

SIO4/8
Four/Eight Channel High Speed Serial I/O

All SIO4 and SIO8 Models
All Form Factors

All Standard Zilog Versions

Isochronous Protocol Library
Reference Manual

Manual Revision: March 19, 2024

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

SIO4/8, Isochronous Protocol Library, Reference Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2014-2024, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or

software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Although extensive editing and reviews are performed before release, General Standards Corporation assumes no

responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are

made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this

documentation.

General Standards Corporation does not assume any liability arising out of the application or use of

documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or

any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,

software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

Zilog and Z16C30 are trademarks of Zilog, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

SIO4/8, Isochronous Protocol Library, Reference Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 6

1.1. Purpose .. 6

1.2. Acronyms ... 6

1.3. Definitions .. 6

1.4. Software Overview .. 6

1.5. Hardware Overview .. 6

1.6. Reference Material .. 7

2. The Isochronous Serial Protocol.. 8

2.1. Description ... 8

3. Library Interface Files ... 9

3.1. Header File .. 9

3.2. Static Library Files ... 9

4. Library Interface .. 10

4.1. High Level Functions .. 10
4.1.1. sio4_isoc_close() .. 10
4.1.2. sio4_isoc_get() ... 10
4.1.3. sio4_isoc_init() ... 10
4.1.4. sio4_isoc_init_data() .. 11
4.1.5. sio4_isoc_ioctl() ... 12
4.1.6. sio4_isoc_open() ... 12
4.1.7. sio4_isoc_read() ... 13
4.1.8. sio4_isoc_set() .. 13
4.1.9. sio4_isoc_show() .. 14
4.1.10. sio4_isoc_write() .. 14

4.2. Low Level Functions ... 15

4.3. Data Structures ... 16
4.3.1. sio4_isoc_t .. 16

5. Operating Information ... 36

5.1. Basic Illustration ... 36

5.2. Getting Started .. 36
5.2.1. Cable Validation ... 37
5.2.2. Customizing the Configuration... 37

5.3. Debugging Aids ... 38
5.3.1. Device Identification .. 38
5.3.2. sio4_isoc_show() .. 38
5.3.3. Detailed Register Dump ... 38

5.4. Clocking Configurations... 39

5.5. Cable Configuration Modes ... 40
5.5.1. DCE/DTE Mode ... 40

SIO4/8, Isochronous Protocol Library, Reference Manual

4

General Standards Corporation, Phone: (256) 880-8787

5.5.2. Legacy Mode .. 40

5.6. Simple Data Transfer ... 41

5.7. Error and Status Detection .. 42
5.7.1. Interrupt Events .. 42
5.7.2. Rx Status Word... 43

5.8. Debugging Aids ... 43
5.8.1. sio4_isoc_show() .. 43
5.8.2. sio4_reg_list() ... 43

5.9. Exclusions .. 44
5.9.1. Global Rx FIFO Full Configuration ... 44

Document History ... 45

SIO4/8, Isochronous Protocol Library, Reference Manual

5

General Standards Corporation, Phone: (256) 880-8787

Table of Figures

Figure 1 A depiction of an Isochronous data stream. .. 8

Figure 2 A functional illustration of an SIO4B or later model board. ... 36

Figure 3 This illustrates the default Isochronous clock routing on SIO4B and later model boards. 40

SIO4/8, Isochronous Protocol Library, Reference Manual

6

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

This document provides information on the Isochronous Protocol Library, which is a library designed to facilitate

use of the Isochronous serial protocol with an SIO4 or SIO8.

1.1. Purpose

The purpose of this document is twofold. First, it is intended to give a basic description of the Isochronous protocol.

Second, it is intended to give a complete description of the Isochronous Protocol Library interface.

1.2. Acronyms

The following is a list of commonly occurring acronyms used throughout this document.

Acronyms Description

DMA Direct Memory Access

GSC General Standards Corporation

PCI Peripheral Component Interconnect

PMC PCI Mezzanine Card

USC Universal Serial Controller

1.3. Definitions

The following is a list of commonly occurring terms used throughout this document.

Term Definition

Application Application means the user mode process, which runs in user space with user mode privileges.

Driver Driver means the executable providing the direct access to the SIO4 hardware.

ISOC This refers to the Isochronous serial protocol.

Library Depending on context, this is a general reference to the Isochronous Protocol Library.

SIO4

This is used as a general reference to any Zilog based board supported by this driver. This includes

both SIO4 and SIO8 model boards. It is also used to refer to revisions of the board that do not

include a suffix following the ‘4’, such as SIO4A or SIO4B.

1.4. Software Overview

The Isochronous Protocol Library is a statically linked library providing an Isochronous centric interface to the SIO4

device driver. The library is provided in source form and must be built before being used. The library is a thin

software layer that sits between an SIO4 application and the SIO4 API Library. The interface provided by the library

is Isochronous specific and is a simplified rendition of the IOCTL services that are part of the overall driver

interface. The library exists in parallel with the driver interface.

1.5. Hardware Overview

NOTE: The SIO8 boards appear to the system as two SIO4 boards.

The SIO4 is a four channel high-speed serial interface I/O board. This board provides for bi-directional serial data

transfers between two computers, or one computer and an external peripheral. Once the data link between the two

devices is established, the desired transfers can be performed and will become transparent to the user. The SIO4

board includes two DMA controllers and comes with a maximum of 256K Bytes of FIFO storage, which is 32K per

channel direction (32K * 2 * 4). Each DMA controller is capable of transferring data to and from host memory;

whereas the FIFO help maintain continuous data transfer at the cable interface. The FIFO configuration can vary

greatly from one SIO4 version to another (i.e. 32K * 2 * 4 to 1K * 2 *1 to none at all). The SIO4 comes with

SIO4/8, Isochronous Protocol Library, Reference Manual

7

General Standards Corporation, Phone: (256) 880-8787

transceivers that are fixed as RS232 or RS485/422, or with transceivers that are configurable. The SIO4 comes in

two basic varieties; SYNC models or Zilog models, which are based on two Z16C30 dual USC chips. Later model

SIO4 boards support both models with the mode being software controlled on a per channel basis. The SIO4 also

provides for interrupt generation for various states of the board like Sync Character detection, FIFO empty, FIFO

full and DMA complete.

