32/16/8(/4)

CTS

Tx
CTS

Rx
DCDDCD

D/S

TxDTxD

HiZ
TxCC TxC

RxCC RxS

USC

RxDRxD

Data

Data

0
1

0
1

TxRMode TxAMode

(DMA)

RxRMode RxAMode

(DMA)

Cable

DCE/DTE/

Legacy

Transceivers

Loopback Int/Ext

Disable
SC/Cont

SC/Cont

En/Disable

En/Disable

Disable

H/L/B/N

0
1

Auto Echo

Dis

SIO4B and later

Enable/Disable

Enable/Disable

DTR/

DST0
1

HiZ

RTS

RTS

Figure 2 A functional illustration of an SIO4B or later model board.

5.2. Getting Started

To configure the SIO4 for HDLC operation meeting specific requirements, the recommended starting point is a

local, customizable copy of the hdlcc2c sample application included with the driver. This application is designed

to transfer bulk data between an SIO4 transmitter and an SIO4 receiver. The transmitter and receiver can be from

two channels on different boards, two channels on the same board, or by loopback mode using the transmitter and

receiver from the very same channel. There are two loopback configurations. Internal Loopback performs the

transfer by routing signals totally onboard the SIO4 without driving the cable transceivers. External Loopback

performs the transfer by routing the signals through the cable transceivers.

NOTE: When using Loopback operation, it is recommended that cabling and any remote

equipment be disconnected from the SIO4. This is because External Loopback is the default when

Internal Loopback is not supported by firmware.

5.2.1. Cable Validation

The first step in deriving a customized configuration is to verify cabling. This should be done using the application’s

default settings. It is recommended that one channel be used for loopback testing and that two other channels on the

SIO4/8, HDLC Protocol Library, Reference Manual

51

General Standards Corporation, Phone: (256) 880-8787

same board be connected by the cabling to be tested. A script with the below commands is a convenient means of

repeating these tests until cabling has been verified successfully.

./hdlcc2c 0 0 -i

./hdlcc2c 0 0 -e

./hdlcc2c 1 2

5.2.2. Customizing the Configuration

The second step in deriving a customized configuration is to methodically modify the application code, one

parameter at a time, until all necessary parameter changes have been accommodated. That is, choose a parameter

from the documentation that must be changed from its default, modify the application so the required setting can be

specified from the command line, then test the resulting changes. A script with the below commands is a convenient

means of repeating these tests. In this example the “-X” represents the new command line argument for the

parameter being altered from its default. This script tests all three cabling setups both without the change and with

the change. This is done to verify that the default operation remains functional after the code modifications. In some

cases, the script may need to be expanded to test each parameter addition to ensure prior changes remain functional.

It is suggested that parameter changes be accommodated one at a time to ease the development and testing process.

./hdlcc2c 0 0 -i

./hdlcc2c 0 0 -e

./hdlcc2c 1 2 -i

./hdlcc2c 0 0 -i -X

./hdlcc2c 0 0 -e -X

./hdlcc2c 1 2 -X

NOTE: At times modifications for a parameter may need to be implemented on the transmitter or

receiver first in order to facilitate validation. At other times the transmitter and receiver may

temporarily be configured differently in order to verify that a change is implemented properly.

NOTE: It is best to initially test parameter additions separately, one at a time. Where there are

parameter interactions, testing parameter combinations should be completed before moving on.

The general sequence for addition of a new parameter modification is as follows.

1. Add a field representing the parameter to the args_t structure defined in main.h.

2. Add command line support for the new parameter by updating the _parse_args() function at the top of

main.c. At minimum, the list[] table must be updated to associate assignment of a setting with a command

line argument. This may also mean assigning a default to the new field following the memset() function call.

NOTE: One may have to review multiple sample applications to get a feel for how to add specific

command line argument types to the argument table.

3. Update the _setup_apply() function at the top of setup.c to apply the value from the new field to the

sio4_hdlc_t structure prior to calling sio4_hdlc_set().

4. Now update the script steps given above for the code changes just implemented. Continue adding support for

other required parameter changes when testing is complete. Update the above script for each addition.

5.3. Debugging Aids

The SIO4 driver archive includes the following debugging aids appropriate for use with the HDLC Protocol Library.

SIO4/8, HDLC Protocol Library, Reference Manual

52

General Standards Corporation, Phone: (256) 880-8787

5.3.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id

example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as

follows.

