
SIO4/8
Four/Eight Channel High Speed Serial I/O

All SIO4 and SIO8 Models
All Form Factors

All Standard Zilog Versions
All Standard SYNC Versions

Porting Guide

From The GSCAPI To The
3.x Series Monolithic Driver

Manual Revision: March 19, 2024

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com/

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2023-2024, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or

software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Although extensive editing and reviews are performed before release, General Standards Corporation assumes no

responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are

made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this

documentation.

General Standards Corporation does not assume any liability arising out of the application or use of

documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or

any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,

software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

Zilog and Z16C30 are trademarks of Zilog, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 7

1.1. Purpose .. 7

1.2. Acronyms ... 7

1.3. Definitions .. 7

2. High Level Issues... 9

2.1. Licensing .. 9

2.2. Kernel Support .. 9

2.3. Architecture Support .. 9

2.4. Programming Language Support .. 9

2.5. Build Environment.. 9

2.6. Model Support ... 9

2.7. Firmware Support .. 10

2.8. Dynamic Firmware Selection ... 10

2.9. Documentation .. 10

2.10. Driver Archive ... 11

2.11. Installation Procedures ... 11

2.12. Installation Directory .. 11

2.13. Directory Structure ... 11

2.14. Environment Variables... 11

2.15. Build Procedures ... 12

2.16. Build Targets: Release vs Debug ... 12

2.17. Primary Header Files.. 12

2.18. Primary Library Files ... 12

2.19. Device Access ... 13

2.20. Device Indexing ... 13

2.21. Versioning .. 13

2.22. Shared Source Code .. 13

2.23. OS Support .. 14

2.24. Error Reporting .. 14

2.25. Data Types ... 14

2.26. Interface Initialization .. 14

2.27. Service Interface .. 14

2.28. Serial Protocols.. 15

2.29. I/O Operations ... 15

2.30. DMA Engine Access Policy .. 15

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

4

General Standards Corporation, Phone: (256) 880-8787

2.31. I/O Memory Access ... 16

2.32. Oscillator Programming ... 16

2.33. Working in the Background ... 16

2.34. Event Notification ... 16

2.35. Interrupt Support ... 17

2.36. Multithreaded Access ... 17

2.37. Register Access .. 17

2.38. Sample Applications ... 17

3. Source Code Porting ... 18

3.1. Macros.. 18
3.1.1. Firmware Register Definitions ... 18
3.1.2. USC Register Definitions ... 18

3.2. System Level Routines .. 19
3.2.1. API Initialization: sio4_init() .. 19
3.2.2. IOCTL Service: sio4_ioctl() ... 19
3.2.3. GscFindBoards ... 20
3.2.4. GscGetErrorString .. 21

3.3. Board Level Routines ... 21
3.3.1. GscOpen ... 21
3.3.2. GscClose ... 22
3.3.3. GscGetInfo ... 22
3.3.4. GscGetVersions .. 22
3.3.5. GscLocalRegisterRead ... 23
3.3.6. GscLocalRegisterWrite .. 23
3.3.7. GscAllocPhysicalMemory .. 24
3.3.8. GscMapPhysicalMemory ... 24
3.3.9. GscUnmapPhysicalMemory ... 24

3.4. Channel Level Routines .. 24
3.4.1. GscSio4ChannelReset .. 24
3.4.2. GscSio4ChannelResetRxFifo ... 24
3.4.3. GscSio4ChannelResetTxFifo ... 25
3.4.4. GscSio4ChannelRegisterRead .. 25
3.4.5. GscSio4ChannelRegisterWrite ... 26
3.4.6. GscSio4GetLastError.. 26
3.4.7. GscSio4ChannelSetMode ... 27
3.4.8. GscSio4ChannelGetMode .. 28
3.4.9. GscSio4SetOption .. 28

3.4.9.1. GSC_SIO_DATASIZE .. 29
3.4.9.2. GSC_SIO_GAPSIZE ... 29
3.4.9.3. GSC_SIO_MSBLSBORDER .. 29
3.4.9.4. GSC_SIO_PARITY ... 30
3.4.9.5. GSC_SIO_STOPBITS ... 30
3.4.9.6. GSC_SIO_ENCODING ... 31
3.4.9.7. GSC_SIO_PROTOCOL .. 31
3.4.9.8. GSC_SIO_DTEDCE .. 32
3.4.9.9. GSC_SIO_LOOPBACK .. 32
3.4.9.10. GSC_SIO_RECEIVER .. 33
3.4.9.11. GSC_SIO_TRANSMITTER.. 33
3.4.9.12. GSC_SIO_TXDATAPINMODE ... 33

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

5

General Standards Corporation, Phone: (256) 880-8787

3.4.9.13. GSC_SIO_RXDATAPINMODE ... 34
3.4.9.14. GSC_SIO_TXCLOCKPINMODE .. 34
3.4.9.15. GSC_SIO_RXCLOCKPINMODE .. 35
3.4.9.16. GSC_SIO_CTSPINMODE .. 36
3.4.9.17. GSC_SIO_RTSPINMODE .. 36
3.4.9.18. GSC_SIO_CLOCKSOURCE .. 36
3.4.9.19. GSC_SIO_CRCMODE .. 38
3.4.9.20. GSC_SIO_SYNCWORD ... 38
3.4.9.21. GSC_SIO_TXUNDERRUN .. 39
3.4.9.22. GSC_SIO_TXPREAMBLE ... 39
3.4.9.23. GSC_SIO_TXSHORTSYNC .. 39
3.4.9.24. GSC_SIO_RXSYNCSTRIP .. 39
3.4.9.25. GSC_SIO_RXSHORTSYNC .. 40
3.4.9.26. GSC_SIO_TXPREAMBLELEN ... 40
3.4.9.27. GSC_SIO_TXPREAMBLEPATTERN ... 40
3.4.9.28. GSC_SIO_ORDERING ... 40
3.4.9.29. GSC_SIO_ORDERING ... 41
3.4.9.30. GSC_SIO_MAXRXCOUNT ... 41

3.4.10. GscSio4GetOption .. 41
3.4.11. GscSio4ChannelSetPinMode & GscSio4ChannelSetPinValue .. 41

3.4.11.1. GSC_PIN_RX_CLOCK .. 41
3.4.11.2. GSC_PIN_RX_DATA ... 41
3.4.11.3. GSC_PIN_CTS .. 41
3.4.11.4. GSC_PIN_RX_ENV .. 41
3.4.11.5. GSC_PIN_DCD ... 42
3.4.11.6. GSC_PIN_TX_CLOCK... 42
3.4.11.7. GSC_PIN_TX_DATA ... 42
3.4.11.8. GSC_PIN_RTS .. 42
3.4.11.9. GSC_PIN_TX_ENV .. 43
3.4.11.10. GSC_PIN_AUXCLK ... 43

3.4.12. GscSio4ChannelGetPinMode & GscSio4ChannelGetPinValue ... 43
3.4.13. GscSio4ChannelFifoSizes .. 44
3.4.14. GscSio4ChannelFifoCounts ... 44
3.4.15. GscSio4ChannelSetTxAlmost and GscSio4ChannelGetTxAlmost .. 44
3.4.16. GscSio4ChannelSetRxAlmost and GscSio4ChannelGetRxAlmost ... 44
3.4.17. GscSio4ChannelCheckForData .. 45
3.4.18. GscSio4ChannelReceivePacket .. 45
3.4.19. GscSio4ChannelReceiveData ... 45
3.4.20. GscSio4ChannelReceiveDataAndWait .. 45
3.4.21. GscSio4ChannelReceivePlxPhysData .. 45
3.4.22. GscSio4ChannelTransmitData ... 46
3.4.23. GscSio4ChannelTransmitDataAndWait ... 46
3.4.24. GscSio4ChannelTransmitPlxPhysData .. 46
3.4.25. GscSio4ChannelQueryTransfer .. 46
3.4.26. GscSio4ChannelWaitForTransfer... 46
3.4.27. GscSio4ChannelFlushTransfer ... 46
3.4.28. GscSio4ChannelRemoveTransfer ... 46
3.4.29. GscSio4ChannelRegisterInterrupt .. 47
3.4.30. GscSio4ChannelSetClock ... 48

3.5. Protocol Level Routines .. 48
3.5.1. GscSio4HdlcGetDefaults .. 48
3.5.2. GscSio4HdlcSetConfig and GscSio4HdlcGetConfig ... 48
3.5.3. GscSio4AsyncGetDefaults ... 48
3.5.4. GscSio4AsyncSetConfig and GscSio4AsyncGetConfig .. 48
3.5.5. GscSio4BiSyncGetDefaults .. 49

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

6

General Standards Corporation, Phone: (256) 880-8787

3.5.6. GscSio4BiSyncSetConfig and GscSio4BiSyncGetConfig ... 49
3.5.7. GscSio4SyncGetDefaults ... 49
3.5.8. GscSio4SyncSetConfig and GscSio4SyncGetConfig ... 49
3.5.9. GscSio4BiSync16GetDefaults .. 49
3.5.10. GscSio4BiSync16SetConfig and GscSio4BiSync16GetConfig ... 49
3.5.11. GscSio4BiSync16GetTxCounts ... 49
3.5.12. GscSio4BiSync16GetRxCounts ... 49
3.5.13. GscSio4BiSync16EnterHuntMode ... 50
3.5.14. GscSio4BiSync16AbortTx ... 50
3.5.15. GscSio4BiSync16Pause.. 50
3.5.16. GscSio4BiSync16Resume .. 50

3.6. CTC Protocol Routines ... 50
3.6.1. GscSio4CTCAddMajorFrame .. 50
3.6.2. GscSio4CTCAddMinorFrame .. 50
3.6.3. GscSio4CTCGetActiveMajorFrame ... 50
3.6.4. GscSio4GetActiveMajorFrame .. 50
3.6.5. GscSio4CTCGetDefaults .. 50
3.6.6. GscSio4CTCReceiveFrames .. 50
3.6.7. GscSio4CTCResetTimer .. 51
3.6.8. GscSio4CTCSetConfig ... 51
3.6.9. GscSio4CTCSetTimer .. 51
3.6.10. GscSio4CTCSwitchMajorFrame .. 51
3.6.11. GscSio4CTCTransmitFrames ... 51

Document History ... 52

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

7

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

This guide applies to applications being ported from the GSCAPI interface to the SIO4 API Library interface that is

a part of the 3.x series monolithic Linux driver. There have been three SIO4 Linux drivers. The first is a monolithic

driver whose last release was version 1.58.93.36.0 dated April 30, 2021. This is now a legacy driver and is not the

subject of this porting guide. The second driver is commonly called GSCAPI. This is a library-based driver

implementation using a low-level driver produced by PLX Technology. Its last release was version 1.6.10.1 dated

March 25, 2020. This legacy driver is the subject of this porting guide. The third driver is the currently maintained

SIO4 Linux driver, referred to as the 3.x series monolithic driver. At the time of this writing the last release of this

driver was version 3.17.101.44.0 dated December 13, 2022. This is the target driver addressed in this porting guide.

1.1. Purpose

The purpose of this document is to present information that may be useful in porting source code from using the

legacy GSCAPI interface to using the actively maintained 3.x series monolithic driver.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms Description

API Application Programming Interface (This is sometimes used synonymously with API Library.)

DMA Direct Memory Access

BMDMA
Block Mode DMA (This may refer to non-Scatter-Gather DMA as well as non-Demand Mode

DMA.)

DMDMA Demand Mode DMA

GSC General Standards Corporation

PIO Programmed I/O

USC Universal Serial Controller (This refers to the SIO4’s Zilog Z16C30 serial controller.)

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

… This is a substitute for a driver’s root installation directory.

API Library
This refers to the library implementing the application-level interface to the monolithic

driver.

Application This refers to user mode processes.

Device Driver This refers to the driver executable component of the SIO4 driver package.

Driver This refers to the device driver, which runs under control of the operating system.

Firmware Registers
These are the General Standards specific registers implemented in the board’s FPGA

firmware.

Library Driver
This refers to the GSCAPI driver as the SIO4 specific functionality is implemented in a

shared object library.

Low Level Driver This refers to the driver executable included with each driver package.

Monolithic Driver
This refers to the 3.x series driver as virtually all of the SIO4 specific functionality is

included in the low-level device driver.

Protocol Library

These are libraries included with the monolithic driver designed to encapsulate support for

specific serial protocols. This includes the Asynchronous, HDLC and Isochronous

protocols as well as the SYNC protocol used by -SYNC model SIO4s.

SYNC Devices
These are SIO4 devices which use dedicated firmware to implement a synchronous

protocol that uses a clock and valid data envelope signal.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

8

General Standards Corporation, Phone: (256) 880-8787

Zilog Devices
These are SIO4 devices which use the Zilog Z16C30 USC hardware to support various

serial protocols.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

9

General Standards Corporation, Phone: (256) 880-8787

2. High Level Issues

This section presents information on high level issues that pertain to other than exercising the driver interfaces.

2.1. Licensing

The two drivers have different licensing restrictions. The GSCAPI’s low level driver and its interface library are

produced by PLX Technology. Its sources are covered by LGPL version 2 as stated in each of its source files. All

remaining content is produced by General Standards and is not explicitly covered by any licensing, unless

documented otherwise. The monolithic driver is produced entirely by General Standards. The Linux specific driver

sources are covered by GPL. All other sources are released to the general public. Refer to the file LICENSE.txt

for clarification.

2.2. Kernel Support

Kernel support is the primary reason the GSCAPI is a legacy driver and why the monolithic driver is still being

maintained. The GSCAPI supports kernel versions from 2.4 up through 4.9, but no further. The monolithic driver

supports kernel versions 2.2 up through 5.x and will be updated further as the need arises. Refer to the respective

driver user manuals for clarification.

2.3. Architecture Support

Both drivers support 32-bit x86 and 64-bit x64 architectures. Neither driver has been tested and verified by General

Standards on any other architecture. Numerous attempts have been made at testing the monolithic driver on ARM

based systems, but all such tests have been unsuccessful. All tests conducted have failed due to BIOS and/or kernel

porting deficiencies.

2.4. Programming Language Support

All sources for the drivers are written in the C programming language. Both drivers’ primary application header files

are usable as-is with both C and C++ applications. Both have also been used with other programming languages, but

mostly because those environments contained support for use of C based library interfaces.

2.5. Build Environment

All content for both drivers is written for building by the GNU C compiler suite. This includes compilation, linking,

the make utilities and the module build tool. The necessary tools should be available for virtually all Linux

distributions. For many distributions these tools are installed by default. For other distributions the tools must be

installed after OS installation and setup. Building the monolithic driver executable is done by the module build tool

and requires installation of the kernel headers and the kernel development package. These are often installed by

default, but may have to be installed manually.

2.6. Model Support

The basic model numbers supported by these drivers are given in the table below. Both include support for multiple

models, but not the same models. The basic models supported are given in the table below. The table lists standard

Zilog and SYNC board models. The same hardware has been used for custom firmware and is typically designated

by additions to the model number. A hypothetical example is PMC-SIO4BX-XXX, where the XXX refers to the

custom firmware variation. Refer to the following firmware support section for additional information.