NOTE: Software selection of SYNC or Zilog mode of operation is not at this time explicitly

supported by the Protocol Libraries, the SIO4 API Library or the device driver. The operating

mode is controlled by the model ordered.

1.6. Reference Material

The following reference material may be of particular benefit in using the SIO4 and this driver. The specifications

provide the information necessary for an in depth understanding of the specialized features implemented on this

board.

• The applicable SIO4/SIO8 User Manual from General Standards Corporation.

• The applicable SIO4/SIO8 Driver User Manual from General Standards Corporation.

• The PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com/

• The Z16C30 USC User’s Manual from Zilog.

Zilog, Inc.

910 E Hamilton Ave

Campbell, California 95008 USA

Phone: 1-408-558-8500

WEB: Thttp://www.zilog.com/

http://www.plxtech.com/
http://www.zilog.com/

SIO4/8, Isochronous Protocol Library, Reference Manual

8

General Standards Corporation, Phone: (256) 880-8787

2. The Isochronous Serial Protocol

2.1. Description

The Isochronous Serial Protocol is an asynchronous, byte oriented serial transmission protocol synchronized by an

accompanying clock. See Figure 1 below. All activity on the data line, both active and idle periods, is synchronized

with the clock and is in intervals of the clock cycle. Each byte is transmitted with a single Start Bit, one to eight data

bits, an optional Parity Bit, and one or more Stop Bits. A Start Bit is a logic zero on the data line for a single clock

cycle. It begins on a clock boundary with a high to low transition on the data line. A Stop Bit is a logic one on the

data line for a single clock cycle. They begin on a clock boundary immediately following the last data bit, or the

Parity Bit, if it is present. All content in a given stream is the same size. Each byte includes the same number of data

bits, either includes or excludes a Parity Bit, and closes with the same number of Stop Bits. The data bits and the

Parity Bit use NRZ encoding. The idle period between consecutive bytes is an arbitrary number of clock cycles,

including none. On the transmit side, data is clocked out on the clock’s rising edge. On the receive side data is

clocked in on the clock’s falling edge. The data line is held high while the transmitter is idle.

Clock

Data

One Clock Cycle

Start Bit
Parity Bit

(optional)
1 or 2 Stop Bits1 to 8 Data Bits Idle Period

Figure 1 A depiction of an Isochronous data stream.

SIO4/8, Isochronous Protocol Library, Reference Manual

9

General Standards Corporation, Phone: (256) 880-8787

3. Library Interface Files

This section gives general information on the Isochronous Protocol Library interface files.

3.1. Header File

The library’s interface is defined via the header file shown below. To use the Isochronous Protocol Library

applications must include this header file in their sources. Including this header file pulls in all other pertinent SIO4

specific header files. Therefore, sources may include only this one SIO4 header and make files may reference only

this one SIO4 include directory.

File Location
sio4_isoc.h …/sio4/include

3.2. Static Library Files

The executable code for the API defined for the Isochronous Protocol Library is contained in the static library file

sio4_isoc.a, which is identified below. Using this library however, requires linking in other SIO4 specific static

libraries. For this reason, and for ease of use, it is recommended that application make files link in the SIO4 Main

Library instead of the Isochronous static library along with all of its dependencies. The result is that application

make files reference only a single SIO4 static library and only a single SIO4 static library path.

Library File Location

Isochronous Protocol Library sio4_isoc.a …/sio4/lib

SIO4 Main Library sio4_main.a * …/sio4/lib

* Refer to the SIO4 API Library Reference Manual for clarification when using multiple GSC product types in the

same application.

SIO4/8, Isochronous Protocol Library, Reference Manual

10

General Standards Corporation, Phone: (256) 880-8787

4. Library Interface

The library interface is defined via the header file sio4_isoc.h, which is located in the …/sio4/include/

directory.

4.1. High Level Functions

The library header defines the complete Isochronous interface offered by the library, which includes the following

high level function declarations.

4.1.1. sio4_isoc_close()

This function is the entry point to close a connection previously opened to an SIO4 for Isochronous operation. All

resources allocated by the library for the opened device are released as part of the close operation. This includes

freeing allocated memory and closing access to the SIO4 serial channel.

Prototype

int sio4_isoc_close(int fd);

Argument Description
fd This is a file descriptor obtained from sio4_isoc_open() (section 4.1.6, page 12).

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.2. sio4_isoc_get()

This function retrieves the current settings from the SIO4 for each of the referenced structure’s fields. This function

operates mostly by calling the low level functions corresponding to each field of the sio4_isoc_t structure.

Prototype

int sio4_isoc_get(int fd, sio4_isoc_t* isoc, const char** err);

Argument Description

fd This is a file descriptor obtained from sio4_isoc_open() (section 4.1.6, page 12).

isoc

This is the structure where the current settings are recorded (section 4.3.1, page 16). Any

field pertaining to an unsupported feature will be set to -1. The value -2 indicates a

hardware setting that is invalid.

err
In the event of an error this will be set to identify the source of the error. The caller may

provide a NULL pointer.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.3. sio4_isoc_init()

This function initializes the Isochronous Protocol Library and must be the first call into the library.

NOTE: This service initializes the Isochronous Protocol Library as well as the SIO4 API Library.

SIO4/8, Isochronous Protocol Library, Reference Manual

11

General Standards Corporation, Phone: (256) 880-8787

NOTE: This function may be called more than once, but only the first successful call initializes

the library. Any subsequent call has no effect.