Description File Location OS

Application
id …/id/ Linux
id.rta …\id\ INtime

5.3.2. sio4_hdlc_show()

The function sio4_hdlc_show() (section 4.1.10, page 20) is part of the protocol library interface. The purpose

of the function is to produce a human readable report of all fields included in the sio4_hdlc_t structure (section

4.2.1, page 26) passed in as a function argument. The function is best used to report the structure’s content before it

is passed to sio4_hdlc_set() (section 4.1.9, page 19) or after it is passed to sio4_hdlc_get() (section

4.1.2, page 12). The output can be used with Figure 2 to help visualize the channel configuration reflected by the

structure content. When used in conjunction with sio4_hdlc_set(), the sio4_hdlc_show() output

indicates the state that sio4_hdlc_set() is expected to produce. When used in conjunction with

sio4_hdlc_get(), the sio4_hdlc_show() output indicates the channel’s current state. This may be

beneficial after calling sio4_hdlc_set() in order to verify the results achieved. The pair of calls may also be

used before or after read or write requests in order to help explain the results of individual transfer requests.

5.3.3. Detailed Register Dump

The utility function sio4_reg_list() is included in the sio4 utility library. The purpose of the function is to

report the current content of registers for the referenced serial channel. The arguments control the set of registers

included in the output and the detail with which the register content is reported. This function can be called at any

time to report the device state, but it is most often called after completing board setup, or just before or after read or

write requests in order to help explain the results of individual transfer requests.

Prototype

int sio4_reg_list(int fd, int gsc, int gsc_detail,

 int usc, int usc_detail);

Argument Description

fd This is a file descriptor obtained from sio4_hdlc_open() (section 4.1.6, page 15).

gsc
If non-zero, then the output will include a dump of all GSC_SIO4_xxx registers. Refer

to sio4.h for a complete list of these registers.

gsc_detail
If non-zero, then the dump of the above registers will include detailed information about

all register fields, including the field value and the meaning of the value.

usc
If non-zero, then the output will include a dump of all GSC_USC_xxx registers. Refer

to sio4.h for a complete list of these registers.

usc_detail
If non-zero, then the dump of the above registers will include detailed information about

all register fields, including the field value and the meaning of the value.

Return Value Description
>= 0 This is the number of errors encountered during execution of the function.

SIO4/8, HDLC Protocol Library, Reference Manual

53

General Standards Corporation, Phone: (256) 880-8787

5.3.4. Status Return Values

The HDLC Protocol Library, the SIO4 API Library and the SIO4 device driver all report the results for each of the

various interface services. The table below lists the most common error status values reported to an application.

NOTE: When an error status is returned by the HDLC Init Data, Get, Set, Show and Tx Frame

functions, the err argument to these same functions provides a string that identifies the offending

argument or structure field.

Value errno.h Macro Description

0 None The operation was completed successfully.

-16 -EBUSY

An open request failed due to a conflicting share argument. This can

happen if an Exclusive open request is made when some application already

has access to the same device. This will occur when the existing access is

either Shared or Exclusive. This can also happen if a Shared request is made

when the existing access is Exclusive.

-22 -EINVAL A function argument or referenced structure field value is invalid.

-71 -EPROTO
The HDLC Protocol Library has not been initialized. Applications must call

sio4_hdlc_init() before making any other Library call.

-77 -EBADF

The file descriptor argument was not recognized. This indicates that the file

descriptor is invalid, was not obtained by the sio4_hdlc_open()

function, or access to the referenced device has already been closed.

-93 -EPROTONOSUPPORT

This indicates that the SIO4 device doesn’t support the operation requested.

This occurs when any of the functions listed in the above note is called on an

SIO4 that is not based on the Zilog Z16C30 DUART. The board is either a -

SYNC mode or a model with custom firmware.

5.4. Tx Abort (Transmitter Abort Sequence)

The USC can induce an Abort condition onto the Tx Data output under two conditions. It is done either on demand

by calling sio4_hdlc_tx_abort() (see section 4.1.11, page 20) or automatically if it runs out of data while

transmitting a frame. When done by calling the above function the Abort signal is the shorter seven-bit version.

When done automatically, the USC can be configured for either the shorter seven-bit version or the longer 15-bit

version. The length selection is made via the USC’s Tx Underrun feature configuration (see

sio4_hdlc_t.tx.underrun, section 4.2.1, page 26).

NOTE: If an Abort sequence is requested near the end of an HDLC frame, then the frame may be

terminated prematurely. When this occurs, the data at the tail end of the frame may not be

transmitted. Additionally, the CRC, if enabled, may not be transmitted. Correspondingly, the

transmitter may not generate the CRC Sent and EOF Sent interrupts.

5.5. Tx Preamble (Transmitter Frame Preamble)

The USC supports generation of a Preamble before transmitting each frame (see sio4_hdlc_t.tx.preamble,

section 4.2.1, page 26). By default the Preamble is disabled. If enabled, the default pattern is a single Flag sequence.