NOTE: The GSCAPI driver also supports a small number of analog I/O boards. Support for these

boards is limited. The monolithic driver does not include any support for analog I/O boards.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

10

General Standards Corporation, Phone: (256) 880-8787

Base Model GSCAPI Monolithic

SIO8BX2 Yes Yes

SIO8BX2-SYNC Yes Yes

SIO8BXS Yes Yes

SIO8BXS-SYNC Yes Yes

SIO4BX2 Yes Yes

SIO4BX2-SYNC Yes Yes

SIO4BXR Yes Yes

SIO4BXR-SYNC Yes Yes

SIO4BX Yes Yes

SIO4BX-SYNC Yes Yes

SIO4B Yes Yes

SIO4B-SYNC Yes Yes

SIO4AHRM No Yes

SIO4AHRM-SYNC No Yes

SIO4AR No Yes

SIO4AR-SYNC No Yes

SIO4A No Yes

SIO4A-SYNC No Yes

SIO4 No Yes

2.7. Firmware Support

The SIO4 is a quad channel, bi-directional serial communications board. The standard firmware options include

support for the Zilog Z16C30 chips and the -SYNC versions. In addition, numerous firmware variations have been

created to implement customer specific protocols. Both drivers have inherent support for much of the custom

firmware as the interface changes typically appear as new registers for configuration of the custom protocol. This

support only requires making new register definitions, which the custom application uses to configure the custom

protocol. The firmware designer goes to great lengths to keep as much common functionality intact as possible to

minimize the impact on software. As a result, both drivers continue to function as expected for most, if not all,

protocol independent features.

NOTE: The GSCAPI supports a custom firmware version implementing a customer specific

protocol called CTC. The monolithic driver does not contain any corresponding content.

2.8. Dynamic Firmware Selection

More recent SIO4 firmware implementations support both the Zilog functionality and -SYNC functionality within

the same firmware, presuming the Zilog USC chips are installed. When both are supported, software can switch

between the two on a per channel basis by modifying the Firmware Type Register. This feature allows the firmware

type to be changed during channel initialization, or reinitialization. This feature is supported by the GSCAPI, but not

by the monolithic driver.

NOTE: The firmware type should be changed only during initialization and setup.

2.9. Documentation

API documentation is included with each driver. The GSCAPI provides a single PDF document. This manual

describes driver installation and provides detailed information on all API function calls and data structures. It also

includes Linux man pages. The monolithic driver includes several PDF documents. It includes a Linux specific

driver installation manual, an API reference manual plus a reference manual for each of the four Protocol Libraries.

The monolithic driver does not include Linux man pages.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

11

General Standards Corporation, Phone: (256) 880-8787

2.10. Driver Archive

Both drivers are distributed as compressed archives whose file names include the driver release version number.

Each archive includes all of the sources for all build targets as well as the corresponding documentation. The archive

file names are given in the table below. The series of X’s represents the version number of the release.

Driver File Name

GSCAPI gsc_api.linux.x.x.x.tar.gz

Monolithic sio4.linux.x.x.x.x.x.tar.gz

2.11. Installation Procedures

The installation procedures for the drivers are similar. The procedures are relatively simple with the basic steps as

follows; open a terminal window, create a specified directory then extract the archive content. Consult the

corresponding documentation for clarification.

2.12. Installation Directory

The target installation directory for each driver is as noted in the table below. In both cases the default locations are

according to convention, though not necessarily conventions that applied at the same point in time. The drivers can

however, be installed in locations of the developer’s choosing.

Driver Default Installation Directory Root Directory

GSCAPI /usr/local/ …/gsc_api/

Monolithic /usr/src/linux/driver/ …/sio4/

2.13. Directory Structure

The organization of each driver’s installed files varies greatly. The GSCAPI file organization is built off the driver’s

origin, which is PLX Technology. The monolithic driver sources are organized at the highest level according to the

function of the sources. The files are generally segregated as driver sources, library sources, include sources, sample

sources and protocol sources. Consult the corresponding documentation for clarification.

2.14. Environment Variables

Each driver includes its own set of environment variables, as described in the table below.

Driver Environment Variable Description

GSCAPI

PLX_SDK_DIR This defines the root directory for the PLX provided sources.

PLX_DEBUG
If non-zero, the sample application build procedures will produce debug

versions of the executables.

Monolithic

GSC_API_COMP_FLAGS
This is used to add environment specific flags when compiling the API

Library.

GSC_API_LINK_FLAGS
This is used to add environment specific flags when linking the API

Library.

GSC_LIB_COMP_FLAGS
This is used to add environment specific flags when compiling the utility

libraries, including the Protocol Libraries.

GSC_LIB_LINK_FLAGS
This is used to add environment specific flags when linking the utility

libraries, including the Protocol Libraries.

GSC_APP_COMP_FLAGS
This is used to add environment specific flags when compiling the

sample applications.

GSC_APP_LINK_FLAGS
This is used to add environment specific flags when linking the sample

applications.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

12

General Standards Corporation, Phone: (256) 880-8787

2.15. Build Procedures

The two drivers have very different build procedures. The monolithic driver has a single shell script that builds and

loads the driver, builds and installs the API Library (a .so file), builds the Protocol Libraries then builds all utility

libraries and all sample applications. All targets can be built separately, but the script builds everything with just a

single command line. The GSCAPI does not have a corresponding means of building everything. Instead, all targets

are built separately. This includes building and loading two versions of the driver, based on which SIO4 models are

present, building and installing the interface libraries (.so files) along with a sample application. The other sample

applications are built in a similar manner.

2.16. Build Targets: Release vs Debug

Both drivers provide support for generating release and debug versions of build targets. Also, both produce release,

non-debug, versions by default. For debug builds the GSCAPI uses the PLX_DEBUG environment variable given

above (section 2.14, page 11). This pertains to the sample applications, which generates separate executables. It is

not clear if this flag is also used by the shared libraries. For the monolithic driver one must perform a clean

operation, then request debug builds. The clean operation is requested by adding the argument clean to the make

command line (or the overall make script). The debug build is requested by adding the argument debug. This

pertains to all build targets except the device driver. This refers to the API Library shared object file, the Protocol

Libraries, the utility libraries and the sample applications. The debug builds produce files with the same name as the

release builds. To generate release builds, perform a clean operation followed by a build with either no added

argument or with the term release added.

2.17. Primary Header Files

Each driver provides a single header file to be included by applications using the respective interface. Via that

header file each driver includes one or more other interface specific headers put in place during installation. The

files to be included are given in the table below.

Driver Header File Default Location

GSCAPI GscApi.h /usr/local/include/GscApi/

Monolithic sio4_main.h /usr/src/linux/drivers/sio4/include/

2.18. Primary Library Files

The drivers implement their primary interfaces as shared object files (.so files). The GSCAPI functionality is split

between two different libraries. One is for the GSCAPI published interface and the other is for the PLX API, which

is the interface used by the GSCAPI to access the low-level device driver. These libraries are given in the table

below. The monolithic driver’s library is a thin layer implemented to facilitate porting the driver and applications to

other operating systems, which has been done.

Driver Shard Object File Default Location

GSCAPI
libGscApi.so

libPlxApi.so
/usr/local/lib/

Monolithic libsio4_api.so /usr/lib/

The monolithic driver includes additional utility libraries, including four Protocol Libraries. These are provided via

statically linked libraries as given in the table below. The libraries are provided in two flavors. One is for

applications using the SIO4 and no other GSC products. The other is for applications which use the SIO4 and one or

more other GSC products. This is done because all of the current GSC product Linux drivers’ static libraries share

common code, which presents a linking error when duplicate symbols are found.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

13

General Standards Corporation, Phone: (256) 880-8787

Location Libraries Description

…/lib/

sio4_main.a Applications link this if they use the SIO4 and no other GSC products.
sio4_multi.a Applications link this if they use the SIO4 and one or more other GSC products. *
gsc_utils.a

plx_utils.a

os_utils.a
Applications link these if they use the SIO4 and one or more other GSC products. *

* Refer to the driver user manual for clarification.

2.19. Device Access

Gaining access to SIO4 hardware is somewhat different for each driver. The GSCAPI grants access at the board

level. In this interface applications take control of the entire board with all four channels. In making calls, the

application specifies the board index to access and, where necessary, the channel index to access. The monolithic

driver provides device access at the channel level. In this interface the application takes ownership of one channel at

a time without affecting operation of any other channel on the board or any other board. Applications can access any

number of channels, but it is done one channel at a time. Exclusivity is another access issue. The GSCAPI does not

allow an application to gain exclusive access to an SIO4 board or channel. This driver does not provide a

mechanism for gaining exclusive access. The monolithic driver interface allows an application to gain exclusive

device access or to grant shared access. Gaining exclusive access or granting shared access is done by way of an

argument passed to the open service.

2.20. Device Indexing

The GSCAPI uses one-based indexing while the monolithic driver uses zero-based indexing. The GSCAPI refers to

the first board as index one, followed by two, three and so on. Channel indexes for every board are always one, two,

three and four. The monolithic driver uses only device indexing, which is equivalent to channel indexing. For the

first SIO4 the device index numbers are zero, one, two and three. For the second board device indexes are four, five,

six and seven. Indexing continues sequentially thereafter in the same manner.

2.21. Versioning

Both drivers maintain version numbers for their content. The GSCAPI maintains a version number for the API and

the low-level device driver. The low-level driver version number is the PLX SDK version number from which the

low-level driver is taken. The monolithic driver maintains a single version number based on the device driver

content (X.X.X.X.X). The first two numbers are the major and minor revision numbers for the driver’s device

dependent sources. The third number is the revision level of the device and OS independent driver sources. The

fourth number is the revision level of the OS specific driver sources. The last number is the ancillary release number

reflecting non-driver source changes to the release.

2.22. Shared Source Code

Each of the two driver releases includes a low-level driver whose source code is used to interface with devices other

than the SIO4. This has contributed to making both low level drivers mature and reliable software. The GSCAPI’s

low level driver is produced by PLX Technology and is made available to all those using PLX produced PCI bridge

chips. As a result, this driver, the PLX driver, is used widely by many companies. In addition, it is used by General

Standards for virtually all of our Windows drivers. While PLX has been purchased and now goes by a different

name, the Linux driver version, which has been around for over 15 years, continues to be maintained and made

freely available for use by their customers. The monolithic driver also contains source code used for other than the

SIO4. Some of the device driver sources contain functionality that is OS specific and/or device independent. This

common code was first released in 2014, was put to wider use in 2015, which is when it was first used by the SIO4

device driver. These sources are now used across virtually all of General Standards’ nearly 45 different, currently

maintained Linux drivers.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

14

General Standards Corporation, Phone: (256) 880-8787

2.23. OS Support

Support for other than Linux is a common aspect of each of these drivers. The GSCAPI was originally developed for

Windows and was later migrated to PLX’s Linux driver implementation. The Windows version currently supports

Windows Server 2019, Windows Server 2016, Windows 10, Windows 8, Windows 7 and even Windows XP. For

the GSCAPI, the basic architecture, that is, the set of libraries and the division of the functionality, is the same for

both the Linux and the Windows driver releases. The monolithic driver was originally developed under Linux. Its

design was intended to aid driver porting to other operating systems, which has occurred. The SIO4 Linux driver has

been ported to RTX and to Intime, both of which are real time extensions for Windows. In these cases, the low-level

drivers, which contain the exact same functionality as in the SIO4’s low level Linux driver, are implemented as real

time applications specific to each extension. While the SIO4 Linux driver hasn’t been ported to Windows, the

common code referenced above has been a part of porting other GSC Linux drivers to the Windows environment. In

these cases, the drivers were ported to Windows 10 and used the latest low level PLX Windows driver. Also, the

low-level Linux drivers were implemented as Windows DLLs. Should the SIO4 Linux driver be ported to Windows,

it too would appear as a Windows DLL.

2.24. Error Reporting

Errors may be encountered by most any software, including these two drivers. In general, each returns zero when

calls are successful and an error code when problems are encountered. The error codes reported are different for

each interface. The GSCAPI error codes are provided by the low-level driver and are defined in PlxStat.h. It is

possible the GSCAPI might also return error codes from the system header file errno.h, but this may be unlikely.

The monolithic driver returned error values are the negative of codes listed in errno.h. Positive return values are

reported only by I/O services to reflect the number of bytes transferred.

2.25. Data Types

The interface to each driver defines its own set of data types. This includes both intrinsic, basic data types,

enumerations, unions and structures. The interfaces do not share any common data type definitions, except by pure

coincidence. However, the interfaces do share a number of similar data types, with easily recognized names. The

table below lists some shared data types.

GSCAPI Monolithic Description

S8 s8 signed 8-bit integer

U8 u8 unsigned 8-bit integer

S16 s16 signed 16-bit integer

U16 u16 unsigned 16-bit integer

S32 s32 signed 32-bit integer

U32 u32 unsigned 32-bit integer

S64 s64 signed 64-bit integer

U64 u64 unsigned 64-bit integer

2.26. Interface Initialization

The GSCAPI does not include a function which must be called to initialize the interface. The monolithic driver does

have such a call, which is sio4_init(). All other interface functions will return an error status until the API is

initialized via this call. Refer to the API reference manual for clarification.

2.27. Service Interface

The methodologies used by the interfaces to access driver functionality are quite different. The GSCAPI mostly

provides function calls, each dedicated to a particular functionality. This includes a wide range of functions for tasks

large and small, including calls designed for configuring the various supported serial protocols. In contrast, the

monolithic driver interface is primarily IOCTL based, in which IOCTL codes and accompanying arguments are

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

15

General Standards Corporation, Phone: (256) 880-8787

passed to the function sio4_ioctl() (section 3.2.2, page 19). Most of the IOCTL services are relatively limited

in scope. Very few support in-depth capability and even fewer are intended for internal use only. This is similar to

the GSCAPI function pair GscSio4SetOption() (section 3.4.9, page 28) and GscSio4GetOption() (section 3.4.10,

page 41).

2.28. Serial Protocols

Both drivers provide means of using the full capability of the SIO4 hardware, including its entire complement of

serial protocols. However, the level of explicit support for any given protocol varies. The GSCAPI has function calls

and data structures intended to offer detailed configuration and use of the Asynchronous protocol, the BiSync and

BiSync16 protocols and the HDLC protocol. Each protocol is supported by a set of dedicated function calls with

associated data structures. The monolithic driver implements similar support by way of dedicated libraries. These

libraries include the Asynchronous Protocol Library, the HDLC Protocol Library, the Isochronous Protocol Library

and the SYNC Protocol Library for use with -SYNC boards. Each library includes a protocol specific interface along

with dedicated data structures as well as detailed documentation. While both drivers support the Asynchronous and

HDLC protocols, their implementations are very different. Refer to each driver’s documentation for clarification.

NOTE: The GSCAPI supports a custom firmware version implementing a customer specific

protocol called CTC. The monolithic driver does not contain any corresponding content.

2.29. I/O Operations

The two drivers have entirely different approaches to implementing I/O. The monolithic driver supports read and

write calls in which the data transfer mechanism (I/O mode) is a configurable parameter. This driver’s I/O mode

options include Programmed I/O (PIO, which is repetitive register accesses), Block Mode DMA (move data after it

is known that it can be completed safely) and Demand Mode DMA (start the transfer immediately, but move the

data as either Rx FIFO data or Tx FIFO space becomes available). No matter which option is selected all of the

footwork is handled by the driver, along with various other configurable parameters. Also, while the DMA engines

support Scatter-Gather DMA, the monolithic driver does not. Instead, this driver uses Double Buffering, in which

DMA is performed using internal, DMA safe data buffers.

The GSCAPI, on the other hand, has no similar, high level read or write services and no corresponding set of

configurable I/O parameters. This interface does not include PIO functionality. Instead, if utilized at all, it is up to

the application to perform the repetitive register reads or writes. This driver provides DMA support, but it all has to

be managed by the application by choosing the appropriate DMA function.