Prototype

int sio4_isoc_init(void);

Argument Description

None The function has no arguments.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.4. sio4_isoc_init_data()

This function initializes an sio4_isoc_t structure according to the capabilities of the accessed device and some

basic caller preferences. This function operates mostly by calling the low level functions corresponding to each field

of the sio4_isoc_t structure.

Prototype

int sio4_isoc_init_data(

 int fd,

 const sio4_isoc_init_t* init,

 sio4_isoc_t* isoc,

 const char** err);

Argument Description

fd This is a file descriptor obtained from sio4_isoc_open() (section 4.1.6, page 12).

init
This structure provides the basic information needed prior to initializing the next argument.

See below for more information.
isoc This is the structure that the call will initialize (section 4.3.1, page 16).

err
In the event of an error this will be set to identify the source of the error. The caller may

provide a NULL pointer.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

Data Type

This structure contains information used to configure Isochronous clocking for the USC transmitter and receiver.

typedef struct

{

 s32 tx_bit_rate;

 s32 rx_bit_rate;

} sio4_isoc_init_t;

SIO4/8, Isochronous Protocol Library, Reference Manual

12

General Standards Corporation, Phone: (256) 880-8787

Field Description

tx_bit_rate
This is the desired bit rate for the transmitter. This value must be greater than or equal

to one, and less than or equal to 20,000,000.

rx_bit_rate

This is the desired bit rate for the receiver. This value must be greater than or equal to

one, and less than or equal to 20,000,000. The Rx Bit Rate is provided for

informational purposes only.

4.1.5. sio4_isoc_ioctl()

This function is the entry point to performing IOCTL operations on the device. Refer to the driver reference manual

for complete information on the driver’s set of IOCTL services.

Prototype

int sio4_isoc_ioctl(int fd, int request, void* arg);

Argument Description
fd This is a file descriptor obtained from sio4_isoc_open() (section 4.1.6, page 12).

request This is an IOCTL macro contained in sio4.h or sio4_usc.h.

arg This is the argument required for the above referenced IOCTL service.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.6. sio4_isoc_open()

This function is the entry point to open a connection to an SIO4 serial channel for Isochronous operation. The

handle returned by this call is used for all subsequent access to the specified channel. The file descriptor returned

can be used for access the library’s high level functions, the library’s low level functions, and the driver interface.

NOTE: If the value of the index argument is specified as -1, then the function opens the file

/proc/sio4 for reading. In this case the share argument is ignored.

NOTE: If the value of the index argument is specified as -1, then the file descriptor returned can

be used only with sio4_isoc_read() (section 4.1.6.1, page 13) and sio4_isoc_close()

(section 4.1.1, page 10). It may also be used with the SIO4 API functions sio4_read() and

sio4_close() (refer to the SIO4 Reference Manual). The file descriptor cannot be used with

any other services.

Prototype

int sio4_isoc_open(int index, int share, int* fd);

Argument Description
index This is the zero based index of the SIO4 serial channel to access.

share
Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).

fd

The device handle is returned here. The pointer cannot be NULL. Values returned are as

follows.

Value Description
>= 0 This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

SIO4/8, Isochronous Protocol Library, Reference Manual

13

General Standards Corporation, Phone: (256) 880-8787

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.6.1. Access Modes

The value of the share argument determines the device access mode, as follows.

Shared Access Mode:

If the share argument is non-zero the device in opened in Shared Access Mode. The first such open request will

succeed and return with the device in an initialized state. Subsequent such open requests will also succeed, but will

not alter the device state. Once opened in Shared Access Mode, device access remains in this mode until all Shared

Access Mode open requests release the device with a corresponding close request.

Exclusive Access Mode:

If the share argument is zero the device in opened in Exclusive Access Mode. In this mode, only one application

at a time can access the device. The first such open request will succeed and return with the device in an initialized

state. Subsequent open requests, regardless of the share argument value, will fail until the device is released with a

corresponding close request.

4.1.7. sio4_isoc_read()

This function requests that a buffer of data be read from the serial channel. The request will return either when it has

been fulfilled or the read timeout expires, whichever occurs first. This is a blocking call.

NOTE: All read requests are serialized.

Prototype

int sio4_isoc_read(int fd, void* buf, size_t bytes);

Argument Description
fd This is a file descriptor obtained from sio4_isoc_open() (section 4.1.6, page 12).

buf The data read is placed here.
bytes Read up to this number of bytes.

Return Value Description

0 to bytes

The operation succeeded. This is the number of bytes placed in the buffer. A value less

than bytes generally indicates that the I/O timeout period lapsed before the entire

request could be satisfied.

< 0 An error occurred. This is a negative errno.h value.

4.1.8. sio4_isoc_set()

This function configures an SIO4 channel according to the settings of the referenced sio4_isoc_t structure. All

fields are validated before any settings are applied. This function operates mostly by calling the low level functions

corresponding to each field of the sio4_isoc_t structure.

NOTE: Before calling this function, the structure should, at minimum, be initialized by calling the

sio4_isoc_init_data() function (section 4.1.3, page 10).

SIO4/8, Isochronous Protocol Library, Reference Manual

14

General Standards Corporation, Phone: (256) 880-8787

Prototype

int sio4_isoc_set(

 int fd,

 const sio4_isoc_t* isoc,

 const char** err);

Argument Description

fd This is a file descriptor obtained from sio4_isoc_open() (section 4.1.6, page 12).

isoc This is the structure containing the settings to be applied (section 4.3.1, page 16).

err
In the event of an error this will be set to identify the source of the error. The caller may

provide a NULL pointer.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.9. sio4_isoc_show()

This function displays the content of the referenced sio4_isoc_t structure to the screen. This is provided to

assist debugging efforts. This function operates mostly by calling the low level functions corresponding to each field

of the sio4_isoc_t structure.