The Preamble length is configurable as eight, 16, 32 or 64-bits. If the flag field is non-zero and the pattern field

is the “1” pattern option, then the Preamble pattern is the Flag sequence. Otherwise the pattern is per the pattern

field.

5.6. Tx CRC (Transmitter Frame Check Sequence)

The USC supports generation of a CRC following transmission of the application provided frame data (see

sio4_hdlc_t.tx.crc, section 4.2.1.3, page 34). By default the CRC is enabled and configured to append a 16-

bit CCITT CRC, with a “1” preset, at the end of each frame. The enable field, if non-zero configures the

SIO4/8, HDLC Protocol Library, Reference Manual

54

General Standards Corporation, Phone: (256) 880-8787

transmitter to calculate the CRC as the frame is being transmitted. The on_end field, if non-zero, configures the

transmitter to send the CRC before closing the frame. If this field is zero, then the CRC is calculated but not sent.

NOTE: Please refer to the Zilog Z16C30 Databook before changing the CRC type or preset.

NOTE: The CRC is appended to the application provided data sent as part of the frame. And as

the USC receiver is limited to tracking frame sizes from one to 65,535 bytes (1 to 0xFFFF),

inclusion of the CRC correspondingly reduces the user data limit in a frame by the size of the

CRC.

5.7. Rx CRC (Receiver Frame Check Sequence)

The USC supports CRC checking of received frames (see sio4_hdlc_t.rx.crc, section 4.2.1.4, page 38). By

default the CRC is enabled and configured to use the 16-bit CCITT CRC, with a “1” preset. The enable field, if

non-zero configures the receiver to calculate the CRC as the frame is being received.

NOTE: Please refer to the Zilog Z16C30 Databook before changing the CRC type or preset.

NOTE: The USC does not strip the received CRC from the received data stream. And as the USC

receiver is limited to tracking frame sizes from one to 65,535 bytes (1 to 0xFFFF), inclusion of the

CRC correspondingly reduces the user data limit in a frame by the size of the CRC.

5.8. Basic Transmission Requirements

The HDLC Protocol Library accommodates various application frame transmission requirements, as described

below. Satisfying different requirements is achieved by varying the arguments passed to the

sio4_hdlc_tx_frame() service (section 4.1.14, page 22). These examples are given simply to illustrate how

to the Library can be used to support some common requirements.

5.8.1. Send Data as a Single Complete Frame

The library can conditionally guarantee that a Tx Frame is sent out in its entirety as a single complete frame. The

conditions that apply are that the frame content must fit within the SIO4’s Tx FIFO and that the frame be configured

to have its content preloaded into the Tx FIFO before initiating frame transmission. If the frame content exceeds the

Tx FIFO size, preloading can still be performed. In these cases, after preloading, the frame portion that remains is

sent to the FIFO after frame transmission is initiated. The table below illustrates the settings that will request the

preloading option.

sio4_hdlc_tx_frame_t Field Value

preload 1

size As required.
src As required.
last As required.
wait 0

sent 0

status 0

Preloading helps minimize the likelihood that a Tx Frame ends prematurely. Options that can increase the likelihood

of the data being sent as a single complete frame are: increase the Tx FIFO size, reduce the frame data size, enable

maximum Preamble size, reduce the transmission bit rate and increase the execution priority of the thread sending

the frame relative to other application and/or system activities.

SIO4/8, HDLC Protocol Library, Reference Manual

55

General Standards Corporation, Phone: (256) 880-8787

NOTE: The preload option can reduce overall transmission throughput because the library waits

for the Tx FIFO to empty before proceeding. If this is an issue for an application, then tests should

be performed to determine if preloading is necessary.

NOTE: The prefill operation is performed only after the data for any prior frames has left the Tx

FIFO. The condition is checked by polling at an interval of one system timer tick.

NOTE: If a data set is not transmitted via a single complete frame, then upon return the status

field will include the flag SIO4_HDLC_TX_FRAME_STATUS_SHORT. This error condition

pauses USC transmission necessitating a recovery operation.

NOTE: The driver inserts four bytes of overhead into the Tx FIFO at the start of each HDLC Tx

Frame, which reduces the available Tx FIFO space by four bytes. This also reduces the preload

capacity by four bytes.

5.8.2. Tx Short Frame Status and Preload

The Short Frame status indicates that software was not able to provide frame data fast enough to keep data in the Tx

FIFO before it is needed by the USC. The higher the bit rate the more likely this is to occur. The best way to address

this is set the preload field to one. If Tx Frames are sent back-to-back and are of sufficient size, then this may be

needed only for the first frame following a notable break. If frames are relatively small, then this may be needed for

every frame. Experimentation may be required to determine the best approach for each usage.