The footwork mentioned above entails mostly monitoring the FIFO fill levels then performing the data transfer as

conditions permit. With the GSCAPI it is up to the application to define and implement these activities. On the other

hand, the monolithic driver does all this for the application. This includes checking for overruns and underruns,

checking the FIFO fill level, whose methods vary among SIO4 models, examining configured threshold levels,

gaining access to a DMA engine, when called for, and, when conditions permit, initiating data transfers using the

configured I/O mode. Refer to the API reference manual for clarification.

2.30. DMA Engine Access Policy

Each SIO4 has only two DMA engines that must be shared among a potential of eight I/O threads. Both drivers

prudently control access to the DMA engines to help maintain system stability. The GSCAPI policy is to return an

error status if a DMA engine is in use when another thread seeks access. As it is the application that specifies which

DMA engine to access, it is up to the application to decide how to proceed. Plus, if the application has more than

two simultaneous threads that may need DMA engine access, then the application is responsible for implementing a

sharing mechanism. The monolithic driver’s policy is to poll for DMA engine availability if both are in use. When

this occurs, the driver waits one system timer tick before checking again. The driver will repeat this process until

either a DMA engine becomes available or until the configured I/O timeout interval lapses. In this case, the I/O

request returns the number of bytes that have transferred, which might be zero. This driver does not treat this

situation as an error condition.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

16

General Standards Corporation, Phone: (256) 880-8787

2.31. I/O Memory Access

The drivers have different approaches for how I/O memory is accessed and used. The monolithic driver uses double

buffering. With this approach the driver allocates a pair of internal, DMA save memory buffers for each channel at

the time the driver is loaded. When write requests are made the data is copied from the application buffer to the

internal transmit buffer then transferred to the SIO4 transmit FIFO by the preselected method. When read requests

are made the data is transferred from the SIO4 receive FIFO to the internal receive buffer by the preselected method,

then copied to the application buffer. With this implementation applications do not have direct access to the driver’s

internal transfer buffers. With the GSCAPI the application is responsible for managing I/O transfer buffers and has

direct access to all buffers that are used. The first option is for the application to use its own buffers. This refers to

buffers defined as local storage or allocated on the stack. When these buffers are used, the interface initiates Scatter-

Gather type DMA to transfer data directly between the SIO4 and these application buffers. No other buffering is

performed. However, this method has definite overhead as the memory must be page-locked and uncached (made

DMA safe) before the DMA can be performed. Then, afterwards, the memory must be unlocked. The second obtain

entails the application going through the driver interface to obtain contiguous, page-locked memory from the low-

level driver. While this method requires more work on the part of the application before it can perform I/O, and after

it is all done, it avoids the above mentioned overhead associated with every I/O request.

2.32. Oscillator Programming

Oscillator programming is supported under both drivers. With the GSCAPI oscillator programming is performed by

the application. With the monolithic driver programming is performed by the device driver. Here, applications use

the SIO4_IOCTL_OSC_PROGRAM IOCTL service. The service’s argument is an s32* pointing to the desired

frequency.

2.33. Working in the Background

The GSCAPI was created under Windows, whose driver model is notably different from that of Linux. One aspect

of this difference is that a lot of Windows driver functionality occurs in the background while the application is free

to continue working. A large portion of the GSCAPI interface negates this characteristic by waiting for quick and

timely operations to complete before returning control to the application. This does not apply to all DMA operations.

The DMA calls initiate the DMA then either wait for completion or return immediately so the application can

continue working. The application can wait for completion or it can periodically query for completion status. With

the monolithic driver all operations are blocking calls. Most service requests are carried out very quickly and return.

Some requests block the caller for a brief period and then return. Still others block the caller, but limit their duration

with a configurable timeout period. However, all calls are blocking with no work being carried out in the

background.

2.34. Event Notification

The two drivers provide entirely different mechanisms for notifying applications of device and/or driver events. The

GSCAPI uses a callback mechanism in which a function is registered to be called when a specified SIO4 firmware

interrupt occurs. Each interrupt source is independently configurable, though each interrupt source accommodates

only a single callback. The interface doesn’t support callback configuration for individual USC interrupts. The

monolithic driver uses a Wait Event mechanism in which a thread is blocked until the first of any arbitrary set of

events occurs. The implementation accommodates any number of threads waiting on any combinations of events.

With this interface, events include all interrupt sources pertaining to the channel as well as I/O call completions.

This includes firmware interrupts, USC interrupts and PLX interrupts (i.e., DMA Done interrupts). Refer to the API

Library reference manual for clarification.

In addition, the monolithic driver provides event notification for all other interrupts attributable to the board or for

which the driver’s ISR is called. The most common of these other are for other devices sharing the same interrupt.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

17

General Standards Corporation, Phone: (256) 880-8787

2.35. Interrupt Support

Interrupt support is included by each interface, though not in identical manners. To begin with, neither driver uses

any firmware or USC interrupts for its own purposes. The only exception to this is in the monolithic driver’s support

for the HDLC serial protocol. When the HDLC Protocol Library is used, various USC interrupts are used to ensure

reliable frame transmission and reception. Otherwise, all SIO4 interrupts are available for application use. The

GSCAPI provides explicit support only for firmware interrupts, though it does distinguish between those generated

by each channel. The monolithic driver provides explicit support for all firmware and all USC interrupts, and it does

so separately for each channel.

2.36. Multithreaded Access

Both drivers support multithreaded access to their interfaces. With the GSCAPI, simultaneous access is essentially

unrestricted. Any number of threads can gain simultaneous access to any board resource, except for access to the

DMA engines. The driver prevents simultaneous access to the DMA engines. With the monolithic driver access is

serialized by category, though all channels are serialized separately. With this mechanism each request gets

exclusive device access until the service returns. If a subsequent, simultaneous call is made then it is blocked until

the first call exits. Read calls are collectively serialized. Write calls are collectively serialized. IOCTL calls are

collectively serialized with the exception of Wait Event requests. There is no restriction on the number of

simultaneously active Wait Event requests. Wait Event requests are collectively serialized with the IOCTL calls, but

only while each request is being queued or dequeued.

2.37. Register Access

Access to device registers differs between the drivers. The GSCAPI provides read and write access to both the

firmware registers and to the USC registers. There’s one function for reading firmware registers and another for

reading USC registers, plus a function for writing to firmware registers and yet another for writing to USC registers.

Macros are provided for the firmware registers, but applications are responsible for performing the arithmetic

needed to access the register for the desired channel. Macros are provided for the USC registers, but no calculations

are required as the functions include an argument which identifies the channel to be accessed. The register access

functions are documented as being for diagnostic purposes only. This interface does not provide support for

accessing PCI or PLX registers. The monolithic driver provides a more streamlined interface. First, macros are

provided for all registers. This includes all firmware registers, all USC registers, all PCI registers and all PLX

registers. The interface contains one IOCTL service for reading registers, one for writing to registers and one for

performing read-modify-write operations. (At the application level all PCI and PLX registers are read-only.) No

arithmetic is needed to access registers for the channel being accessed as the register macro encodings include all

information needed by the driver to access the correct channel. In addition, firmware registers which contain content

for multiple channels are processed such that the application sees its channel data right justified to the lowest

significant bits. There is also a raw-register read service for reading firmware register locations by specifying only

the location offset.

2.38. Sample Applications

Sample applications are included with each driver release. There is little if any similarity between the sample sets.

All sample applications are designed for text-based output. The GSCAPI samples tend to make direct calls to the

API. The monolithic driver samples tend to call intermediate utility services designed for generation of structured

screen output. All such services are named so as to indicate the interface feature being accessed.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

18

General Standards Corporation, Phone: (256) 880-8787

3. Source Code Porting

For all references to monolithic driver services refer to the driver reference manual for clarification.

3.1. Macros

3.1.1. Firmware Register Definitions

The following presents porting information for the firmware register macro definitions.

NOTE: The GSCAPI defines register macros for the CTC custom firmware protocol registers.

These are not supported by the monolithic driver.

GSCAPI Monolithic Register
BOARD_CONTROL_REG SIO4_GSC_BCR Board Control Register
BOARD_STATUS_REG SIO4_GSC_BSR Board Status Register
CLOCK_CONTROL_REG SIO4_GSC_CCR Clock Control Register
CONTROL_STATUS_BASE_REG SIO4_GSC_CSR Control/Status Register
DATA_FIFO_BASE_REG SIO4_GSC_FDR FIFO Data Register
FEATURES_REG SIO4_GSC_FR Features Register
FIFO_COUNT_BASE_REG SIO4_GSC_FCR FIFO Count Register
FIFO_SIZE_BASE_REG SIO4_GSC_FSR FIFO Size Register
FW_REVISION_REG SIO4_GSC_FRR Firmware Revision Register
FW_TYPE_REG SIO4_GSC_FTR Firmware Type Register
INTERRUPT_CONTROL_REG SIO4_GSC_ICR Interrupt Control Register
INTERRUPT_EDGE_LEVEL_REG SIO4_GSC_IELR Interrupt Edge/Level Register
INTERRUPT_HI_LO_REG SIO4_GSC_IHLR Interrupt High/Low Register
INTERRUPT_STATUS_REG SIO4_GSC_ISR Interrupt Status Register
MAX_RX_COUNT_BASE_REG None Defined Max Rx Count Register (-BiSync16 only)
PIN_SOURCE_BASE_REG SIO4_GSC_PSRCR Pin Source Register
PIN_STATUS_BASE_REG SIO4_GSC_PSTSR Pin Status Register
POSC_CONTROL_STATUS_REG SIO4_GSC_POCSR Programmable Osc Control/Status Register
POSC_RAM_ADDRESS_REG SIO4_GSC_PORAR Programmable Osc RAM Address Register
POSC_RAM_DATA_REG SIO4_GSC_PORDR Programmable Osc RAM Data Register
POSC_RAM2_DATA_REG SIO4_GSC_PORD2R Programmable Osc RAM Data 2 Register
RX_ALMOST_BASE_REG SIO4_GSC_RAR Rx Almost Register
RX_COUNT_BASE_REG SIO4_GSC_RCR Rx Count Register
RX_PACKETINFO_FIFO_BASE_REG None Defined Rx Packet Info FIFO On SIO4BXR
SYNC_CHARACTER_BASE_REG SIO4_GSC_SBR Sync Byte Register
TX_ALMOST_BASE_REG SIO4_GSC_TAR Tx Almost Register
TX_COUNT_BASE_REG SIO4_GSC_TCR Tx Count Register

3.1.2. USC Register Definitions

The following presents porting information for the USC register macro definitions.

GSCAPI Monolithic Register

USC_CCAR SIO4_USC_CCAR Channel Command/Address Register
USC_CCR SIO4_USC_CCR Channel Control Register
USC_CCSR SIO4_USC_CCSR Channel Command/Status Register
USC_CMCR SIO4_USC_CMCR Clock Mode Control Register
USC_CMR SIO4_USC_CMR Channel Mode Register
USC_DCCR SIO4_USC_DCCR Daisy Chain Control Register

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

19

General Standards Corporation, Phone: (256) 880-8787

USC_ICR SIO4_USC_ICR Interrupt Control Register
USC_IOCR SIO4_USC_IOCR I/O Control Register
USC_IVR SIO4_USC_IVR Interrupt Vector Register
USC_HCR SIO4_USC_HCR Hardware Configuration Register
USC_MISR SIO4_USC_MISR Misc Interrupt Status Register
USC_RCCR SIO4_USC_RCCR Receive Character Count Register
USC_RCLR SIO4_USC_RCLR Receive Count Limit Register
USC_RCSR SIO4_USC_RCSR Receive Command Status Register
USC_RDR SIO4_USC_RDR Receive Data Register (RO)

USC_RICR SIO4_USC_RICR Receive Interrupt Control Register
USC_RMR SIO4_USC_RMR Receive Mode Register
USC_RSR SIO4_USC_RSR Receive Sync Register
USC_SICR SIO4_USC_SICR Status Interrupt Control Register
USC_TC0R SIO4_USC_TC0R Time Constant 0 Register
USC_TC1R SIO4_USC_TC1R Time Constant 1 Register
USC_TCCR SIO4_USC_TCCR Transmit Character Count Register
USC_TCLR SIO4_USC_TCLR Transmit Count Limit Register
USC_TCSR SIO4_USC_TCSR Transmit Command Status Register
USC_TDR SIO4_USC_TDR Transmit Data Register (WO)

USC_TICR SIO4_USC_TICR Transmit Interrupt Control Register
USC_TMCR SIO4_USC_TMCR Test Mode Control Register
USC_TMDR SIO4_USC_TMDR Test Mode Data Register
USC_TMR SIO4_USC_TMR Transmit Mode Register
USC_TSR SIO4_USC_TSR Transmit Sync Register

3.2. System Level Routines

3.2.1. API Initialization: sio4_init()

This function is the entry point to initializing the monolithic driver’s API Library and must be the first call into the

Library. This function may be called more than once, but only the first successful call actually initializes the library.

Subsequent calls perform no operation at all. All other monolithic driver interface calls return a failure status when

the API Library is uninitialized. Refer to the API Reference Manual for clarification.

Prototype

int sio4_init(void);

Return Value Description
0 The operation succeeded.

< 0 An error occurred. See error value descriptions above (section 2.24, page 14).

3.2.2. IOCTL Service: sio4_ioctl()

The monolithic driver implements access to most features by way of IOCTL services. These services are exercised

via this function. In some respects this monolithic driver functionality is similar to the GSCAPI function pair

GscSio4SetOption() (section 3.4.9, page 28) and GscSio4GetOption() (section 3.4.10, page 41).

NOTE: Most of the SIO4 IOCTL services update settings via non-negative values. In most of

these cases, passing in a value of -1 can be used to retrieve the current setting.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

20

General Standards Corporation, Phone: (256) 880-8787

Prototype

int sio4_ioctl(int fd, int request, void* arg);

Argument Description
fd This is the file descriptor of the device to access.
request This specifies the desired IOCTL service to exercise.
arg This is argument specific to the requested IOCTL service.

Return Value Description
0 The operation succeeded.

< 0 An error occurred. See error value descriptions above (section 2.24, page 14).

3.2.3. GscFindBoards

GscFindBoards(…) is used to report the number of GSC SIO4 boards in the system as well as some board specific

information. An application may call this function at any time. The monolithic driver provides some of the

corresponding information as outlined below.

Board Count

The monolithic driver provides the count of installed SIO4 boards via the below utility service.

Prototype

int sio4_count_boards(int verbose, int* get);

Argument Description

verbose
If zero, then no console output will be generated. If non-zero, then structure console output

will be generated indicating the number of boards found.
get This function will report the number of boards found if this argument is non-NULL.

Return Value Description

0
The operation succeeded. In this case, the value reported via the qty argument will be

valid.

> 0
The number of errors encountered. In this case, the value reported via the qty argument

is zero.

GSC_DEVICES_STRUCT->busNumber

The monolithic driver does not provide this information. While bus number information can be obtained from

various Linux utilities, the only way to associate the bus number with the device being accessed is by examination

of the BAR registers.

GSC_DEVICES_STRUCT->slotNumber

The monolithic driver does not provide this information. While slot number information can be obtained from

various Linux utilities, the only way to associate the slot number with the device being accessed is by examination

of the BAR registers.