Prototype

int sio4_isoc_show(

 int fd,

 const sio4_isoc_t* isoc,

 const char** err);

Argument Description

fd This is a file descriptor obtained from sio4_isoc_open() (section 4.1.6, page 12).

isoc This is the structure whose content will be displayed (section 4.3.1, page 16).

err
In the event of an error this will be set to identify the source of the error. The caller may

provide a NULL pointer.

Return Value Description
0 The operation completed successfully.
< 0 An error occurred. This is a negative errno.h value.

4.1.10. sio4_isoc_write()

This function requests that a buffer of data be written to the serial channel. The request will return either when it has

been fulfilled or the write timeout expires, whichever occurs first. This is a blocking call.

NOTE: All write requests are serialized.

Prototype

int sio4_isoc_write(int fd, const void* buf, size_t bytes);

Argument Description
fd This is a file descriptor obtained from sio4_isoc_open() (section 4.1.6, page 12).

buf This is the source for the data to write.

SIO4/8, Isochronous Protocol Library, Reference Manual

15

General Standards Corporation, Phone: (256) 880-8787

bytes Write at most this number of bytes.

Return

Value
Description

0 to bytes

The operation succeeded. This is the number of bytes written from the buffer. A value less

than bytes generally indicates that the I/O timeout period lapsed before the entire

request could be satisfied.

< 0 An error occurred. This is a negative errno.h value.

4.2. Low Level Functions

The low-level functions provide access to the board features reflected by the individual fields of the sio4_isoc_t

structure (section 4.3.1, page 16). This structure is used to access all of the board features that are part of the

Isochronous Protocol Library. For each structure field there is a corresponding board feature and an associated low

level function. When calling the high level functions that use the sio4_isoc_t structure, the high level functions

perform their work by calling the low level functions for each structure field. This is especially useful for activities

such as structure initialization and board configuration. Following high level configuration of the board though,

there are times when an application may need to access features represented by only a subset of the sio4_isoc_t

structure fields. This is where an application can make use of the low level function. All of the low level functions

follow the prototype pattern shown below. The function naming convention includes the prefix “sio4_isoc_t_”

followed by the C style field name, but with the periods (“.”) replaced by underscores (“_”).

NOTE: The low level functions do not accept NULL pointers.

Prototype

void sio4_isoc_t_field_name(

 int fd,

 s32* arg,

 sio4_isoc_action_t action,

 const char** err);

Argument Description

fd This is a file descriptor obtained from sio4_isoc_open() (section 4.1.6, page 12).

arg
This refers to the feature specific value being passed in to the function. This pointer must

not be NULL.

action
This identifies the specific action to be carried out in regards to the above feature specific

value. See the sio4_isoc_action_t data type below.

err

If there is an error, then this field will be set to point to a string naming the sio4_isoc_t

field for which the error pertains. An example is “isoc-> cable.loopback.mode”.

This pointer must not be NULL.

Data Type

This enumeration identifies the specific action requested when a low level function is called.

typedef enum

{

 SIO4_ISOC_ACTION_GET,

 SIO4_ISOC_ACTION_INIT,

 SIO4_ISOC_ACTION_SET,

 SIO4_ISOC_ACTION_SHOW,

 SIO4_ISOC_ACTION_VERIFY

SIO4/8, Isochronous Protocol Library, Reference Manual

16

General Standards Corporation, Phone: (256) 880-8787

} sio4_isoc_action_t;

Value Description
SIO4_ISOC_ACTION_GET This requests the current setting from the driver.
SIO4_ISOC_ACTION_INIT This requests the initialization value from the library.
SIO4_ISOC_ACTION_SET This requests that the supplied value be applied by the driver.
SIO4_ISOC_ACTION_SHOW This requests that the supplied value be displayed to the screen.
SIO4_ISOC_ACTION_VERIFY This requests that the supplied value be verified.

Examples

For simplicity sake a low level function name can easily be derived given any field name, as shown in the below

examples. The individual low level function names are identified with the corresponding structure fields beginning

in section 4.3.1, page 16.

Field Function
sio4_isoc_t.cable.loopback.mode sio4_isoc_t_cable_loopback_mode()

sio4_isoc_t.rx.encoding sio4_isoc_t_rx_encoding()

sio4_isoc_t.tx.parity.enable sio4_isoc_t_tx_parity_enable()

4.3. Data Structures

The library header file is sio4_isoc.h. Including this header in a source file gives that source the full library and

driver interface. The library header defines the complete Isochronous interface offered by the library, which includes

the following data structures and their associated macros and low level function declarations.

4.3.1. sio4_isoc_t

This structure contains all of the parameters used to configure an SIO4 channel for Isochronous operation. The

structure is initialized with default values by calling the sio4_isoc_init_data() function (section 4.1.3, page

10). Following this call, applications make changes to this structure’s content according to their own requirements.

Afterwards, the structure is passed to the sio4_isoc_set() function (section 4.1.6.1, page 13) where the

settings are applied to the board.

typedef struct

{

 struct

 {

 s32 ref;

 s32 prog;

 } osc;

 Struct // cable

 {

 s32 enable; // PSRCR D31

 s32 mode; // PSRCR D28, DCE or DTE

 s32 protocol; // PSRSR D24-D27

 s32 txc; // PSRCR D6-D8

 s32 txd; // PSRCR D19-D20

 s32 txaux; // PSRCR D17-D18

 s32 dcd; // PSRCR D15-D16

 s32 dtr_dsr; // PSRCR D21-D22

 s32 rts; // PSRCR D13-D14

SIO4/8, Isochronous Protocol Library, Reference Manual

17

General Standards Corporation, Phone: (256) 880-8787

 struct

 {

 s32 mode; // PSRCR D23, D29

 } loopback;

 struct

 {

 s32 enable; // PSRCR D30

 } term;

 struct

 {

 s32 txc; // CCR 0x3333

 s32 txd_cts; // CSR D2-D3

 s32 rxc; // CCR 0xCCCC

 s32 rxd_dcd; // CSR D4-D5

 } legacy;