The library can conditionally guarantee that a Tx Frame is sent out in its entirety as a single complete frame. The

conditions that apply are that the frame content must fit within the SIO4’s Tx FIFO and that the frame be configured

to have its content preloaded into the Tx FIFO before initiating frame transmission. If the frame content exceeds the

Tx FIFO size, preloading can still be performed. In these cases, after preloading, the frame portion that remains is

sent to the FIFO after frame transmission is initiated. The table below illustrates the settings that will request the

preloading option.

5.8.3. Complete Frame Transmission Before Returning

When an application needs confirmation that a frame has been transmitted completely it can make that request when

the Tx Frame service is called. The confirmation is accomplished by telling the service the condition that the service

is to wait for after all data has been written to the Tx FIFO. The table below illustrates the settings that will request

transmission completion before returning.

sio4_hdlc_tx_frame_t Field Value

single 0

size As required.
src As required.
last As required.
wait SIO4_HDLC_TX_FRAME_STATUS_EOF

sent 0

status 0

NOTE: The wait field can specify any number of wait conditions. The service will cease waiting

upon detection of the first condition, or when the I/O timeout expires, whichever occurs first.

NOTE: The waiting operation is performed by polling at an interval of one system timer tick.

NOTE: For additional information refer to the Tx Abort service (section 4.1.11, page 20).

SIO4/8, HDLC Protocol Library, Reference Manual

56

General Standards Corporation, Phone: (256) 880-8787

5.8.4. Transmit Frames ASAP

The Tx Frame service will send data ASAP if all waiting conditions are disabled. This includes the single field

and the wait field. The table below illustrates the settings that will request transmission ASAP.

sio4_hdlc_tx_frame_t Field Value

single 0

size As required.
src As required.
last As required.
wait 0

sent 0

status 0

5.9. Clocking Configurations

The function sio4_hdlc_init_data() initializes the USC clocking section of the sio4_hdlc_t structure

based on the content of the sio4_hdlc_init_t structure. The basic configuration options are shown below. In

all cases, unused USC clocking components are disabled. The following illustrations are for SIO4B or later model

boards. The figures are also representative of SIO4A model boards, except that the SIO4A has lower capabilities for

routing signals between the USC and the cable interface. The figures are also somewhat representative of the basic

SIO4 model boards, except that the basic SIO4 boards use jumpers for routing signals between the USC and the

cable interface. (The basic SIO4 model boards are limited to the legacy mode cable configuration feature.) The SIO4

USC’s each having two clocking pins usable as input or output clocks; TxC and RxC. The cable clocking signals

include the Cable Tx Clock (TxClk) and the Cable Rx Clock (RxClk). There is also a Cable Auxiliary Clock

(AuxC), which can be an output (TxAuxC) or an input (RxAuxC), but that signal doesn’t affect the limitations of

having only two USC pins usable for clocking purposes. The selection of which cable clock signals are used, TxClk

and/or RxClk, affects the flexibility and limitations on how the USC clock pins are used (TxC and/or RxC,

respectively). The SIO4 and the USC have extensive clocking capabilities. Many more options are possible besides

the four basic configurations given below. When calling sio4_hdlc_init_data() however, these four

configurations are the only ones evaluated. If an alternate setup is required, then the settings required should be

applied to the sio4_hdlc_t structure between the calls to sio4_hdlc_init_data() and

sio4_hdlc_set().

SIO4/8, HDLC Protocol Library, Reference Manual

57

General Standards Corporation, Phone: (256) 880-8787

5.9.1. Four Signal Configuration: Cable Tx Clock is Used, Cable Rx Clock is Used

NOTE: This is a preferred configuration as a clock is provided with each data signal. The clocks

are therefore perfectly timed with the data being transferred.

This is a four signal configuration using the Cable Tx Data signal (TxD), the Cable Tx Clock signal (TxClk), the

Cable Rx Data signal (RxD) and the Cable Rx Clock signal (RxClk). As the Cable Rx Clock signal (RxClk) is used,

the USC Rx Clock pin (RxC) is dedicated to that purpose. At the same time, the Cable Tx Clock signal (TxClk) is

used and the USC Tx Clock pin (TxC) is required as an input. To satisfy these requirements, the on-board oscillator

is programmed to the Tx bit rate and configured as the source for both Cable Tx Clock (TxClk) signal and the USC

Tx Clock pin (TxC) . Therefore, the osc_prog field must be set to the value in the tx_bit_rate field. This

signal routing is illustrated in Figure 3. The heavy dotted lines with the yellow background are the hard coded

routing selections for this configuration. The code extract below demonstrates the minimum coding for this example

configuration. Error checking is omitted for brevity. The resulting bit rates are reported in the sio4_hdlc_t

structure and should be examined for suitability.