GSC_DEVICES_STRUCT->vendorId

The Vendor Id can be obtained by reading the PCI Vendor Id Register. For the SIO4 this would be either the

GSC_PCI_9080_VIDR or the GSC_PCI_9056_VIDR register, depending on the model SIO4 being accessed.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

21

General Standards Corporation, Phone: (256) 880-8787

These are defined in header files gsc_pci9080.h and gsc_pci9056.h, respectively, and are included

automatically by including the main interface header file. (Both register macros will obtain the correct information

regardless of which model SIO4 is being accessed.)

GSC_DEVICES_STRUCT->deviceId

The Device Id can be obtained by reading the PCI Device Id Register. For the SIO4 this would be either the

GSC_PCI_9080_DIDR or the GSC_PCI_9056_DIDR register, depending on the model SIO4 being accessed.

These are defined in header files gsc_pci9080.h and gsc_pci9056.h, respectively, and are included

automatically by including the main interface header file. (Both register macros will obtain the correct information

regardless of which model SIO4 is being accessed.)

3.2.4. GscGetErrorString

GscGetErrorString(…) is used to translate the error codes that are returned by the various API functions into

meaningful null-terminated strings. The monolithic driver does not have a corresponding API service. However,

there is a system utility that performs a corresponding functionality. This system utility is defined in the system

header string.h.

NOTE: The monolithic driver’s API Library services returns negative errno.h values. The

utility services instead return the number of errors encountered.

Prototype

char* strerror(int errnum);

Argument Description
errnum This is the error whose string description is being requested.

Return Value Description
!NULL A pointer to a string briefly describing the error.

3.3. Board Level Routines

3.3.1. GscOpen

GscOpen(…) is used to “open” the SIO4 board for operation. It should be called before any other Board or Channel

Level routines and should only be called once. In the process of opening a board, all four channels are reset and the

clock outputs are disabled. The corresponding monolithic driver services gains access to only a single channel at a

time. This service initializes all aspects of the channel except for programming the oscillator to its default frequency.

Refer to the API Library reference manual for clarification.

Prototype

int sio4_open(int device, int share, int* fd);

Argument Description
device This is the index number of the SIO4 serial channel to access. *

share
Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

Mode. If zero the device is opened in Exclusive Access Mode.

fd

The device handle is returned here. The pointer cannot be NULL. Values returned are as

follows.

Value Description

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

22

General Standards Corporation, Phone: (256) 880-8787

>= 0 This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

* Each SIO4 board contains four independent serial channels. Each board is thus accessed by four

sequential channel index numbers. That is, 0 to 3 for the first board, 4 to 7 for the second, and so on.

Return Value Description
0 The operation succeeded.

< 0 An error occurred. See error value descriptions above (section 2.24, page 14).

3.3.2. GscClose

GscClose(…) is used to “close” the SIO4 board. It should be the last API function called before the application

terminates. This function releases the resources that are used by the API and driver. The corresponding monolithic

driver services releases access to only a single channel at a time. This service initializes all aspects of the channel

except for programming the oscillator to its default frequency. Refer to the API Library reference manual for

clarification.

Prototype

int sio4_close(int fd);

Argument Description
fd This is the file descriptor of the device to be closed.

Return Value Description
0 The operation succeeded.

< 0 An error occurred. See error value descriptions above (section 2.24, page 14).

3.3.3. GscGetInfo

GscGetInfo(…) returns general information about an SIO4 board. The information is returned in a board info

structure. The monolithic driver does not have a corresponding interface function. The same information is

available, but by other means. The information from the BOARD_INFO structure can be obtained as follows.

Field Description
apiVersion The monolithic driver does not maintain a version number for the interface.

driverVersion
The driver version number can be read from the text file /proc/sio4. Refer to the

monolithic driver user manual for clarification.
fpgaVersion This version number is available by reading and decoding the Firmware Revision Register.

boardType

The GSCAPI is not precise on what information this field refers to. However, the board’s full

model number can be derived by the monolithic driver’s Query service

(SIO4_IOCTL_QUERY) and several of its options (SIO4_QUERY_XXX).

3.3.4. GscGetVersions

GscGetVersions(…) returns the various version numbers associated with the API, the low-level driver, and the SIO4

board’s FPGA. The monolithic driver does not have a corresponding interface function. The same information is

available, but by other means. The information from the arguments can be obtained as follows.

Field Description
libVersion The monolithic driver does not maintain a version number for the libraries.

driverVersion
The driver version number can be read from the text file /proc/sio4. Refer to the

monolithic driver user man for clarification.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

23

General Standards Corporation, Phone: (256) 880-8787

fpgaVersion This version number is available by reading and decoding the Firmware Revision Register.

3.3.5. GscLocalRegisterRead

GscLocalRegisterRead(…) is used to read the local board registers. These registers reside within the board’s FPGA.

The corresponding monolithic driver functionality is accessed using the IOCTL service described below. This

service reads firmware registers, USC registers, PCI registers and PLX registers.

NOTE: With the monolithic driver, registers which contain information for multiple channels are

processed such that the data for the channel being accessed is right justifies against the lowest

significant register bit.

sio4_ioctl() Usage

Argument Description
request SIO4_IOCTL_REG_READ

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the macro for the register to access.
value This is the value read from the specified register.
mask This is ignored for read request.

3.3.6. GscLocalRegisterWrite

GscLocalRegisterWrite(…) is used to write to the local board registers. These registers reside within the board’s

FPGA. The corresponding monolithic driver functionality is accessed using the IOCTL service described below.

This service writes to firmware and USC registers. The PLX and PCI registers are read-only.

NOTE: With the monolithic driver, registers which contain information for multiple channels are

processed such that the data for the channel being accessed is right justifies against the lowest

significant register bit.

sio4_ioctl() Usage

Argument Description
request SIO4_IOCTL_REG_WRITE

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

24

General Standards Corporation, Phone: (256) 880-8787

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This is the value to write to the specified register.
mask This is ignored for write request.

3.3.7. GscAllocPhysicalMemory

GscAllocPhysicalMemory(…) is used to attempt to allocate a physically contiguous, page-locked buffer which is

safe for use with DMA operations. The monolithic driver does not have any corresponding functionality. I/O is

performed via internal driver buffers. Refer to section 2.31, page 16.

3.3.8. GscMapPhysicalMemory

GscMapPhysicalMemory(…) is used to map into user virtual space a buffer previously allocated with

GscAllocPhysicalMemory. The monolithic driver does not have any corresponding functionality. I/O is performed

via internal driver buffers. Refer to section 2.31, page 16.

3.3.9. GscUnmapPhysicalMemory

GscUnmapPhysicalMemory(…) is used to unmap a buffer previously mapped into user virtual space with

GscMapPhysicalMemory. The monolithic driver does not have any corresponding functionality. I/O is performed

via internal driver buffers. Refer to section 2.31, page 16.

3.4. Channel Level Routines

3.4.1. GscSio4ChannelReset

GscSio4ChannelReset(…) resets a single channel on the SIO4 board. In addition to disabling the

serial channel, this function sets the “Almost Empty” and “Almost Full” FIFO flags to 16. The

corresponding monolithic driver functionality is accessed using the IOCTL service described

below. This service resets all hardware and software settings to their defaults. The Almost Full

and Almost Empty levels are set to their hardware defaults. The service does not adjust the

programmable oscillator.

sio4_ioctl() Usage

Argument Description
request SIO4_IOCTL_INITIALIZE

arg s32*

The table below lists the options used with this service.

Values Passed to Driver Returned by Driver
-1 Requests support status. The service is unsupported.
1 Perform initialization. The service is supported or initialization was performed.

3.4.2. GscSio4ChannelResetRxFifo

GscSio4ChannelResetRxFifo(…) resets the Rx FIFO for a single channel. After the reset, the

FIFO will contain no data. The corresponding monolithic driver functionality is accessed using

the IOCTL service described below.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

25

General Standards Corporation, Phone: (256) 880-8787

sio4_ioctl() Usage

Argument Description
request SIO4_IOCTL_RX_FIFO_RESET

arg s32*

The table below lists the options used with this service.

Values Passed to Driver Returned by Driver
-1 Requests support status. The service is unsupported.
1 Reset the FIFO. The service is supported or the FIFO was reset.

3.4.3. GscSio4ChannelResetTxFifo

GscSio4ChannelResetTxFifo(…) resets the Tx FIFO for a single channel. After the reset, the

FIFO will contain no data. The corresponding monolithic driver functionality is accessed using

the IOCTL service described below.

sio4_ioctl() Usage

Argument Description
request SIO4_IOCTL_TX_FIFO_RESET

arg s32*

The table below lists the options used with this service.

Values Passed to Driver Returned by Driver
-1 Requests support status. The service is unsupported.
1 Reset the FIFO. The service is supported or the FIFO was reset.

3.4.4. GscSio4ChannelRegisterRead

GscSio4ChannelRegisterRead(…) is used to read the registers in the Universal Serial Chip that controls the

specified channel. It is not recommended that a user application directly access these registers. This function is

included for diagnostic purposes only. The corresponding monolithic driver functionality is accessed using the

IOCTL service described below. This service reads firmware registers, USC registers, PCI registers and PLX

registers.

NOTE: With the monolithic driver, registers which contain information for multiple channels are

processed such that the data for the channel being accessed is right justifies against the lowest

significant register bit.

sio4_ioctl() Usage

Argument Description
request SIO4_IOCTL_REG_READ

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

26

General Standards Corporation, Phone: (256) 880-8787

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the macro for the register to access.
value This is the value read from the specified register.
mask This is ignored for read request.

3.4.5. GscSio4ChannelRegisterWrite

GscSio4ChannelRegisterWrite(…) is used to write to the registers in the Universal Serial Chip that controls the

specified channel. The corresponding monolithic driver functionality is accessed using the IOCTL service described

below. This service writes to firmware and USC registers. The PLX and PCI registers are read-only.

NOTE: With the monolithic driver, registers which contain information for multiple channels are

processed such that the data for the channel being accessed is right justifies against the lowest

significant register bit.

sio4_ioctl() Usage

Argument Description
request SIO4_IOCTL_REG_WRITE

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This is the value to write to the specified register.
mask This is ignored for write request.

3.4.6. GscSio4GetLastError

GscSio4GetLastError(…) is used to retrieve the error description text of the last channel-level API call made for the

specified channel. The monolithic driver does not have a corresponding API service. However, there is a system

utility that performs a corresponding functionality. This system utility is defined in the system header string.h.

NOTE: The monolithic driver’s API Library services returns negative errno.h values. The

utility services instead return the number of errors encountered.

Prototype

char* strerror(int errnum);

Argument Description
errnum This is the error whose string description is being requested.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

27

General Standards Corporation, Phone: (256) 880-8787

Return Value Description
!NULL A pointer to a string briefly describing the error.

3.4.7. GscSio4ChannelSetMode

GscSio4ChannelSetMode(…) sets a single channel of the SIO4 board to the desired serial format and bitrate. See

below for the corresponding functionality.

mode

On SIO4s whose firmware support it, the GSCAPI will select between the Zilog and -SYNC firmware as needed to

implement the caller’s request. This functionality is not supported by the monolithic driver. The corresponding

monolithic driver functionality that is supported is accessed using the IOCTL services described below

independently for the receiver and transmitter, respectively. This is limited to selecting between the serial protocols

supported by the Zilog USC.

sio4_ioctl() Usage

Argument Option Description

request
SIO4_IOCTL_USC_RX_MODE Selects the receive mode.

SIO4_IOCTL_USC_TX_MODE Selects the transmit mode.

arg s32*

Value Options

The GSCAPI supports the options given in the below table. The monolithic driver supports the below options

independently for both the transmitter and receiver configuration.

GSCAPI Monolithic Description
 -1 Requests current setting.
GSC_MODE_802_3 SIO4_USC_MODE_8023 The 802.3 protocol.
GSC_MODE_ASYNC SIO4_USC_MODE_ASYNC The Asynchronous protocol.

GSC_MODE_ASYNC_CV SIO4_USC_MODE_ASY_CV
The Asynchronous protocol

with Code Violations.
GSC_MODE_BISYNC SIO4_USC_MODE_BSC The Bisync protocol.
GSC_MODE_HDLC SIO4_USC_MODE_HDLC The HDLC protocol.
GSC_MODE_ISO SIO4_USC_MODE_ISOC The Isochronous protocol.
GSC_MODE_MONOSYNC SIO4_USC_MODE_MONO The Monosync protocol.

GSC_MODE_NBIF SIO4_USC_MODE_NBIP
The Nine-Bit Interprocessor

Protocol.

GSC_MODE_SYNC SIO4_USC_MODE_E_SYNC
The External Synchronous

protocol.

GSC_MODE_SYNC_ENV
Not selectable. The default mode when

using a -SYNC model board.
The -SYNC model protocol.

GSC_MODE_TRANS_BISYNC SIO4_USC_MODE_TBSC
The Transparent Bisync

protocol.

bitRate

The configuration necessary for any given bitrate depends on the serial protocol, the desired bitrate and the cable

signals in use. The current protocol also dictates the upper and lower bitrate limits that the SIO4 can generate. The

functionality required to derive the configuration needed for a given setup is not available via a single service and is

protocol dependent.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

28

General Standards Corporation, Phone: (256) 880-8787

Asynchronous Protocol

The configuration and bitrate limits for the Asynchronous protocol are embedded inside the Asynchronous Protocol

Library. Refer to the Asynchronous Protocol Library Reference Manual for clarification.

HDLC Protocol

The configuration and bitrate limits for the HDLC protocol are embedded inside the HDLC Protocol Library. Refer

to the HDLC Protocol Library Reference Manual for clarification.

Isochronous Protocol

The configuration and bitrate limits for the Isochronous protocol are embedded inside the Isochronous Protocol

Library. Refer to the Isochronous Protocol Library Reference Manual for clarification.

SYNC Protocol

The configuration and bitrate limits for the SYNC protocol are embedded inside the SYNC Protocol Library. Refer

to the SYNC Protocol Library Reference Manual for clarification.

Other Protocols

For information on the limits and means of configuring the SIO4 for other protocols, please refer to the SIO4 board

user manual and the Zilog User Manual.

3.4.8. GscSio4ChannelGetMode

GscSio4ChannelGetMode(…) requests the current serial channel protocol selection and bitrate. The corresponding

monolithic driver functionality is not available via a single service. First, the mode can be set differently for the Tx

and Rx streams. Second, computing the configuration necessary for the desired bitrate can involve floating point

operations, which are not permitted inside Linux drivers.

mode

Refer to the Channel Mode portion of the GscSio4ChannelSetMode section above (section 3.4.7, page 27). Passing

in an argument value of -1 will retrieve the current setting.

bitRate

The monolithic driver neither records the bitrate nor computes the rate from a channel’s current configuration.

Protocol specific services are provided that compute the necessary configuration for a desired bitrate, but not the

reverse.

3.4.9. GscSio4SetOption

GscSio4SetOption(…) sets the value of a protocol configuration option for a channel. The available options are

defined by the GSC_OPTION_NAME enumerated type. The corresponding monolithic driver functionality is

accessed using the sio4_ioctl() service (section 3.2.2, page 19). The set of GSC_OPTION_NAME options from

the GSCAPI are represented by corresponding IOCTL services from the monolithic driver. Also, each driver has a

corresponding set of option values. The options and their values are presented in the tables below.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

29

General Standards Corporation, Phone: (256) 880-8787

3.4.9.1. GSC_SIO_DATASIZE

This service configures the word size. The GSCAPI has one value range for Zilog devices and another for SYNC

boards. The monolithic driver uses IOCTL services for the same purpose. Also, the GSCAPI encodes the Tx and Rx

options differently for the set and get services, while the monolithic driver uses the s32* type for all options.