 } cable;

 Struct // tx

 {

 s32 mode; // USC CMR D8-D11

 s32 enable; // USC TMR D0-D1

 s32 char_len; // USC TMR D2-D4

 s32 encoding; // USC TMR D13-D15

 s32 bit_rate; // reflects sio4_isoc_init_t.tx_bit_rate

 s32 idle_cond; // USC TCSR D8-D10

 struct

 {

 s32 enable; // USC TMR D5

 s32 type; // USC TMR D6-D7

 } parity;

 struct

 {

 s32 size; // FSR D0-D15, read-only

 s32 ae; // TAR D0-D15

 s32 af; // TAR D16-D31

 s32 empty_cfg; // CSR D18, D26

 s32 space_cfg; // CSR D4-D5

 } fifo;

 struct

 {

 s32 dma_thresh; // Block Mode DMA only

 s32 mode;

 s32 pio_thresh;

 s32 timeout;

 s32 overrun;

 } io;

 } tx;

 Struct // rx

SIO4/8, Isochronous Protocol Library, Reference Manual

18

General Standards Corporation, Phone: (256) 880-8787

 {

 s32 mode; // USC CMR D0-D3

 s32 enable; // USC RMR D0-D1

 s32 char_len; // USC RMR D2-D4

 s32 encoding; // USC RMR D13-D15

 s32 bit_rate; // reflects sio4_isoc_init_t.rx_bit_rate

 s32 sync_byte; // SBR D0-D7

 s32 status_word;// CSR D3

 struct

 {

 s32 enable; // USC RMR D5

 s32 type; // USC RMR D6-D7

 } parity;

 struct

 {

 s32 size; // FSR D16-D21, read-only

 s32 ae; // RAR D0-D15

 s32 af; // RAR D16-D31

 s32 full_cfg; // BCR D8

 } fifo;

 struct

 {

 s32 dma_thresh; // Block Mode DMA only

 s32 mode;

 s32 pio_thresh;

 s32 timeout;

 s32 overrun;

 s32 underrun;

 } io;

 struct

 {

 s32 enable; // CSR D2

 s32 clk_src; // BCR D22

 } time_stamp;

 } rx;

 Struct // usc

 {

 s32 mode; // USC CCAR D8-D9

 s32 txd; // USC IOCR D6-D7

 s32 cts; // PSRCR D9-D10, USC IOCR D14-D15

 s32 cts_legacy; // USC IOCR D14-D15

 s32 dcd; // PSRCR D11-D12, USC IOCR D12-D13

 s32 dcd_legacy; // USC IOCR D12-D13

 // All of the folling USC fields are initialized

 // by sio4_isoc_init_data() based on the content of the

 // sio4_isoc_init_t structure.

 struct

 {

 s32 clk_src; // USC CMCR D3-D5

SIO4/8, Isochronous Protocol Library, Reference Manual

19

General Standards Corporation, Phone: (256) 880-8787

 s32 txc; // PSRCR D0-D2, USC IOCR D3-D5

 s32 txc_legacy; // USC IOCR D3-D5

 s32 stop_bits; // USC CMR D14

 } tx;

 struct

 {

 s32 clk_src; // USC CMCR D0-D2

 s32 rxc; // PSRCR D3-D5, USC IOCR D0-D2

 s32 rxc_legacy; // USC IOCR D0-D2

 } rx;

 struct

 {

 s32 enable; // USC HCR D0

 s32 clk_src; // USC CMCR D8-D9

 s32 divider; // USC TC1R D0-D15

 s32 mode; // USC HCR D1

 } brg0;

 struct

 {

 s32 enable; // USC HCR D4

 s32 clk_src; // USC CMCR D10-D11

 s32 divider; // USC TC0R D0-D15

 s32 mode; // USC HCR D5

 } brg1;

 struct

 {

 s32 clk_src; // USC CMCR D12-D13

 s32 rate; // USC HCR D14-D15

 } ctr0;

 struct

 {

 s32 clk_src; // USC CMCR D14-D15

 s32 rate_src; // USC HCR D13, ...

 } ctr1;

 } usc;

} sio4_isoc_t;

4.3.1.1. sio4_isoc_t.osc

This section describes the structure’s oscillator configuration fields.

Field Description
osc This structure configures the oscillator interface.

osc.

ref

This field specifies the frequency of the fixed onboard reference oscillator. The default is 20MHz. The

feature’s low level function is sio4_isoc_t_osc_ref(). This value is provided for informational

purposes only.

SIO4/8, Isochronous Protocol Library, Reference Manual

20

General Standards Corporation, Phone: (256) 880-8787

osc.

prog

This field specifies the desired programmable oscillator frequency. This is essentially the clock frequency

provided by the onboard programmable oscillator to the USC. The default is 20MHz. The feature’s low

level function is sio4_isoc_t_osc_prog(). The value provided is not recorded for later retrieval.

Retrieval requests return one if oscillator programming is supported and zero if it isn’t.

4.3.1.2. sio4_isoc_t.cable

This section describes the structure’s cable configuration fields.

Field Description
cable This structure configures the cable interface.

cable.

enable

This field either enables or disables the cable transceivers. Valid values are given in the table

below. The feature’s low level function is sio4_isoc_t_cable_enable(). Please also read

Cable Configuration Modes (section 5.5, page 40).

Value Description
SIO4_ISOC_CABLE_ENABLE_NO Disable the cable transceivers.

SIO4_ISOC_CABLE_ENABLE_YES
Enable the cable transceivers. This is the default. This

option disables all legacy cable related settings.

cable.

mode

This field specifies the arrangement of the signals on the cable interface. Valid values are given in

the table below. The feature’s low level function is sio4_isoc_t_cable_mode().