const char* err = NULL;

sio4_hdlc_t hdlc;

sio4_hdlc_init_t init;

init.tx_bit_rate = 150000;

init.rx_bit_rate = 150000;

init.cbl_txc = SIO4_HDLC_CBL_TXC_USED;

init.cbl_rxc = SIO4_HDLC_CBL_RXC_USED;

init.osc_prog = 150000; // tx_bit_rate

sio4_hdlc_init_data(fd, &init, &hdlc, &err);

Tx FIFO

AF
Rx FIFO

USC

TxRMode TxAMode

(DMA)

RxRMode RxAMode

(DMA)

Loopback Int/ExtAuto Echo

SIO4B and later

CTR0

Disable

32/16/8/4

CTR1

CTR0/DPLL

Disable

BRG0

SC/Cont

En/Disable

BRG1

SC/Cont

En/Disable

DPLL
Tx

Rx

32/16/8(/4)

Disable

H/L/B/N
Rx

DCD
D/S

RxCC RxS

RxD

Data

Enable/Disable

R
x
C

lk

Dis

T
x
C

lk

Tx
CTS

TxD

TxCC TxCData

Enable/Disable

Dis

TxCTxC

TxDTxD

HiZ

CTS

HiZ

CTS

DCD

HiZ

DCD

RxDRxD

RxCRxC

Oscillator Inv AuxC

Rx

Tx

HiZ

TxClk

TxD

CTS

RTS
RTS

DCD

RTS

DTR/

DST

HiZ

RxD

RxClk

Cable

DCE/DTE/

Legacy

Transceivers

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

Figure 3 The clock routing produced when the Cable Tx Clock is used and the Cable Rx Clock is used.

SIO4/8, HDLC Protocol Library, Reference Manual

58

General Standards Corporation, Phone: (256) 880-8787

5.9.2. Three Signal Configuration #1: Cable Tx Clock is Unused, Cable Rx Clock is Used

NOTE: This may not be a preferred configuration as the remote device will have to construct a

clock from transitions in the Tx Data signal. While this is common, the remote device may not be

able to construct a clock that exactly matches the original transmit clock.

This is a three signal configuration using the Cable Tx Data signal (TxD), the Cable Rx Data signal (RxD) and the

Cable Rx Clock signal (RxClk). As the Cable Rx Clock signal (RxClk) is used, the USC Rx Clock pin (RxC) is

dedicated to that purpose. The USC Tx Clock pin (TxC) is therefore dedicated as the input from the on-board

programmable oscillator. The USC Tx Clock (TxClk) is derived from the on-board programmable oscillator. This

signal routing is illustrated in Figure 4. The heavy dotted lines with the yellow background are hard coded routing

selections. The heavy dashed lines with the yellow background are the possible routing selections evaluated to

produce the specified Tx bit rate. The code extract below demonstrates the minimum coding for this example

configuration. Error checking is omitted for brevity. For the best possible bit rate matching, the osc_prog field

must be set an even multiple of the value in the tx_bit_rate field, but not higher than 20,000,000. Higher

is better, though. The resulting bit rates are reported in the sio4_hdlc_t structure and should be examined for

suitability.

const char* err = NULL;

sio4_hdlc_t hdlc;

sio4_hdlc_init_t init;

init.tx_bit_rate = 150000;

init.rx_bit_rate = 150000;

init.cbl_txc = SIO4_HDLC_CBL_TXC_UNUSED;

init.cbl_rxc = SIO4_HDLC_CBL_RXC_USED;

init.osc_prog = 19950000; // 133 * tx_bit_rate

sio4_hdlc_init_data(fd, &init, &hdlc, &err);

Tx FIFO

AF
Rx FIFO

USC

TxRMode TxAMode

(DMA)

RxRMode RxAMode

(DMA)

Loopback Int/ExtAuto Echo

SIO4B and later

CTR0

Disable

32/16/8/4

CTR1

CTR0/DPLL

Disable

BRG0

SC/Cont

En/Disable

BRG1

SC/Cont

En/Disable

DPLL
Tx

Rx

32/16/8(/4)

Disable

H/L/B/N
Rx

DCD
D/S

RxCC RxS

RxD

Data

Enable/Disable

R
x
C

lk

Dis

T
x
C

lk

Tx
CTS

TxD

TxCC TxCData

Enable/Disable

Dis

TxCTxC

TxDTxD

HiZ

CTS

HiZ

CTS

DCD

HiZ

DCD

RxDRxD

RxCRxC

Oscillator Inv AuxC

Rx

Tx

HiZ

TxClk

TxD

CTS

RTS
RTS

DCD

RTS

DTR/

DST

HiZ

RxD

RxClk

Cable

DCE/DTE/

Legacy

Transceivers

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

Figure 4 The clock routing produced when the Cable Tx Clock is unused and the Cable Rx Clock is used.