 GSCAPI Monolithic Description

Option GSC_SIO_DATASIZE
SIO4_IOCTL_USC_RX_CHAR_LEN

SIO4_IOCTL_USC_TX_CHAR_LEN
For Zilog firmware models.

Values

 -1 Retrieve the current setting.

1 – 8

SIO4_USC_CHAR_LEN_1

…

SIO4_USC_CHAR_LEN_8

Option to apply.

 GSCAPI Monolithic Description

Option GSC_SIO_DATASIZE SIO4_IOCTL_SYNC_TX_WORD_SIZE For -SYNC firmware models.

Values
 -1 Retrieve the current setting.

0 – 65,535 0 – 65,535 Option to apply.

3.4.9.2. GSC_SIO_GAPSIZE

The size of the gap between transmitted data words for a single channel of the SIO4 board. The monolithic driver

uses an IOCTL service for the same purpose.

 GSCAPI Monolithic Description

Option GSC_SIO_GAPSIZE SIO4_IOCTL_SYNC_TX_GAP_SIZE For -SYNC firmware models.

Values
 -1 Retrieve the current setting.

0 – 65,535 0 – 65,535 Option to apply.

3.4.9.3. GSC_SIO_MSBLSBORDER

The byte ordering of both transmitted and received data words for a single channel of the SIO4 board. The

monolithic driver uses IOCTL services for the same purpose. Also, the GSCAPI encodes the Tx and Rx options

differently for the set and get services, while the monolithic driver uses the s32* type for all options.

 GSCAPI Monolithic Description

Option GSC_SIO_MSBLSBORDER SIO4_IOCTL_USC_SEND_COMMAND
For Zilog firmware

models.

Values

 -1
Retrieve the current

setting.
GSC_MSB_FIRST SIO4_USC_SEND_CMD_SEL_MSB_FIRST Option to apply.
GSC_LSB_FIRST SIO4_USC_SEND_CMD_SEL_LSB_FIRST Option to apply.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

30

General Standards Corporation, Phone: (256) 880-8787

 GSCAPI Monolithic Description

Option GSC_SIO_MSBLSBORDER
SIO4_IOCTL_SYNC_RX_BIT_ORDER

SIO4_IOCTL_SYNC_TX_BIT_ORDER

For -SYNC firmware

models.

Values

 -1
Retrieve the current

setting.
GSC_MSB_FIRST SIO4_SYNC_BIT_ORDER_MSB Option to apply.
GSC_LSB_FIRST SIO4_SYNC_BIT_ORDER_LSB Option to apply.

3.4.9.4. GSC_SIO_PARITY

The type of parity that will be used on a single channel of the SIO4 board. The monolithic driver uses IOCTL

services for the same purpose. In addition, the monolithic driver uses one service pair to enable and disable the use

of parity while another service pair is used to select the parity type.

 GSCAPI Monolithic Description

Option GSC_SIO_PARITY
SIO4_IOCTL_USC_RX_PAR_ENABLE

SIO4_IOCTL_USC_TX_PAR_ENABLE
For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_PARITY_NONE SIO4_USC_PAR_ENABLE_NO Option to apply.

 SIO4_USC_PAR_ENABLE_YES Option to apply.

 GSCAPI Monolithic Description

Option GSC_SIO_PARITY
SIO4_IOCTL_USC_RX_PAR_TYPE

SIO4_IOCTL_USC_TX_PAR_TYPE
For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_PARITY_EVEN SIO4_USC_PAR_TYPE_EVEN Option to apply.
GSC_PARITY_ODD SIO4_USC_PAR_TYPE_ODD Option to apply.
GSC_PARITY_MARK SIO4_USC_PAR_TYPE_ONE Option to apply.
GSC_PARITY_SPACE SIO4_USC_PAR_TYPE_ZERO Option to apply.

3.4.9.5. GSC_SIO_STOPBITS

The number of stop bits to use for a single channel of the SIO4 board. The monolithic driver uses an IOCTL service

for the same purpose. The minimum valid stop bit size is 9/16th of a bit wide. In addition, the Zilog chip support

adjustable stop bit widths from 9/16th of a bit to two-bits wide in 1/6th increments.

 GSCAPI Monolithic Description

Option GSC_SIO_STOPBITS SIO4_IOCTL_USC_ASYNC_TX_STOP_BIT
For Zilog firmware

models.

Values
 -1

Retrieve the current

setting.
GSC_STOP_BITS_0 Not an acceptable option. Option to apply.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

31

General Standards Corporation, Phone: (256) 880-8787

SIO4_USC_ASYNC_TX_STOP_BIT_0__9_16

…

SIO4_USC_ASYNC_TX_STOP_BIT_0_15_16

Option to apply.

GSC_STOP_BITS_1 SIO4_USC_ASYNC_TX_STOP_BIT_1 Option to apply.

SIO4_USC_ASYNC_TX_STOP_BIT_1__1_16

…

SIO4_USC_ASYNC_TX_STOP_BIT_1__7_16

Option to apply.

GSC_STOP_BITS_1_5 SIO4_USC_ASYNC_TX_STOP_BIT_1__8_16 Option to apply.

SIO4_USC_ASYNC_TX_STOP_BIT_1__9_16

…

SIO4_USC_ASYNC_TX_STOP_BIT_1_15_16

Option to apply.

GSC_STOP_BITS_2 SIO4_USC_ASYNC_TX_STOP_BIT_2 Option to apply.

3.4.9.6. GSC_SIO_ENCODING

The encoding type for a single channel of the SIO4 board. The monolithic driver uses IOCTL services for the same

purpose.

 GSCAPI Monolithic Description

Option GSC_SIO_ENCODING
SIO4_IOCTL_USC_RX_DATA_ENCODE

SIO4_IOCTL_USC_TX_DATA_ENCODE

For Zilog

firmware

models.

Values

 -1
Retrieve the

current setting.
GSC_ENCODING_NRZ SIO4_USC_DATA_ENCODE_NRZ Option to apply.
GSC_ENCODING_NRZB SIO4_USC_DATA_ENCODE_NRZB Option to apply.

GSC_ENCODING_NRZI_MARK SIO4_USC_DATA_ENCODE_NRZI_MARK Option to apply.
GSC_ENCODING_NRZI_SPACE SIO4_USC_DATA_ENCODE_NRZI_SPACE Option to apply.

GSC_ENCODING_BIPHASE_MARK SIO4_USC_DATA_ENCODE_BI_MARK Option to apply.
GSC_ENCODING_BIPHASE_SPACE SIO4_USC_DATA_ENCODE_BI_SPACE Option to apply.
GSC_ENCODING_BIPHASE_LEVEL SIO4_USC_DATA_ENCODE_BI_LEVEL Option to apply.

GSC_ENCODING_DIFF_BIPHASE_LEVEL SIO4_USC_DATA_ENCODE_D_BI_LEVEL Option to apply.

3.4.9.7. GSC_SIO_PROTOCOL

The physical interface protocol and termination options. The monolithic driver uses IOCTL services for the same

purpose. Also, the GSCAPI encodes the protocol and termination options differently for the set and get services,

while the monolithic driver uses the s32* type for all options. In addition, the monolithic driver uses one service

pair for the protocol and another pair for the termination. Plus, as the monolithic driver supports more SIO4 models,

there are other options that may be reported by the driver.

 GSCAPI Monolithic Description

Option GSC_SIO_PROTOCOL SIO4_IOCTL_XCVR_PROTOCOL

Values

 -1

Retrieve the

current

setting.

GSC_PROTOCOL_RS422_RS485 SIO4_XCVR_PROTOCOL_RS422_RS485
Option to

apply.

GSC_PROTOCOL_RS423 SIO4_XCVR_PROTOCOL_RS423
Option to

apply.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

32

General Standards Corporation, Phone: (256) 880-8787

GSC_PROTOCOL_RS232 SIO4_XCVR_PROTOCOL_RS232
Option to

apply.

GSC_PROTOCOL_RS530_1 SIO4_XCVR_PROTOCOL_RS530
Option to

apply.

GSC_PROTOCOL_RS530_2 SIO4_XCVR_PROTOCOL_RS530A
Option to

apply.

GSC_PROTOCOL_V35_1 SIO4_XCVR_PROTOCOL_V35
Option to

apply.

GSC_PROTOCOL_V35_2 SIO4_XCVR_PROTOCOL_V35A
Option to

apply.

GSC_PROTOCOL_RS422_RS423_1 SIO4_XCVR_PROTOCOL_RS422_RS423_1
Option to

apply.

GSC_PROTOCOL_RS422_RS423_2 SIO4_XCVR_PROTOCOL_RS422_RS423_2
Option to

apply.

 SIO4_XCVR_PROTOCOL_INVALID
A reported

option.

 SIO4_XCVR_PROTOCOL_UNKNOWN
A reported

option.

 GSCAPI Monolithic Description

Option GSC_SIO_PROTOCOL SIO4_IOCTL_XCVR_TERM

Values

 -1

Retrieve the

current

setting.

GSC_TERMINATION_ENABLED SIO4_XCVR_TERM_ENABLE
Option to

apply.

GSC_TERMINATION_DISABLED SIO4_XCVR_TERM_DISABLE
Option to

apply.

3.4.9.8. GSC_SIO_DTEDCE

Sets a single channel of the SIO4 board to either DTE or DCE mode. The monolithic driver uses an IOCTL service

for the same purpose.

 GSCAPI Monolithic Description

Option GSC_SIO_DTEDCE SIO4_IOCTL_CBL_MODE For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_PIN_DTE SIO4_CBL_MODE_DTE Option to apply.
GSC_PIN_DCE SIO4_CBL_MODE_DCE Option to apply.

3.4.9.9. GSC_SIO_LOOPBACK

Sets he loopback mode of a channel on the SIO4 board. The monolithic driver uses an IOCTL service for the same

purpose. In addition, the monolithic driver has another selection option, when supported by the SIO4 being

accessed.

 GSCAPI Monolithic Description

Option GSC_SIO_LOOPBACK SIO4_IOCTL_LOOP_BACK For Zilog firmware models.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

33

General Standards Corporation, Phone: (256) 880-8787

Values

 -1 Retrieve the current setting.
GSC_LOOP_NONE SIO4_LOOP_BACK_DISABLE Option to apply.

GSC_LOOP_EXTERNAL SIO4_LOOP_BACK_EXTERNAL Option to apply.
 SIO4_LOOP_BACK_INTERNAL Option to apply.

3.4.9.10. GSC_SIO_RECEIVER

Used for enabling or disabling the receiver for a single channel on the SIO4 board. The monolithic driver uses

IOCTL services for the same purpose. Plus, the monolithic driver has additional selections.

 GSCAPI Monolithic Description

Option GSC_SIO_RECEIVER SIO4_IOCTL_USC_RX_ENABLE For Zilog firmware models.

Values

 -1 Retrieve the current setting.

GSC_ENABLED SIO4_USC_ENABLE_YES_NOW Option to apply.

 SIO4_USC_ENABLE_YES_W_AE Option to apply.

GSC_DISABLED SIO4_USC_ENABLE_NO_NOW Option to apply.

 SIO4_USC_ENABLE_NO_AFTER Option to apply.

 GSCAPI Monolithic Description

Option GSC_SIO_RECEIVER SIO4_IOCTL_SYNC_RX_ENABLE For -SYNC firmware models.

Values

 -1 Retrieve the current setting.
GSC_ENABLED SIO4_SYNC_ENABLE_YES Option to apply.
GSC_DISABLED SIO4_SYNC_ENABLE_NO Option to apply.

3.4.9.11. GSC_SIO_TRANSMITTER

Used for enabling or disabling the receiver for a single channel on the SIO4 board. The monolithic driver uses

IOCTL services for the same purpose.

 GSCAPI Monolithic Description

Option GSC_SIO_TRANSMITTER SIO4_IOCTL_USC_TX_ENABLE For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_ENABLED SIO4_USC_ENABLE_YES_NOW Option to apply.

 SIO4_USC_ENABLE_YES_W_AE Option to apply.
GSC_DISABLED SIO4_USC_ENABLE_NO_NOW Option to apply.

 SIO4_USC_ENABLE_NO_AFTER Option to apply.

 GSCAPI Monolithic Description

Option GSC_SIO_TRANSMITTER SIO4_IOCTL_SYNC_TX_ENABLE For -SYNC firmware models.

Values

 -1 Retrieve the current setting.
GSC_ENABLED SIO4_SYNC_ENABLE_YES Option to apply.
GSC_DISABLED SIO4_SYNC_ENABLE_NO Option to apply.

3.4.9.12. GSC_SIO_TXDATAPINMODE

Used to enable the TxD pin of a channel to be used for general purpose I/O. The monolithic driver uses an IOCTL

service for the same purpose. In addition, the monolithic driver has additional selection options.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

34

General Standards Corporation, Phone: (256) 880-8787

 GSCAPI Monolithic Description

Option GSC_SIO_TXDATAPINMODE SIO4_IOCTL_Z16_CBL_TXD_CFG
For Zilog firmware

models.

Values

 -1
Retrieve the current

setting.
GSC_PIN_AUTO SIO4_Z16_CBL_TXD_CFG_OUT_USC_TXD Option to apply.
GSC_PIN_GPIO SIO4_Z16_CBL_TXD_CFG_OUT_1 Option to apply.

 SIO4_Z16_CBL_TXD_CFG_OUT_0 Option to apply.

 GSCAPI Monolithic Description

Option GSC_SIO_TXDATAPINMODE SIO4_IOCTL_SYNC_TXD_CFG
For -SYNC firmware

models.

Values

 -1
Retrieve the current

setting.

GSC_PIN_AUTO SIO4_SYNC_TXD_CFG_ACTIVE_HI
Option to apply.

(NRZ)

 SIO4_SYNC_TXD_CFG_ACTIVE_LO
Option to apply.

(NRZB)
GSC_PIN_GPIO SIO4_SYNC_TXD_CFG_OUT_1 Option to apply.

 SIO4_SYNC_TXD_CFG_OUT_0 Option to apply.

3.4.9.13. GSC_SIO_RXDATAPINMODE

Used to enable the RxD pin of a channel to be used for general purpose I/O. The RxD cable signal is not

configurable the way it is indicated in the GSCAPI documentation. However, the monolithic driver provides an

IOCTL service to configure the RxD signal as supported by firmware.

 GSCAPI Monolithic Description

Option GSC_SIO_RXDATAPINMODE No corresponding IOCTL service. For Zilog firmware models.

Values
GSC_PIN_AUTO Not a supported capability. N/A
GSC_PIN_GPIO Not a supported capability. N/A

 GSCAPI Monolithic Description

Option GSC_SIO_RXDATAPINMODE SIO4_IOCTL_SYNC_RXD_CFG
For -SYNC firmware

models.

Values

 -1 Retrieve the current setting.
GSC_PIN_AUTO SIO4_SYNC_RXD_CFG_ACTIVE_HI Option to apply. (NRZ)
GSC_PIN_GPIO Not a supported capability. Option to apply.

 SIO4_SYNC_RXD_CFG_ACTIVE_LO Option to apply. (NRZB)

3.4.9.14. GSC_SIO_TXCLOCKPINMODE

Used to enable the TxC pin of a channel to be used for general purpose I/O. The monolithic driver uses IOCTL

services for the same purpose. In addition, the monolithic driver has additional selections.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

35

General Standards Corporation, Phone: (256) 880-8787

 GSCAPI Monolithic Description

Option GSC_SIO_TXCLOCKPINMODE SIO4_IOCTL_Z16_CBL_TXC_CFG
For Zilog firmware

models.