Value Description
SIO4_ISOC_CABLE_MODE_DCE Select the DCE cable signal configuration.

SIO4_ISOC_CABLE_MODE_DTE
Select the DTE cable signal configuration. This is the

default.

cable.

Protocol

This field specifies the cable transceiver configuration. The options available depend on the

board’s transceiver capabilities. Valid values are given in the table below. The feature’s low level

function is sio4_isoc_t_cable_protocol().

Value Description

SIO4_ISOC_CABLE_PROTOCOL_RS232
This selects the RS232 protocol. This

is the default.

SIO4_ISOC_CABLE_PROTOCOL_RS422_423_1
This selects the RS422/RS423 mixed

protocol version 1.

SIO4_ISOC_CABLE_PROTOCOL_RS422_423_2
This selects the RS422/RS423 mixed

protocol version 2.

SIO4_ISOC_CABLE_PROTOCOL_RS422_RS485
This selects the RS422/RS485 mixed

protocol.
SIO4_ISOC_CABLE_PROTOCOL_RS423 This selects the RS423 protocol.

SIO4_ISOC_CABLE_PROTOCOL_RS530
This selects the RS530 protocol,

version 1.

SIO4_ISOC_CABLE_PROTOCOL_RS530A
This selects the RS530 protocol,

version 2.

SIO4_ISOC_CABLE_PROTOCOL_V35
This selects the V.35 protocol, version

1.

SIO4_ISOC_CABLE_PROTOCOL_V35A
This selects the V.35 protocol, version

2.

cable.

txc

This field specifies the configuration of the cable’s Tx Clock signal. Valid values are given in the

table below. The feature’s low level function is sio4_isoc_t_cable_txc().

Value Description
SIO4_ISOC_CABLE_TXC_OUT_0 This drives the signal low.
SIO4_ISOC_CABLE_TXC_OUT_1 This drives the signal high.
SIO4_ISOC_CABLE_TXC_OUT_CBL_RXA This drives the signal from what appears at the

SIO4/8, Isochronous Protocol Library, Reference Manual

21

General Standards Corporation, Phone: (256) 880-8787

cable’s Rx Aux signal.

SIO4_ISOC_CABLE_TXC_OUT_CBL_RXC
This drives the signal from what appears at the

cable’s Rx Clock signal.

SIO4_ISOC_CABLE_TXC_OUT_OSC
This drives the signal from the onboard

oscillator.

SIO4_ISOC_CABLE_TXC_OUT_OSC_INV
This drives the signal from the inverted form

of the onboard oscillator.

SIO4_ISOC_CABLE_TXC_OUT_USC_RXC
This drives the signal from what appears at the

USC’s Rx Clock pin.

SIO4_ISOC_CABLE_TXC_OUT_USC_TXC
This drives the signal from what appears at the

USC’s Tx Clock pin. This is the default.

cable.

txd

This field specifies the configuration of the cable’s Tx Data signal. Valid values are given in the

table below. The feature’s low level function is sio4_isoc_t_cable_txd().

Value Description
SIO4_ISOC_CABLE_TXD_OUT_0 This drives the signal low.
SIO4_ISOC_CABLE_TXD_OUT_1 This drives the signal high.

SIO4_ISOC_CABLE_TXD_OUT_USC_TXD
This drives the signal from what appears at the

USC’s Tx Data pin. This is the default.

cable.

txaux

This field specifies the configuration of the cable’s Tx Aux signal. Valid values are given in the

table below. The feature’s low level function is sio4_isoc_t_cable_txaux().

Value Description
SIO4_ISOC_CABLE_TXAUX_OUT_0 This drives the signal low.
SIO4_ISOC_CABLE_TXAUX_OUT_1 This drives the signal high.
SIO4_ISOC_CABLE_TXAUX_OUT_OSC This drives the signal from the onboard oscillator.

SIO4_ISOC_CABLE_TXAUX_TRI
This tri-states the drive segment of the

transceivers. This is the default.

cable.

dcd

This field specifies the cable DCD signal source when the cable signal is driven. Valid values are

given in the table below. The feature’s low level function is sio4_isoc_t_cable_dcd().

NOTE: Refer to the usc.dcd field (section 4.3.1.5, page 30) for affecting the cable signal’s

driven state.

Value Description
SIO4_ISOC_CABLE_DCD_OUT_0 This drives the signal low.
SIO4_ISOC_CABLE_DCD_OUT_1 This drives the signal high.

SIO4_ISOC_CABLE_DCD_OUT_RTS
This drives the signal from the Rx FIFO

Almost Full status. This is the default.

SIO4_ISOC_CABLE_DCD_OUT_USC_DCD
This drives the signal from what appears at the

USC’s DCD pin.

cable.

dtr_dsr

This field specifies the configuration of the cable’s DTR/DSR signal. Valid values are given in the

table below. The feature’s low level function is sio4_isoc_t_cable_dtr_dsr().

Value Description
SIO4_ISOC_CABLE_DTR_DSR_OUT_0 This drives the signal low.
SIO4_ISOC_CABLE_DTR_DSR_OUT_1 This drives the signal high.
SIO4_ISOC_CABLE_DTR_DSR_IN This configures the signal as an input.

SIO4_ISOC_CABLE_DTR_DSR_TRI
This tri-states the drive segment of the

transceivers. This is the default.

cable.

rts

This field specifies the configuration of the cable’s RTS signal. Valid values are given in the table

below. The feature’s low level function is sio4_isoc_t_cable_rts().

Value Description
SIO4_ISOC_CABLE_RTS_OUT_0 This drives the signal low.

SIO4/8, Isochronous Protocol Library, Reference Manual

22

General Standards Corporation, Phone: (256) 880-8787

SIO4_ISOC_CABLE_RTS_OUT_1 This drives the signal high.