SIO4/8, HDLC Protocol Library, Reference Manual

59

General Standards Corporation, Phone: (256) 880-8787

5.9.3. Three Signal Configuration #2: Cable Tx Clock is Used, Cable Rx Clock is Unused

NOTE: This may not be a preferred configuration as the receiver will have to construct a clock

from transitions in the Rx Data signal. While this is common, the receiver may not be able to

construct a clock that exactly matches the original transmit clock.

This is a three signal configuration using the Cable Tx Data signal (TxD), the Cable Tx Clock signal (TxClk) and

Cable Rx Data signal (RxD). As the Cable Tx Clock signal (TxClk) is used, the USC Tx Clock pin (TxC) is

dedicated to that purpose. The USC Rx Clock pin (RxC) is therefore dedicated as the input from the on-board

programmable oscillator. The USC Rx Clock (RxClk) is extracted from the Cable Rx Data signal (RxD) by the

DPLL. The USC Tx Clock (TxClk) is derived from the onboard oscillator. This is illustrated in Figure 5. The heavy

dotted lines with the yellow background are hard coded routing selections. The heavy dashed lines with the yellow

background are the possible routing selections. The code extract below demonstrates the minimum coding for this

example configuration. For the best possible bit rate matching, the osc_prog field must be set to eight, 16 or

32 times the value in the rx_bit_rate field, but not higher than 20,000,000. Higher is better, though. It

should also be an even multiple of the tx_bit_rate field, should the bit rates differ. The resulting bit rates

are reported in the sio4_hdlc_t structure and should be examined for suitability.

const char* err = NULL;

sio4_hdlc_t hdlc;

sio4_hdlc_init_t init;

init.tx_bit_rate = 150000;

init.rx_bit_rate = 150000;

init.cbl_txc = SIO4_HDLC_CBL_TXC_USED;

init.cbl_rxc = SIO4_HDLC_CBL_RXC_UNUSED;

init.osc_prog = 19200000; // 32 * rx_bit_rate * 4

sio4_hdlc_init_data(fd, &init, &hdlc, &err);

Tx FIFO

AF
Rx FIFO

USC

TxRMode TxAMode

(DMA)

RxRMode RxAMode

(DMA)

Loopback Int/ExtAuto Echo

SIO4B and later

CTR0

Disable

32/16/8/4

CTR1

CTR0/DPLL

Disable

BRG0

SC/Cont

En/Disable

BRG1

SC/Cont

En/Disable

DPLL
Tx

Rx

32/16/8(/4)

Disable

H/L/B/N

T
x
C

lk

Tx
CTS

TxD

TxCC TxCData

Enable/Disable

Dis

TxCTxC

TxDTxD

HiZ

CTS

HiZ

CTS

DCD

HiZ

DCD

RxDRxD

RxCRxC

Oscillator Inv AuxC

Rx

Tx

HiZ

TxClk

TxD

CTS

RTS
RTS

DCD

RTS

DTR/

DST

HiZ

RxD

RxClk

Cable

DCE/DTE/

Legacy

Transceivers

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

Rx
DCD
D/S

RxCC RxS

RxD

Data

Enable/Disable

R
x
C

lk

Dis

Figure 5 The clock routing produced when the Cable Tx Clock is used and the Cable Rx Clock is unused.

SIO4/8, HDLC Protocol Library, Reference Manual

60

General Standards Corporation, Phone: (256) 880-8787

5.9.4. Two Signal Configuration: Cable Tx Clock is Unused, Cable Rx Clock is Unused

NOTE: This may not be a preferred configuration as the local and remote receivers will have to

construct clocks from transitions in their Rx Data signals. While this is common, the receivers

may not be able to construct clocks that exactly match the original transmit clocks.

This is a typical two signal configuration using only the Cable Tx Data signal (TxD) and the Cable Rx Data signal

(RxD). As the cable clock signals are unused, the USC clocking pins (TxC and RxC) can be used as needed, giving

maximum flexibility. The USC Rx Clock (RxClk) is extracted from the Cable Rx Data signal (RxD) by the DPLL

using the onboard oscillator. The USC Tx Clock (TxClk) is derived from the onboard oscillator. This signal routing

is illustrated in Figure 6. The heavy dotted lines with the yellow background are hard coded routing selections. The

heavy dashed lines with the yellow background are the possible routing selections evaluated to produce the specified

bit rates. The code extract below demonstrates the minimum coding for this example configuration. Error checking

is omitted for brevity. For the best possible bit rate matching, the osc_prog field must be set to eight, 16 or 32

times the value in the rx_bit_rate field, but not higher than 20,000,000. Higher is better, though. It should

also be an even multiple of the tx_bit_rate field, should the bit rates differ. The resulting bit rates are

reported in the sio4_hdlc_t structure and should be examined for suitability.