Values

 -1
Retrieve the current

setting.
 SIO4_Z16_CBL_TXC_CFG_OUT_OSC Option to apply.
 SIO4_Z16_CBL_TXC_CFG_OUT_OSC_INV Option to apply.

GSC_PIN_AUTO SIO4_Z16_CBL_TXC_CFG_OUT_USC_TXC Option to apply.
 SIO4_Z16_CBL_TXC_CFG_OUT_USC_RXC Option to apply.
 SIO4_Z16_CBL_TXC_CFG_OUT_CBL_RXC Option to apply.
 SIO4_Z16_CBL_TXC_CFG_OUT_CBL_RXA Option to apply.
 SIO4_Z16_CBL_TXC_CFG_OUT_0 Option to apply.

GSC_PIN_GPIO SIO4_Z16_CBL_TXC_CFG_OUT_1 Option to apply.

 GSCAPI Monolithic Description

Option GSC_SIO_TXCLOCKPINMODE SIO4_IOCTL_SYNC_TXC_SRC
For -SYNC

firmware models.

Values

 -1
Retrieve the current

setting.
GSC_PIN_AUTO SIO4_SYNC_TXC_SRC_OSC_HALF_RISE Option to apply.

 SIO4_SYNC_TXC_SRC_OSC_HALF_FALL Option to apply.
 SIO4_SYNC_TXC_SRC_EXT_RISE Option to apply.
 SIO4_SYNC_TXC_SRC_EXT_FALL Option to apply.
 SIO4_SYNC_TXC_SRC_0 Option to apply.

GSC_PIN_GPIO SIO4_SYNC_TXC_SRC_1 Option to apply.

3.4.9.15. GSC_SIO_RXCLOCKPINMODE

Used to enable the RxC pin of a channel to be used for general purpose I/O. The monolithic driver uses an IOCTL

service for the same purpose. In addition, the monolithic driver has additional selections.

 GSCAPI Monolithic Description

Option GSC_SIO_RXCLOCKPINMODE SIO4_IOCTL_USC_RXC_CFG
For Zilog firmware

models.

Values

 -1
Retrieve the current

setting.
GSC_PIN_CLOCK_REVERSEPOLARITY

Selects an invalid firmware option.
 Option to apply.

 SIO4_USC_RXC_CFG_IN_OSC Option to apply.
 SIO4_USC_RXC_CFG_IN_OSC_INV Option to apply.

GSC_PIN_AUTO SIO4_USC_RXC_CFG_IN_CBL_RXC Option to apply.
 SIO4_USC_RXC_CFG_IN_CBL_RXAUXC Option to apply.
 SIO4_USC_RXC_CFG_OUT_RX_CLK Option to apply.
 SIO4_USC_RXC_CFG_OUT_RX_BYTE_CLK Option to apply.
 SIO4_USC_RXC_CFG_OUT_SYNC Option to apply.
 SIO4_USC_RXC_CFG_OUT_BRG0 Option to apply.
 SIO4_USC_RXC_CFG_OUT_BRG1 Option to apply.
 SIO4_USC_RXC_CFG_OUT_CTR0 Option to apply.
 SIO4_USC_RXC_CFG_OUT_DPLL_RX Option to apply.
 SIO4_USC_RXC_CFG_IN_0 Option to apply.

GSC_PIN_GPIO SIO4_USC_RXC_CFG_IN_1 Option to apply.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

36

General Standards Corporation, Phone: (256) 880-8787

3.4.9.16. GSC_SIO_CTSPINMODE

Used to enable the CTS pin of a channel to be used for general purpose I/O. The monolithic driver uses an IOCTL

service for the same purpose. In addition, the monolithic driver has additional selections.

 GSCAPI Monolithic Description

Option GSC_SIO_CTSPINMODE SIO4_IOCTL_USC_CTS_CFG For Zilog firmware models.

Values

 -1 Retrieve the current setting.
 SIO4_USC_CTS_CFG_TRI Option to apply.

GSC_PIN_AUTO SIO4_USC_CTS_CFG_IN_CBL_CTS Option to apply.
 SIO4_USC_CTS_CFG_OUT_0 Option to apply.
 SIO4_USC_CTS_CFG_OUT_1 Option to apply.

GSC_PIN_GPIO

Not supported.
 Option to apply.

3.4.9.17. GSC_SIO_RTSPINMODE

Used to enable the RTS pin of a channel to be used for general purpose I/O. The monolithic driver uses IOCTL

services for the same purpose. In addition, the monolithic driver has additional selections.

 GSCAPI Monolithic Description

Option GSC_SIO_RTSPINMODE SIO4_IOCTL_Z16_CBL_RTS_CFG
For Zilog firmware

models.

Values

 -1
Retrieve the current

setting.
 SIO4_Z16_CBL_RTS_CFG_OUT_USC_CTS Option to apply.

GSC_PIN_AUTO

Selects incorrect option.
SIO4_Z16_CBL_RTS_CFG_OUT_RTS Option to apply.

 SIO4_Z16_CBL_RTS_CFG_OUT_0 Option to apply.
GSC_PIN_GPIO SIO4_Z16_CBL_RTS_CFG_OUT_1 Option to apply.

 GSCAPI Monolithic Description

Option GSC_SIO_RTSPINMODE SIO4_IOCTL_SYNC_TXE_CFG
For -SYNC firmware

models.

Values

 -1
Retrieve the current

setting.
GSC_PIN_AUTO SIO4_SYNC_TXE_CFG_ACTIVE_HI Option to apply.

 SIO4_SYNC_TXE_CFG_ACTIVE_LO Option to apply.
 SIO4_SYNC_TXE_CFG_OUT_0 Option to apply.

GSC_PIN_GPIO SIO4_SYNC_TXE_CFG_OUT_1 Option to apply.

3.4.9.18. GSC_SIO_CLOCKSOURCE

Used to set the clock pin sources of the transmitter and receiver. The monolithic driver uses IOCTL services for the

same purpose. In addition, the monolithic driver has additional selections. The GSCAPI encodes the selections into a

single value. The monolithic driver uses an s32* for all options.

 GSCAPI Monolithic Description

Option GSC_SIO_CLOCKSOURCE SIO4_IOCTL_USC_TXC_CFG
For Zilog firmware

models. Tx Channel

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

37

General Standards Corporation, Phone: (256) 880-8787

Values

 -1
Retrieve the current

setting.
GSC_CLOCK_INTERNAL SIO4_USC_TXC_CFG_IN_OSC Option to apply.

 SIO4_USC_TXC_CFG_IN_OSC_INV Option to apply.
GSC_CLOCK_EXTERNAL SIO4_USC_TXC_CFG_IN_CBL_RXC Option to apply.

GSC_CLOCK_EXT_RX_AUX SIO4_USC_TXC_CFG_IN_CBL_RXAUXC Option to apply.
 SIO4_USC_TXC_CFG_IN_0 Option to apply.
 SIO4_USC_TXC_CFG_IN_1 Option to apply.
 SIO4_USC_TXC_CFG_OUT_TX_CLK Option to apply.
 SIO4_USC_TXC_CFG_OUT_TX_BYTE_CLK Option to apply.
 SIO4_USC_TXC_CFG_OUT_TX_COMP Option to apply.
 SIO4_USC_TXC_CFG_OUT_BRG0 Option to apply.
 SIO4_USC_TXC_CFG_OUT_BRG1 Option to apply.
 SIO4_USC_TXC_CFG_OUT_CTR1 Option to apply.
 SIO4_USC_TXC_CFG_OUT_DPLL_TX Option to apply.

 GSCAPI Monolithic Description

Option GSC_SIO_CLOCKSOURCE SIO4_IOCTL_USC_RXC_CFG
For Zilog firmware

models. Rx Channel

Values

 -1
Retrieve the current

setting.
GSC_CLOCK_INTERNAL SIO4_USC_RXC_CFG_IN_OSC Option to apply.

 SIO4_USC_RXC_CFG_IN_OSC_INV Option to apply.
GSC_CLOCK_EXTERNAL SIO4_USC_RXC_CFG_IN_CBL_RXC Option to apply.

GSC_CLOCK_EXT_RX_AUX SIO4_USC_RXC_CFG_IN_CBL_RXAUXC Option to apply.
 SIO4_USC_RXC_CFG_IN_0 Option to apply.
 SIO4_USC_RXC_CFG_IN_1 Option to apply.
 SIO4_USC_RXC_CFG_OUT_RX_CLK Option to apply.
 SIO4_USC_RXC_CFG_OUT_RX_BYTE_CLK Option to apply.
 SIO4_USC_RXC_CFG_OUT_SYNC Option to apply.
 SIO4_USC_RXC_CFG_OUT_BRG0 Option to apply.
 SIO4_USC_RXC_CFG_OUT_BRG1 Option to apply.
 SIO4_USC_RXC_CFG_OUT_CTR0 Option to apply.
 SIO4_USC_RXC_CFG_OUT_DPLL_RX Option to apply.

 GSCAPI Monolithic Description

Option GSC_SIO_CLOCKSOURCE SIO4_IOCTL_SYNC_TXC_SRC
For -SYNC firmware

models.

Values

 -1
Retrieve the current

setting.
GSC_CLOCK_INTERNAL SIO4_SYNC_TXC_SRC_OSC_HALF_RISE Option to apply.
GSC_CLOCK_EXTERNAL SIO4_SYNC_TXC_SRC_EXT_RISE Option to apply.

GSC_CLOCK_EXT_RX_AUX Option not supported by firmware. Option to apply.
 SIO4_SYNC_TXC_SRC_0 Option to apply.
 SIO4_SYNC_TXC_SRC_1 Option to apply.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

38

General Standards Corporation, Phone: (256) 880-8787

3.4.9.19. GSC_SIO_CRCMODE

The GSCAPI encodes the mode and preset value selections into a single value. The monolithic driver uses an s32*

for all options.

CRC Mode

Used for setting the CRC generation/detection mode for a single channel. The monolithic driver uses IOCTL

services for the same purpose.

 GSCAPI Monolithic Description

Option GSC_SIO_CRCMODE
SIO4_IOCTL_USC_RX_CRC_TYPE

SIO4_IOCTL_USC_TX_CRC_TYPE
For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_CRC_16 SIO4_USC_CRC_TYPE_16 Option to apply.
GSC_CRC_32 SIO4_USC_CRC_TYPE_32 Option to apply.

GSC_CRC_CCITT SIO4_USC_CRC_TYPE_CCITT Option to apply.

CRC Preset Value

Used for setting the CRC generation/detection mode for a single channel. The monolithic driver uses IOCTL

services for the same purpose.

 GSCAPI Monolithic Description

Option GSC_SIO_CRCMODE
SIO4_IOCTL_USC_RX_CRC_PRESET

SIO4_IOCTL_USC_TX_CRC_PRESET
For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_CRC_INIT_0 SIO4_USC_CRC_PRESET_ALL_0 Option to apply.
GSC_CRC_INIT_1 SIO4_USC_CRC_PRESET_ALL_1 Option to apply.

3.4.9.20. GSC_SIO_SYNCWORD

Used to set the sync word used on a channel. The monolithic driver uses IOCTL services for the same purpose. In

addition, the monolithic driver has additional selections. The GSCAPI encodes the selections into a single value.

The monolithic driver uses an s32* for all options.

 GSCAPI Monolithic Description

Option GSC_SIO_SYNCWORD SIO4_IOCTL_Z16_SYNC_BYTE For Zilog firmware models.

Values -1 Retrieve the current setting.

 0 – 65,535 0 - 255 Option to apply.

 GSCAPI Monolithic Description

Option GSC_SIO_SYNCWORD

SIO4_IOCTL_USC_MONO_RX_SYNC

SIO4_IOCTL_USC_MONO_TX_SYNC

SIO4_IOCTL_USC_SMONO_RX_SYNC

SIO4_IOCTL_USC_SMONO_TX_SYNC

For Zilog firmware models.

Values
 -1 Retrieve the current setting.

0 – 65,535 0 - 255 Option to apply.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

39

General Standards Corporation, Phone: (256) 880-8787

 GSCAPI Monolithic Description

Option GSC_SIO_SYNCWORD

SIO4_IOCTL_USC_BSC_RX_SYN0

SIO4_IOCTL_USC_BSC_RX_SYN1

SIO4_IOCTL_USC_BSC_TX_SYN0

SIO4_IOCTL_USC_BSC_TX_SYN1

For Zilog firmware models.

Values -1 Retrieve the current setting.

 0 – 65,535
0 – 255 for lower (SYN0)

0 - 255 for upper (SYN1)
Option to apply.

3.4.9.21. GSC_SIO_TXUNDERRUN

Sets the data pattern to be transmitted under a Tx underrun condition. The monolithic driver uses an IOCTL service

for the same purpose.

 GSCAPI Monolithic Description

Option GSC_SIO_TXUNDERRUN SIO4_IOCTL_USC_BSC_TX_UNDERRUN
For Zilog firmware

models.

Values

 -1
Retrieve the current

setting.
GSC_SYN SIO4_USC_BSC_TX_UNDERRUN_S1 Option to apply.

GSC_SYN0_SYN1 SIO4_USC_BSC_TX_UNDERRUN_S01 Option to apply.
GSC_CRC_SYN1 SIO4_USC_BSC_TX_UNDERRUN_CRC_S1 Option to apply.

GSC_CRC_SYN0_SYN1 SIO4_USC_BSC_TX_UNDERRUN_CRC_S01 Option to apply.

3.4.9.22. GSC_SIO_TXPREAMBLE

Used to enable or disable the Tx preamble for a channel. The monolithic driver uses an IOCTL service for the same

purpose. The monolithic driver supports preamble enable services for the Rx stream and for other serial protocols.

 GSCAPI Monolithic Description

Option GSC_SIO_TXPREAMBLE SIO4_IOCTL_USC_BSC_TX_PREAMBLE For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_ENABLED SIO4_USC_BSC_TX_PREAMBLE_YES Option to apply.
GSC_DISABLED SIO4_USC_BSC_TX_PREAMBLE_NO Option to apply.

3.4.9.23. GSC_SIO_TXSHORTSYNC

Used to set the Tx sync length (short or 8 bit) for a channel. The monolithic driver uses an IOCTL service for the

same purpose. The monolithic driver has similar short settings for Rx streams and other serial protocols.

 GSCAPI Monolithic Description

Option GSC_SIO_TXSHORTSYNC SIO4_IOCTL_USC_BSC_TX_SHORT For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_ENABLED SIO4_USC_BSC_SHORT_YES Option to apply.
GSC_DISABLED SIO4_USC_BSC_SHORT_NO Option to apply.

3.4.9.24. GSC_SIO_RXSYNCSTRIP

Set the Rx sync strip mode for a channel. The monolithic driver uses an IOCTL service for the same purpose.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

40

General Standards Corporation, Phone: (256) 880-8787

 GSCAPI Monolithic Description

Option GSC_SIO_RXSYNCSTRIP SIO4_IOCTL_USC_BSC_RX_STRIP For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_ENABLED SIO4_USC_BSC_RX_STRIP_YES Option to apply.
GSC_DISABLED SIO4_USC_BSC_RX_STRIP_NO Option to apply.

3.4.9.25. GSC_SIO_RXSHORTSYNC

Used to set the Rx sync length (short or 8 bit) for a channel. The monolithic driver uses an IOCTL service for the

same purpose. The monolithic driver has similar short settings for Tx streams and other serial protocols.