SIO4_ISOC_CABLE_RTS_OUT_CTS
This drives the signal from what appears at the

USC’s CTS pin.

SIO4_ISOC_CABLE_RTS_OUT_RTS
This drives the signal from the Rx FIFO Almost Full

status. This is the default.

cable.

loopback
This structure configures the cable’s loopback feature.

cable.

loopback.

mode

This field specifies the loopback mode. Valid values are given in the table below. The feature’s

low level function is sio4_isoc_t_cable_loopback_mode().

Value Description

SIO4_ISOC_LOOPBACK_MODE_DISABLE
This disables loopback operation. This is the

default.
SIO4_ISOC_LOOPBACK_MODE_EXTERNAL This selects the external loopback mode.*†
SIO4_ISOC_LOOPBACK_MODE_INTERNAL This selects the internal loopback mode.†

* If external loopback mode is requested but not available, then the internal loopback mode is

selected.

† Both loopback modes are performed onboard the SIO4; internal inside the USC, external at the

cable interface. For external mode, enable the transceivers and disconnect cabling.
cable.

term

This structure configures the cable’s termination feature. The operation of this feature depends on

the active cable transceiver type.

cable.

term.

enable

This field specifies the configuration of the transceiver’s built-in termination feature. Valid values

are given in the table below. The feature’s low level function is

sio4_isoc_t_cable_term_enable().

Value Description

SIO4_ISOC_CABLE_TERM_ENABLE_NO
The built-in termination is disabled. This is the

default.
SIO4_ISOC_CABLE_TERM_ENABLE_YES The built-in termination is enabled.

cable.

legacy

This structure configures the cable’s legacy interface feature. These fields are utilized if the board

DCE/DTE cable configuration feature is unsupported by the board or is unused. Please also read

Cable Configuration Modes (section 5.5, page 40).

cable.

legacy.

txc

This field specifies the legacy configuration of the cable’s Tx Clock signal. Valid values are given

in the table below. The feature’s low level function is

sio4_isoc_t_cable_legacy_txc(). Please also read Cable Configuration Modes

(section 5.5, page 40).

Value Description
SIO4_ISOC_CABLE_LEGACY_TXC_DISABLE This disables the Tx Clock signal.

SIO4_ISOC_CABLE_LEGACY_TXC_BOTH
This drives the Tx Clock signal on both

the upper and lower group of pins.

SIO4_ISOC_CABLE_LEGACY_TXC_LOW
This drives the Tx Clock signal on the

lower group of pins.

SIO4_ISOC_CABLE_LEGACY_TXC_UP
This drives the Tx Clock signal on the

upper group of pins. This is the default.

cable.

legacy.

txd_cts

This field specifies the legacy configuration of the cable’s Tx Data and CTS signals. Valid values

are given in the table below. The feature’s low level function is

sio4_isoc_t_cable_legacy_txd_cts(). Please also read Cable Configuration Modes

(section 5.5, page 40).

Value Description

SIO4_ISOC_CABLE_LEGACY_TXD_CTS_BOTH
This drives the signals on both the upper

and lower group of pins.

SIO4_ISOC_CABLE_LEGACY_TXD_CTS_LOW
This drives the signals on the lower

group of pins.

SIO4/8, Isochronous Protocol Library, Reference Manual

23

General Standards Corporation, Phone: (256) 880-8787

SIO4_ISOC_CABLE_LEGACY_TXD_CTS_TRI This tri-states the signals.

SIO4_ISOC_CABLE_LEGACY_TXD_CTS_UP
This drives the signals on the upper

group of pins. This is the default.

cable.

legacy.

rxc

This field specifies the legacy configuration of the cable’s Rx Clock signal. Valid values are given

in the table below. The feature’s low level function is

sio4_isoc_t_cable_legacy_rxc(). Please also read Cable Configuration Modes

(section 5.5, page 40).

Value Description
SIO4_ISOC_CABLE_LEGACY_RXC_DISABLE This disables the Rx Clock signal.

SIO4_ISOC_CABLE_LEGACY_RXC_LOW
This drives the Rx Clock signal on the

lower group of pins. This is the default.

SIO4_ISOC_CABLE_LEGACY_RXC_UP
This drives the Rx Clock signal on the

lower group of pins.

cable.

legacy.

rxd_dcd

This field specifies the legacy configuration of the cable’s Rx Data and DCD signals. Valid values

are given in the table below. The feature’s low level function is

sio4_isoc_t_cable_legacy_rxd_dcd(). Please also read Cable Configuration Modes

(section 5.5, page 40).

Value Description
SIO4_ISOC_CABLE_LEGACY_RXD_DCD_DISABLE This disables the signals.

SIO4_ISOC_CABLE_LEGACY_RXD_DCD_LOW
This uses the signals as inputs from

the lower group of pins. This is the

default.

SIO4_ISOC_CABLE_LEGACY_RXD_DCD_UP
This uses the signals as inputs from

the upper group of pins.

4.3.1.3. sio4_isoc_t.tx

This section describes the structure’s transmitter configuration fields.

Field Description
tx This structure configures the transmitter portion of the channel.

tx.

mode

This field specifies the transmitter’s operating mode. Valid values are given in the table below.

The feature’s low level function is sio4_isoc_t_tx_mode().

Value Description

SIO4_ISOC_TX_MODE_ISOC
This selects the Isochronous operating mode. This is the

default and the only valid option for this library.

tx.

enable

This field specifies if the transmitter is to be enabled. When configuration is begun (see

sio4_isoc_set(), section 4.1.6.1, page 13) the transmitter is initialized and disabled. The

option in this field is applied towards the end of the configuration process. Valid values are given

in the table below. The feature’s low level function is sio4_isoc_t_tx_enable().

Value Description

SIO4_ISOC_TX_ENABLE_NO_AFTER
This disables the transmitter after it has finished

the transmission in progress.
SIO4_ISOC_TX_ENABLE_NO_NOW This disables the transmitter immediately.