const char* err = NULL;

sio4_hdlc_t hdlc;

sio4_hdlc_init_t init;

init.tx_bit_rate = 150000;

init.rx_bit_rate = 150000;

init.cbl_txc = SIO4_HDLC_CBL_TXC_UNUSED;

init.cbl_rxc = SIO4_HDLC_CBL_RXC_UNUSED;

init.osc_prog = 19200000; // 32 * rx_bit_rate * 4

sio4_hdlc_init_data(fd, &init, &hdlc, &err);

Tx FIFO

AF
Rx FIFO

USC

TxRMode TxAMode

(DMA)

RxRMode RxAMode

(DMA)

Loopback Int/ExtAuto Echo

SIO4B and later

CTR0

Disable

32/16/8/4

CTR1

CTR0/DPLL

Disable

BRG0

SC/Cont

En/Disable

BRG1

SC/Cont

En/Disable

DPLL
Tx

Rx

32/16/8(/4)

Disable

H/L/B/N

T
x
C

lk

Tx
CTS

TxD

TxCC TxCData

Enable/Disable

Dis

TxCTxC

TxDTxD

HiZ

CTS

HiZ

CTS

DCD

HiZ

DCD

RxDRxD

RxCRxC

Oscillator Inv AuxC

Rx

Tx

HiZ

TxClk

TxD

CTS

RTS
RTS

DCD

RTS

DTR/

DST

HiZ

RxD

RxClk

Cable

DCE/DTE/

Legacy

Transceivers

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

Rx
DCD
D/S

RxCC RxS

RxD

Data

Enable/Disable

R
x
C

lk

Dis

Figure 6 The clock routing produced when the signals Cable Tx Clock and Cable Rx Clock are unused.

SIO4/8, HDLC Protocol Library, Reference Manual

61

General Standards Corporation, Phone: (256) 880-8787

5.10. Cable Configuration Modes

The SIO4 supports two cable interfacing modes; DCE/DTE mode and Legacy mode. Older boards support only

Legacy mode. More recent boards support only DCE/DTE mode. Intermediate boards support both modes. When

both are available selection of the active mode is governed by enabling or disabling the transceivers. This is done

through the sio4_hdlc_t.cable.enable field, which is described under section 4.2.1.2 beginning on page

30.

5.10.1. DCE/DTE Mode

The DCE/DTE Mode controls cable signaling according to the DCE or DTE selection, as described in the board user

manual. When available in firmware this mode is enabled by enabling the cable transceivers (see paragraph above).

The HDLC Protocol Library passes all DCE/DTE mode settings to the driver unconditionally. DCE/DTE mode

settings received by the driver are applied only if this mode is supported by the board. The driver otherwise ignores

these settings.

5.10.2. Legacy Mode

The Legacy More of operation controls signal routing for the cable interface, according to the Upper and Lower

settings, and the USC, as described in the board user manual. When available in firmware this is the default mode of

operation. When selectable this mode is activated by disabling the cable transceivers (see paragraph above). The

HDLC Protocol Library’s sio4_hdlc_set() function (section 4.1.9, page 19) applies Legacy mode settings

only if the Legacy mode will be active when the function exits. The library otherwise ignores the Legacy settings.

All other library functions process their settings unconditionally. Legacy mode settings received by the driver are

applied only if this mode is supported by the board. The driver otherwise ignores these settings.

5.11. Error and Status Detection

The serial controller used on the SIO4 incorporates the ability to detect a number of error and other conditions for

both the transmit and the receive data streams.

5.11.1. Interrupt Events

The most efficient means of detecting the various conditions, especially errors, is by use of interrupts. The basic

steps for this are to enable the interrupts of interest then have a thread wait for a corresponding interrupt event. (See

the Interrupt and the Wait Event services in the driver reference manual.) This is illustrated in the following code

fragments.

Thread A Thread B
For (;;)

{

 …

 read SIO4 data

 if (error recorded)

 {

 Error exists in Read buffer,

 Or SIO4 Rx FIFO

Resync data stream.

 }

 else

 {

 Read buffer is error free.

 }

 …

For (;;)

{

 …

 Enable desired interrupts.

 Wait for an interrupt.

 if (error interrupt occurred)

 {

 Record the error.