 GSCAPI Monolithic Description

Option GSC_SIO_RXSHORTSYNC SIO4_IOCTL_USC_BSC_RX_SHORT For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_ENABLED SIO4_USC_BSC_SHORT_YES Option to apply.
GSC_DISABLED SIO4_USC_BSC_SHORT_NO Option to apply.

3.4.9.26. GSC_SIO_TXPREAMBLELEN

Used to set the Tx preamble length for a channel. The monolithic driver uses an IOCTL service for the same

purpose.

 GSCAPI Monolithic Description

Option GSC_SIO_TXPREAMBLELEN SIO4_IOCTL_USC_TX_PREAMBLE_LEN
For Zilog firmware

models.

Values

 -1
Retrieve the current

setting.
GSC_PREAMBLE_8BITS SIO4_USC_TX_PREAMBLE_LEN_8_BITS Option to apply.
GSC_PREAMBLE_16BITS SIO4_USC_TX_PREAMBLE_LEN_16_BITS Option to apply.
GSC_PREAMBLE_32BITS SIO4_USC_TX_PREAMBLE_LEN_32_BITS Option to apply.
GSC_PREAMBLE_64BITS SIO4_USC_TX_PREAMBLE_LEN_64_BITS Option to apply.

3.4.9.27. GSC_SIO_TXPREAMBLEPATTERN

Used to set the Tx preamble pattern for a channel. The monolithic driver uses an IOCTL service for the same

purpose.

 GSCAPI Monolithic Description

Option GSC_SIO_TXPREAMBLEPATTERN SIO4_IOCTL_USC_TX_PREAMBLE_PAT
For Zilog

firmware models.

Values

 -1
Retrieve the

current setting.
GSC_PREAMBLE_ALL_0 SIO4_USC_TX_PREAMBLE_PAT_0 Option to apply.
GSC_PREAMBLE_ALL_1 SIO4_USC_TX_PREAMBLE_PAT_1 Option to apply.

GSC_PREAMBLE_ALL_0_1 SIO4_USC_TX_PREAMBLE_PAT_10 Option to apply.
GSC_PREAMBLE_ALL_1_0 SIO4_USC_TX_PREAMBLE_PAT_01 Option to apply.

3.4.9.28. GSC_SIO_ORDERING

Used to set the byte and bit order used in bisync16 mode on a channel. This feature is unsupported by the monolithic

driver.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

41

General Standards Corporation, Phone: (256) 880-8787

3.4.9.29. GSC_SIO_ORDERING

Used to set the byte and bit order used in bisync16 mode on a channel. This feature is unsupported by the monolithic

driver.

3.4.9.30. GSC_SIO_MAXRXCOUNT

Used to set the maximum Rx count allowed in bisync16 mode on a channel. This feature is unsupported by the

monolithic driver.

3.4.10. GscSio4GetOption

While the GSCAPI has a dedicated function for retrieving current option settings, the monolithic driver uses the

same IOCTL function and service as for setting the feature. The difference is that passing in a value of -1 is almost

a universal means of retrieving a current setting.

3.4.11. GscSio4ChannelSetPinMode & GscSio4ChannelSetPinValue

GscSio4ChannelSetPinMode(…) configures a pin to be either its default functionality (via

GSC_PIN_AUTO) or as GPIO output (via GSC_PIN_GPIO). As a GPIO output,

GscSio4ChannelSetPinValue(…) sets the output to either an output high (1) or an output low

(0). The monolithic driver supports this same functionality via IOCTL services. Where

supported by firmware, each such service supports the option of setting each pin to its default

functionality, a GPIO output, either high or low, or reading its current configuration by passing

in a value of -1. Some of the pins are not configurable and others have additional configuration

capabilities. The GSCAPI’s set of pins is taken from the GSC_TOKENS enumeration, but are

limited to those options which are actual pins.

3.4.11.1. GSC_PIN_RX_CLOCK

This is an input only pin and is not configurable.

3.4.11.2. GSC_PIN_RX_DATA

This is an input only pin and is not configurable.

3.4.11.3. GSC_PIN_CTS

This pin can be an input or an output.

 GSCAPI Monolithic Description

Option GSC_PIN_CTS SIO4_IOCTL_USC_CTS_CFG For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_PIN_AUTO SIO4_USC_CTS_CFG_IN_CBL_CTS Option to apply.

GPIO Output 1 SIO4_USC_CTS_CFG_OUT_1 Option to apply.

GPIO Output 0 SIO4_USC_CTS_CFG_OUT_0 Option to apply.

 SIO4_USC_CTS_CFG_TRI Option to apply.

3.4.11.4. GSC_PIN_RX_ENV

This is an input only pin and is not configurable.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

42

General Standards Corporation, Phone: (256) 880-8787

3.4.11.5. GSC_PIN_DCD

This is an output only pin.

 GSCAPI Monolithic Description

Option GSC_PIN_DCD SIO4_IOCTL_Z16_CBL_DCD_CFG For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_PIN_AUTO SIO4_Z16_CBL_DCD_CFG_OUT_USC_DCD Option to apply.

GPIO Output 1 SIO4_Z16_CBL_DCD_CFG_OUT_1 Option to apply.

GPIO Output 0 SIO4_Z16_CBL_DCD_CFG_OUT_0 Option to apply.

 SIO4_Z16_CBL_DCD_CFG_OUT_RTS Option to apply.

3.4.11.6. GSC_PIN_TX_CLOCK

This is an output only pin.

 GSCAPI Monolithic Description

Option GSC_PIN_TX_CLOCK SIO4_IOCTL_Z16_CBL_TXC_CFG For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_PIN_AUTO SIO4_Z16_CBL_TXC_CFG_OUT_USC_TXC Option to apply.

GPIO Output 1 SIO4_Z16_CBL_TXC_CFG_OUT_1 Option to apply.

GPIO Output 0 SIO4_Z16_CBL_TXC_CFG_OUT_0 Option to apply.

 SIO4_Z16_CBL_TXC_CFG_OUT_CBL_RXA Option to apply.
 SIO4_Z16_CBL_TXC_CFG_OUT_CBL_RXC Option to apply.
 SIO4_Z16_CBL_TXC_CFG_OUT_OSC Option to apply.
 SIO4_Z16_CBL_TXC_CFG_OUT_OSC_INV Option to apply.
 SIO4_Z16_CBL_TXC_CFG_OUT_USC_RXC Option to apply.

3.4.11.7. GSC_PIN_TX_DATA

This is an output only pin.

 GSCAPI Monolithic Description

Option GSC_PIN_TX_DATA SIO4_IOCTL_Z16_CBL_TXD_CFG For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_PIN_AUTO SIO4_Z16_CBL_TXD_CFG_OUT_USC_TXD Option to apply.

GPIO Output 1 SIO4_Z16_CBL_TXD_CFG_OUT_1 Option to apply.

GPIO Output 0 SIO4_Z16_CBL_TXD_CFG_OUT_0 Option to apply.

 GSCAPI Monolithic Description

Option GSC_PIN_TX_DATA SIO4_IOCTL_SYNC_TXD_CFG For -SYNC firmware models.

Values

 -1 Retrieve the current setting.
GSC_PIN_AUTO SIO4_SYNC_TXD_CFG_ACTIVE_HI Option to apply.

GPIO Output 1 SIO4_SYNC_TXD_CFG_OUT_1 Option to apply.

GPIO Output 0 SIO4_SYNC_TXD_CFG_OUT_0 Option to apply.

 SIO4_SYNC_TXD_CFG_ACTIVE_LO Option to apply.

3.4.11.8. GSC_PIN_RTS

This is an output only pin.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

43

General Standards Corporation, Phone: (256) 880-8787

 GSCAPI Monolithic Description

Option GSC_PIN_RTS SIO4_IOCTL_Z16_CBL_RTS_CFG For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_PIN_AUTO SIO4_Z16_CBL_RTS_CFG_OUT_RTS Option to apply.

GPIO Output 1 SIO4_Z16_CBL_RTS_CFG_OUT_1 Option to apply.

GPIO Output 0 SIO4_Z16_CBL_RTS_CFG_OUT_0 Option to apply.

 SIO4_Z16_CBL_RTS_CFG_OUT_USC_CTS Option to apply.

3.4.11.9. GSC_PIN_TX_ENV

This is an output only pin.

 GSCAPI Monolithic Description

Option GSC_PIN_TX_ENV SIO4_IOCTL_SYNC_TXE_CFG For -SYNC firmware models.

Values

 -1 Retrieve the current setting.
GSC_PIN_AUTO SIO4_SYNC_TXE_CFG_ACTIVE_HI Option to apply.

GPIO Output 1 SIO4_SYNC_TXE_CFG_OUT_1 Option to apply.

GPIO Output 0 SIO4_SYNC_TXE_CFG_OUT_0 Option to apply.

 SIO4_SYNC_TXE_CFG_ACTIVE_LO Option to apply.

3.4.11.10. GSC_PIN_AUXCLK

This pin is both RXAUXCLOCK, which is always available, and TXAUXCLOCK, which is

configurable and can be disabled.

 GSCAPI Monolithic Description

Option GSC_PIN_AUXCLK SIO4_IOCTL_Z16_CBL_TXAUXC_CFG For Zilog firmware models.

Values

 -1 Retrieve the current setting.
GSC_PIN_AUTO SIO4_Z16_CBL_TXAUXC_CFG_OUT_OSC Option to apply.

GPIO Output 1 SIO4_Z16_CBL_TXAUXC_CFG_OUT_1 Option to apply.

GPIO Output 0 SIO4_Z16_CBL_TXAUXC_CFG_OUT_0 Option to apply.

 SIO4_Z16_CBL_TXAUXC_CFG_TRI Option to apply.

 GSCAPI Monolithic Description

Option GSC_PIN_AUXCLK SIO4_IOCTL_SYNC_TXAUXC_CFG For -SYNC firmware models.

Values

 -1 Retrieve the current setting.
GSC_PIN_AUTO SIO4_SYNC_TXAUXC_CFG_OSC_HALF Option to apply.

GPIO Output 1 SIO4_SYNC_TXAUXC_CFG_OUT_1 Option to apply.

GPIO Output 0 SIO4_SYNC_TXAUXC_CFG_OUT_0 Option to apply.

 SIO4_SYNC_TXAUXC_CFG_TRI Option to apply.

3.4.12. GscSio4ChannelGetPinMode & GscSio4ChannelGetPinValue

GscSio4ChannelSetPinMode(…) reads a pin’s configuration. When configured as a GPIO, the

function GscSio4ChannelGetPinValue(…) reads its current output value. The monolithic driver

supports this same functionality via IOCTL services, which are given in the contents of the

corresponding Set functions (section 3.4.11, page 41). Additionally, the monolithic driver

retrieves each pin’s current configuration/output value by passing a -1 to the very same IOCTL

services.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

44

General Standards Corporation, Phone: (256) 880-8787

3.4.13. GscSio4ChannelFifoSizes

GscSio4ChannelFifoSizes(…) returns the size, in bytes, of the channel’s Transmit and Receive FIFOs. The

monolithic driver uses the SIO4_IOCTL_QUERY IOCTL service for the same purpose. In this case, the option

value is passed to the service and the result is returned in its place. Also, the GSCAPI encodes the results, while the

monolithic driver uses the s32* type for all options.

 GSCAPI Monolithic Description

Option GscSio4ChannelFifoSizes()
SIO4_QUERY_FIFO_SIZE_RX

SIO4_QUERY_FIFO_SIZE_TX

Values 0 – 32,768 0 – 32,768 Value returned.

3.4.14. GscSio4ChannelFifoCounts

GscSio4ChannelFifoCounts(…) returns the current number of bytes in the channel’s Transmit and Receive FIFOs.

The monolithic driver uses IOCTL services for the same purpose. Also, the GSCAPI encodes the results, while the

monolithic driver uses the s32* type for all options.

 GSCAPI Monolithic Description

Option GscSio4ChannelFifoCounts()
SIO4_IOCTL_RX_FIFO_FILL_LEVEL

SIO4_IOCTL_TX_FIFO_FILL_LEVEL

Values 0 – 32,768 0 – 32,768 Value returned.

3.4.15. GscSio4ChannelSetTxAlmost and GscSio4ChannelGetTxAlmost

GscSio4ChannelSetTxAlmost(…) programs the “Almost Full” and “Almost Empty” registers in the Transmit FIFO

for a single channel. GscSio4ChannelGetTxAlmost(…) retrieves the settings. The monolithic driver uses IOCTL

services for the same purpose. Also, the GSCAPI encodes the settings, while the monolithic driver uses the s32*

type for all options.

 GSCAPI Monolithic Description

Option
GscSio4ChannelSetTxAlmost()

GscSio4ChannelGetTxAlmost()

SIO4_IOCTL_TX_FIFO_AE

SIO4_IOCTL_TX_FIFO_AF

Values
 -1 Retrieve the current setting.

0 – 32,767 0 – 32,767 Option to apply.

3.4.16. GscSio4ChannelSetRxAlmost and GscSio4ChannelGetRxAlmost

GscSio4ChannelSetRxAlmost(…) programs the “Almost Full” and “Almost Empty” registers in the Transmit FIFO

for a single channel. GscSio4ChannelGetRxAlmost(…) retrieves the settings. The monolithic driver uses IOCTL

services for the same purpose. Also, the GSCAPI encodes the settings, while the monolithic driver uses the s32*

type for all options.

 GSCAPI Monolithic Description

Option
GscSio4ChannelSetRxAlmost()

GscSio4ChannelGetRxAlmost()

SIO4_IOCTL_RX_FIFO_AE

SIO4_IOCTL_RX_FIFO_AF

Values
 -1 Retrieve the current setting.

0 – 32,767 0 – 32,767 Option to apply.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

45

General Standards Corporation, Phone: (256) 880-8787

3.4.17. GscSio4ChannelCheckForData

GscSio4ChannelCheckForData(…) determines whether a packet has been received on the specified channel. If a

packet has been received, a DMA transfer is initiated to return the data. The monolithic driver itself has no

corresponding functionality. However, the HDLC Protocol Library has a blocking call to read a frame. This function

may be a suitable substitute, if one is using HDLC.

 GSCAPI Monolithic Description

Option GscSio4ChannelCheckForData() sio4_hdlc_rx_frame()

For Zilog firmware models.

Requires the HDLC Protocol

Library

3.4.18. GscSio4ChannelReceivePacket

GscSio4ChannelReceivePacket(…) determines whether a packet has been received on the specified channel. If a

packet has been received, a DMA transfer is initiated to return the data. The monolithic driver itself has no

corresponding functionality. The closest approximation is the Rx Frame call from the HDLC Protocol Library, if

one is using HDLC.

 GSCAPI Monolithic Description

Option GscSio4ChannelReceivePacket() sio4_hdlc_rx_frame()

For Zilog firmware models.

Requires the HDLC

Protocol Library

3.4.19. GscSio4ChannelReceiveData

GscSio4ChannelReceiveData(…) starts the reception of data on the specified channel. If this function returns before

completion, the value pointed to by id will contain a unique identifier that can be used to determine the progress of

the transfer. The monolithic driver has no equivalent function call for the same purpose. The closest approximation

is the API’s read call, which is a blocking call.

 GSCAPI Monolithic Description

Option GscSio4ChannelReceiveData() sio4_read()

3.4.20. GscSio4ChannelReceiveDataAndWait

GscSio4ChannelReceiveDataAndWait(…) starts the reception of data on the specified channel. This function will

not return until the entire transfer has completed or the timeout period has expired. The monolithic driver uses an

equivalent function call for the same purpose.

 GSCAPI Monolithic Description

Option GscSio4ChannelReceiveDataAndWait() sio4_read()

3.4.21. GscSio4ChannelReceivePlxPhysData

GscSio4ChannelReceivePlxPhysData(…) starts the reception of data on the specified channel. The data received on

the channel is transferred into the physically contiguous memory buffer pointed to by buffer. When this function

returns, the value pointed to by id will contain a unique identifier that can be used to determine the progress of the

transfer. The monolithic driver has no equivalent function call for the same purpose. The closest approximation is

the API’s read call, which is a blocking call.

 GSCAPI Monolithic Description

Option GscSio4ChannelReceivePlxPhysData() sio4_read()

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

46

General Standards Corporation, Phone: (256) 880-8787

3.4.22. GscSio4ChannelTransmitData

GscSio4ChannelTransmitData(…) starts the transmission of data on the specified channel. When this function

returns, the value pointed to by id will contain a unique identifier that can be used to determine the progress of the

transfer. The monolithic driver has no equivalent function call for the same purpose. The closest approximation is

the API’s write call, which is a blocking call.

 GSCAPI Monolithic Description

Option GscSio4ChannelTransmitData() sio4_write()

3.4.23. GscSio4ChannelTransmitDataAndWait

GscSio4ChannelTransmitDataAndWait(…) starts the transmission of data on the specified channel. This function

will not return until the entire transfer has completed or the timeout period has expired. The monolithic driver uses

an equivalent function call for the same purpose.

 GSCAPI Monolithic Description

Option GscSio4ChannelTransmitDataAndWait() sio4_write()

3.4.24. GscSio4ChannelTransmitPlxPhysData

GscSio4ChannelTransmitPlxPhysData(…) starts the transmission of data on the specified channel. When this

function returns, the value pointed to by id will contain a unique identifier that can be used to determine the progress

of the transfer. The monolithic driver has no equivalent function call for the same purpose. The closest

approximation is the API’s write call, which is a blocking call.

 GSCAPI Monolithic Description

Option GscSio4ChannelTransmitPlxPhysData() sio4_write()

3.4.25. GscSio4ChannelQueryTransfer

GscSio4ChannelQueryTransfer(…) is used to determine the status of a transfer that was initiated by a call to either

GscSio4ChannelReceiveData(…) or GscSio4ChannelTransmitData(…). The monolithic driver has no equivalent

functionality. The closest approximation is the driver’s Wait Event service in which a thread can wait for an I/O call

to complete.

3.4.26. GscSio4ChannelWaitForTransfer

GscSio4ChannelWaitForTransfer(…) is used to wait for the completion of a transfer that was initiated by a call to

either GscSio4ChannelReceiveData(…) or GscSio4ChannelTransmitData(…). The routine will return when either

the transfer completes or the timeout period expires. The monolithic driver has no equivalent functionality. The

closest approximation is the driver’s Wait Event service in which a thread can wait for an I/O call to complete.

3.4.27. GscSio4ChannelFlushTransfer

GscSio4ChannelFlushTransfer(…) is used to force any data that is in the Rx FIFO to be transferred via DMA to

memory. For a Tx channel, data is transferred to the Tx FIFO until it is full. The monolithic driver has no identical

functionality. The equivalent functionality is achieved by repeating the API’s read or write call until all data is either

received or written.

3.4.28. GscSio4ChannelRemoveTransfer

GscSio4ChannelRemoveTransfer(…) is used to remove a pending transfer from the transfer queue. The monolithic

driver has no identical functionality as I/O operations are blocking. The closest similar functionality would be the

I/O Abort IOCTL services.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

47

General Standards Corporation, Phone: (256) 880-8787

 GSCAPI Monolithic Description

Option GscSio4ChannelRemoveTransfer()
SIO4_IOCTL_RX_IO_ABORT

SIO4_IOCTL_TX_IO_ABORT

3.4.29. GscSio4ChannelRegisterInterrupt

GscSio4ChannelRegisterInterrupt(…) is used register a callback routine with the interrupt handler. The monolithic

driver has no corresponding functionality as its Event Notification mechanism doesn’t use callbacks (see section

2.34, page 16).

Interrupts and Event Notification:

The GSCAPI interrupts are supported by the monolithic driver’s interrupt and Wait Event services. The monolithic

driver supports numerous events in addition to those supported by the GSCAPI.

 GSCAPI Monolithic Description

Option GscSio4ChannelRegisterInterrupt()
SIO4_IOCTL_IRQ_GSC_ENABLE

Wait Event Services

Values

GSC_INTR_SYNC_DETECT
SIO4_IRQ_SYNC_BYTE

SIO4_WAIT_GSC_SYNC_BYTE

GSC_INTR_USC
SIO4_IRQ_USC

SIO4_WAIT_GSC_USC

GSC_INTR_TX_FIFO_EMPTY
SIO4_IRQ_TX_FIFO_E

SIO4_WAIT_GSC_TX_FIFO_E

GSC_INTR_TX_FIFO_FULL
SIO4_IRQ_TX_FIFO_F

SIO4_WAIT_GSC_TX_FIFO_F

GSC_INTR_TX_FIFO_ALMOST_EMPTY
SIO4_IRQ_TX_FIFO_AE

SIO4_WAIT_GSC_TX_FIFO_AE

GSC_INTR_RX_FIFO_EMPTY
SIO4_IRQ_RX_FIFO_E

SIO4_WAIT_GSC_RX_FIFO_E

GSC_INTR_RX_FIFO_FULL
SIO4_IRQ_RX_FIFO_F

SIO4_WAIT_GSC_RX_FIFO_F

GSC_INTR_RX_FIFO_ALMOST_FULL
SIO4_IRQ_RX_FIFO_AF

SIO4_WAIT_GSC_RX_FIFO_AF

GSC_INTR_RX_ENVELOPE
SIO4_IRQ_RX_ENV

SIO4_WAIT_GSC_RX_ENV

Interrupt Configuration:

The GSCAPI and the monolithic drivers support similar interrupt configuration interfaces. The GSCAPI uses the

referenced function call and the monolithic driver uses an IOCTL service.

 GSCAPI Monolithic Description

Option GscSio4ChannelRegisterInterrupt() SIO4_IOCTL_IRQ_GSC_CFG_HIGH

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

48

General Standards Corporation, Phone: (256) 880-8787

Values

GSC_RISING_EDGE

If a bit is set, then the corresponding

interrupt is configured for rising edge or

level high detection.

GSC_FALLING_EDGE

If a bit is clear, then the corresponding

interrupt is configured for falling edge

or level low detection.

3.4.30. GscSio4ChannelSetClock

GscSio4ChannelSetClock(…) is used to set the serial bitrate (baud rate) for a specific channel. The monolithic

driver doesn’t contain the functionality for deriving the configuration needed to achieve application desired Tx and

Rx bitrates. For the most part, the code for these calculations is contained in the Protocol Libraries as those

calculations are dependent on the protocol in use and possibly on how the Tx and Rx cable clock signals may be

used.

3.5. Protocol Level Routines

Both drivers provide protocol specific support, but not for the same set of protocols. Where a protocol is supported

by both, the implementations are entirely different. Refer to the monolithic driver’s appropriate protocol specific

reference manual.

3.5.1. GscSio4HdlcGetDefaults

GscSio4HdlcGetDefaults(…) returns the default HDLC configuration structure. The monolithic driver provides

similar functionality, but requires some information from the caller and provides different information to the caller.

 GSCAPI Monolithic Description

Option GscSio4HdlcGetDefaults() sio4_hdlc_init_data()

3.5.2. GscSio4HdlcSetConfig and GscSio4HdlcGetConfig

GscSio4HdlcSetConfig(…) sets the mode of the specified channel to HDLC and sets the current configuration to the

values specified in the config parameter. GscSio4HdlcGetConfig(…) retrieves the current configuration from the

channel. The monolithic driver provides similar functionality, but uses an entirely different structure.

 GSCAPI Monolithic Description

Options
GscSio4HdlcSetConfig() sio4_hdlc_set()
GscSio4HdlcGetConfig() sio4_hdlc_get()

3.5.3. GscSio4AsyncGetDefaults

GscSio4AsyncGetDefaults(…) returns the default HDLC configuration structure. The monolithic driver provides

similar functionality, but requires some information from the caller and provides different information to the caller.

 GSCAPI Monolithic Description

Option GscSio4AsyncGetDefaults() sio4_async_init_data()

3.5.4. GscSio4AsyncSetConfig and GscSio4AsyncGetConfig

GscSio4AsyncSetConfig(…) sets the mode of the specified channel to Asynchronous and sets the current

configuration to the values specified in the config parameter. GscSio4AsyncGetConfig(…) retrieves the current

configuration from the channel. The monolithic driver provides similar functionality, but uses an entirely different

structure.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

49

General Standards Corporation, Phone: (256) 880-8787

 GSCAPI Monolithic Description

Options
GscSio4AsyncSetConfig() sio4_async_set()
GscSio4AsyncGetConfig() sio4_async_get()

3.5.5. GscSio4BiSyncGetDefaults

GscSio4BiSyncGetDefaults(…) returns the default BiSync configuration structure. The monolithic driver does not

provide dedicated BiSync Protocol support.

3.5.6. GscSio4BiSyncSetConfig and GscSio4BiSyncGetConfig

GscSio4BiSyncSetConfig(…) sets the mode of the specified channel to BiSync and sets the current configuration to

the values specified in the config parameter. GscSio4BiSyncGetConfig(…) retrieves the current configuration from

the channel. The monolithic driver does not provide dedicated BiSync Protocol support.

3.5.7. GscSio4SyncGetDefaults

GscSio4SyncGetDefaults(…) returns the default Sync configuration structure. The monolithic driver provides

SYNC protocol support, but that support doesn’t provide similar functionality.

3.5.8. GscSio4SyncSetConfig and GscSio4SyncGetConfig

GscSio4SyncSetConfig(…) sets the mode of the specified channel to Sync and sets the current configuration to the

values specified in the config parameter. GscSio4SyncGetConfig(…) retrieves the current configuration from the

channel. The monolithic driver provides similar functionality, but uses an entirely different structures and multiple

functions.

 GSCAPI Monolithic Description

Options

GscSio4SyncSetConfig()

sio4_sync_set()

sio4_sync_rx_set()

sio4_sync_tx_set()

GscSio4SyncGetConfig()

sio4_sync_get()

sio4_sync_rx_get()

sio4_sync_tx_get()

3.5.9. GscSio4BiSync16GetDefaults

GscSio4BiSync16GetDefaults(…) returns the default bisync16 configuration structure. The monolithic driver

doesn’t provide any BiSync16 specific protocol support.

3.5.10. GscSio4BiSync16SetConfig and GscSio4BiSync16GetConfig

GscSio4BiSync16SetConfig(…) sets the mode of the specified channel to Sync and sets the current configuration to

the values specified in the config parameter. GscSio4BiSync16GetConfig(…) retrieves the current configuration

from the channel. The monolithic driver doesn’t provide any BiSync16 specific protocol support.

3.5.11. GscSio4BiSync16GetTxCounts

GscSio4BiSync16GetTxCounts(…) is used to retrieve the initial and remaining Tx counts for a channel configured

in bisync16 mode. The monolithic driver doesn’t provide any BiSync16 specific protocol support.

3.5.12. GscSio4BiSync16GetRxCounts

GscSio4BiSync16GetRxCounts(…) is used to retrieve the initial and remaining Rx counts for a channel configured

in bisync16 mode. The monolithic driver doesn’t provide any BiSync16 specific protocol support.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

50

General Standards Corporation, Phone: (256) 880-8787

3.5.13. GscSio4BiSync16EnterHuntMode

GscSio4BiSync16EnterHuntMode(…) is used to cause a channel configured in bisync16 mode to enter hunt mode.

The monolithic driver doesn’t provide any BiSync16 specific protocol support.

3.5.14. GscSio4BiSync16AbortTx

GscSio4BiSync16AbortTx(…) is used to cause a channel configured in bisync16 mode to abort the current

transmission. The monolithic driver doesn’t provide any BiSync16 specific protocol support.

3.5.15. GscSio4BiSync16Pause

GscSio4BiSync16Pause(…) is used to cause a channel configured in bisync16 mode to pause the current

transmission. The monolithic driver doesn’t provide any BiSync16 specific protocol support.

3.5.16. GscSio4BiSync16Resume

GscSio4BiSync16Resume(…) is used to cause a channel configured in bisync16 mode to pause the current

transmission. The monolithic driver doesn’t provide any BiSync16 specific protocol support.

3.6. CTC Protocol Routines

The GSCAPI provide CTC Protocol support. The monolithic driver does not.

3.6.1. GscSio4CTCAddMajorFrame

GscSio4CTCAddMajorFrame(…) adds a CTC major frame to the TX SRAM for the specified channel. The

monolithic driver doesn’t provide any CTC protocol support.

3.6.2. GscSio4CTCAddMinorFrame

GscSio4CTCAddMinorFrame(…) adds a CTC minor frame to the TX SRAM for the specified channel. The

monolithic driver doesn’t provide any CTC protocol support.

3.6.3. GscSio4CTCGetActiveMajorFrame

GscSio4CTCGetActiveMajorFrame(…) returns the frame number of the CTC major frame actively being

transmitted. The monolithic driver doesn’t provide any CTC protocol support.

3.6.4. GscSio4GetActiveMajorFrame

GscSio4GetActiveMajorFrame(…) returns the current configuration structure for a single channel that is set to CTC

mode. The monolithic driver doesn’t provide any CTC protocol support.

3.6.5. GscSio4CTCGetDefaults

GscSio4CTCGetDefaults(…) returns the default CTC configuration structure. The monolithic driver doesn’t provide

any CTC protocol support.

3.6.6. GscSio4CTCReceiveFrames

GscSio4CTCReceiveFrames(…) returns the frame number of the CTC major frame actively being transmitted. The

monolithic driver doesn’t provide any CTC protocol support.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

51

General Standards Corporation, Phone: (256) 880-8787

3.6.7. GscSio4CTCResetTimer

GscSio4CTCResetTimer(…) resets the CTC timer value. The monolithic driver doesn’t provide any CTC protocol

support.

3.6.8. GscSio4CTCSetConfig

GscSio4CTCSetConfig(…) sets the current configuration structure for a single CTC channel. The monolithic driver

doesn’t provide any CTC protocol support.

3.6.9. GscSio4CTCSetTimer

GscSio4CTCSetTimer(…) sets the CTC timer BCD or binary value. The monolithic driver doesn’t provide any CTC

protocol support.

3.6.10. GscSio4CTCSwitchMajorFrame

GscSio4CTCSwitchMajorFrame(…) adds a CTC major frame to TX SRAM for the specified channel and hands off

active CTC transmission to the added major frame, causing the previously transmitting major frame to go dormant.

The monolithic driver doesn’t provide any CTC protocol support.

3.6.11. GscSio4CTCTransmitFrames

GscSio4CTCTransmitFrames(…) transmits a loop of CTC minor frames on the specified channel. The monolithic

driver doesn’t provide any CTC protocol support.

SIO4/8, Porting Guide, From the GSCAPI To the 3.x Series Monolithic Driver

52

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

March 19, 2024 Updated the release date.

November 16, 2023 Updated the release date. Minor editorial changes.

June 15, 2023 Updated the release date. Minor editorial updates.

December 13, 2022 Updated the release date. Minor editorial updates.

September 26, 2022 Initial release.