 }

 …

}

SIO4/8, HDLC Protocol Library, Reference Manual

62

General Standards Corporation, Phone: (256) 880-8787

}

5.11.2. Rx Status Word

The SIO4 can also provide status in the Rx data stream on a per byte basis. This is done by enabling the Rx Status

Word feature (sio4_hdlc_t.rx.status_word, section 4.2.1.4, page 38). When enabled, the SIO4 places the

lower eight bits of the USC’s Receive Command/Status Register in the Rx FIFO immediately after the data itself.

This allows an application to identity the precise location in the data stream where some Rx related conditions occur.

The downside of this is that it doubles the volume of data going through the Rx FIFO and effectively reduces its size

by 1/2. Refer to the Z16C30 Data Handbook for information on the USC’s Receive Command/Status Register.

SIO4/8, HDLC Protocol Library, Reference Manual

63

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

March 19, 2024
Updated release date. Added comment about use of the static libraries. Removed the Cable

Protocol Disable option as it is unsupported by hardware.

November 16, 2023 Updated release date.

June 15, 2023 Updated release date. Minor editorial updates.

December 13, 2022 Updated release date. Minor editorial updates.

June 2, 2022 Updated release date. Updated the description of the Tx Idle Line conditions.

February 8, 2022

Updated the release date. Expanded the description of the Cable Tx and Rx Clock signal

options. Removed “PRELIMINARY” status. Changed the description of the Tx Size Limit

field. Added clarification of the Tx Frame wait field options. Updated notes for open

requests on devices which do not support HDLC. Reorganized the Operating Information

section (section 5, page 50). Added a Getting Started section (section 5.2, page 50). Added

notes about the driver’s internal RCC FIFO. Added notes for the Tx Frame and Rx Frame

status fields. Added information on common error values returned by the Library. Minor

editorial modifications. Corrected the description of the sio4_hdlc_tx_wait()

function. Added the argument “file” to the Show service .

August 9, 2021

Updated the release date. Removed “PRELIMINARY” status. Updated information on the

Tx Frame Abort call. Updated the I/O timeout field descriptions. Updated the descriptions of

the I/O return values. Updated the content and description of the

sio4_hdlc_rx_frame_t data structure. Updated the description of the

sio4_hdlc_tx_frame_t data structure. Added notes about Rx Frame and Rx Flush

requests being serialized. Updated the notes about Tx Frame, Tx Flush and Tx Status

requests being serialized. Added statements about the Tx Frame and Rx Frame services

being blocking calls.

May 5, 2021 Updated the release date.

February 26, 2021 Updated the release date.

February 18, 2021 Updated information on the Tx and Rx DMA Threshold settings.

February 1, 2021
Updated the release date. Updated the description of the sio4_hdlc_init() function.

Updated the description of the sio4_hdlc_init_data() function.

October 12, 2020

Updated the release date. Minor editorial corrections. The minimum frame data size is two

bytes. The maximum frame data size is 0xFFFF minus the size of the CRC. Revised the

sio4_hdlc_tx_frame_t.wait options.

July 30, 2019 Updated the release date. Added information on state of the preliminary release.

March 24, 2019 Updated the release date.

March 15, 2019

Added the sio4_hdlc_t.rx.size_limit field. Remove references to the low level

services. Removed all references to the Library interface being high level services. Added

sio4_hdlc_tx_frame_status().

October 18, 2018
Updated the default PIO threshold values based on testing. Updated the inside cover page.

Added Tx and Rx I/O DMA Threshold fields.

October 31, 2017
Added information on the Cable Configuration Modes. Updated some legacy setting

information.

October 17, 2017

Removed library versioning. Added information on opening device index -1. Added section

on library interface files. Updated return status information for high level services. Added

support for device index -1. Numerous editorial changes throughout.

December 7, 2016
Updated the operating information section. Made various miscellaneous updates. Updated

information on using loopback mode.

September 16, 2016
Updated to version 0.11. Updated the sio4_hdlc_init_t structure. Updated the text of

the Rx Address Control macros. Changed the defaults for several settings.

April 13, 2016
Updated to version 0.10. Updated the clocking configuration and event detection

information.

September 7, 2015 Updated to version 0.9.

December 9, 2014 Updated the current release date.

SIO4/8, HDLC Protocol Library, Reference Manual

64

General Standards Corporation, Phone: (256) 880-8787

December 4, 2014

Updated to version 0.8. Added information on DCD configuration for both the cable and the

USC. Moved the data structure section into the previous section. Added information on error

and status detection.

May 17, 2014

Updated to version 0.7. The two clocking configuration options that required the DPLL were

replaced by a single option that derived the Rx Clock from the DPLL and the Tx Clock from

the onboard programmable oscillator.

April 16, 2014 Updated to version 0.6.

October 22, 2013 Updated to version 0.5.

October 15, 2013 Updated to version 0.4.

August 27, 2013 Initial release, version 0.2. This is for the 2.x series driver.