SIO4_ISOC_TX_ENABLE_YES_NOW
This enables the transmitter immediately. This is

the default.

SIO4_ISOC_TX_ENABLE_YES_W_AE
This enables the transmitter according to the state

of any hardware flow control lines.

SIO4/8, Isochronous Protocol Library, Reference Manual

24

General Standards Corporation, Phone: (256) 880-8787

tx.

char_len

This field specifies if the size of transmitted characters. The length specified does not include the

Parity Bit, if Parity is enabled. The data bits are the lower significant bits of the byte. Valid

values are given in the table below. The feature’s low level function is

sio4_isoc_t_tx_char_len().

Value Description
SIO4_ISOC_TX_CHAR_LEN_1 Characters are 1-bit in length.
SIO4_ISOC_TX_CHAR_LEN_2 Characters are 2-bits in length.
SIO4_ISOC_TX_CHAR_LEN_3 Characters are 3-bits in length.
SIO4_ISOC_TX_CHAR_LEN_4 Characters are 4-bits in length.
SIO4_ISOC_TX_CHAR_LEN_5 Characters are 5-bits in length.
SIO4_ISOC_TX_CHAR_LEN_6 Characters are 6-bits in length.
SIO4_ISOC_TX_CHAR_LEN_7 Characters are 7-bits in length.
SIO4_ISOC_TX_CHAR_LEN_8 Characters are 8-bits in length. This is the default.

tx.

encoding

This field specifies the encoding of the transmitted data. Valid values are given in the table

below. The feature’s low level function is sio4_isoc_t_tx_encoding().

Value Description
SIO4_ISOC_TX_ENCODING_BI_MARK This refers to Biphase Mark encoding.
SIO4_ISOC_TX_ENCODING_BI_LEVEL This refers to Biphase Level encoding.
SIO4_ISOC_TX_ENCODING_BI_SPACE This refers to Biphase Space encoding.

SIO4_ISOC_TX_ENCODING_D_BI_LEVEL
This refers to Differential Biphase Level

encoding.

SIO4_ISOC_TX_ENCODING_NRZ
This refers to NRZ encoding. This is the

default.
SIO4_ISOC_TX_ENCODING_NRZB This refers to NRZB encoding.
SIO4_ISOC_TX_ENCODING_NRZI_MARK This refers to NRZI-Mark encoding.
SIO4_ISOC_TX_ENCODING_NRZI_SPACE This refers to NRZI-Space encoding.

tx.

bit_rate

This specifies the desired transmission bit rate. During the sio4_isoc_init_data() call

(section 4.1.3, page 10) this is set to the sio4_isoc_init_t.tx_bit_rate field value.

The feature’s low level function is sio4_isoc_t_tx_bit_rate(). The Tx Bit Rate is used

when the device is being configured, but the value is not recorded for later retrieval.

tx.

idle_cond

This field specifies what appears on the Tx Data cable signal while no data is being transmitted.

Valid values are given in the table below. The feature’s low level function is

sio4_isoc_t_tx_idle_cond().

Value Description

SIO4_ISOC_TX_IDLE_COND_0
The Tx Data signal outputs a continuous

data “0” value.

SIO4_ISOC_TX_IDLE_COND_0_1
The Tx Data signal is alternately data “0”

and data “1” values.

SIO4_ISOC_TX_IDLE_COND_1
The Tx Data signal outputs a continuous

data “1” value.

SIO4_ISOC_TX_IDLE_COND_DEFAULT
The Tx Data signal is driven with the

pattern that is the default for the selected

serial protocol. This is the default.
SIO4_ISOC_TX_IDLE_COND_MARK The Tx Data signal is held high.

SIO4_ISOC_TX_IDLE_COND_MARK_SPACE
The Tx Data signal is alternately driven

with the high then low.
SIO4_ISOC_TX_IDLE_COND_SPACE The Tx Data signal is held low.

tx.

parity
This structure configures the transmitter’s use of Parity checking.

SIO4/8, Isochronous Protocol Library, Reference Manual

25

General Standards Corporation, Phone: (256) 880-8787

tx.

parity.

enable

This field enables or disables the use of Parity. When used, the Parity Bit appears to the

immediate left of the most significant data bit. Valid values are given in the table below. The

feature’s low level function is sio4_isoc_t_tx_parity_enable().

Value Description

SIO4_ISOC_TX_PARITY_ENABLE_NO
Do not generate a Parity bit. This is the

default.
SIO4_ISOC_TX_PARITY_ENABLE_YES Do generate a Parity bit.

tx.

parity.

type

This field specifies the type of Parity to use, when its use is enabled. Valid values are given in

the table below. The feature’s low level function is sio4_isoc_t_tx_parity_type().

Value Description
SIO4_ISOC_TX_PARITY_TYPE_EVEN This specifies Even Parity. This is the default.
SIO4_ISOC_TX_PARITY_TYPE_ODD This specifies Odd Parity.

SIO4_ISOC_TX_PARITY_TYPE_ONE
This specifies One Parity (the parity bit is

always set).

SIO4_ISOC_TX_PARITY_TYPE_ZERO
This specifies Zero Parity (the parity bit is

always clear).

tx.

fifo
This structure configures the transmitter’s FIFO parameters.

tx.

fifo.

size

This field is filled in by the sio4_isoc_init_data() call (section 4.1.3, page 10) with the

size of the channel’s Tx FIFO. This is offered for informational purposes only. The feature’s low

level function is sio4_isoc_t_tx_fifo_size().

tx.

fifo.

ae

This field specifies the Tx FIFO Almost Empty setting. The Tx FIFO Almost Empty status is

asserted (goes low) when the Tx FIFO contains this number of values, or fewer. The valid value

range is from zero to 0xFFFF. The default is 0x7. The feature’s low level function is

sio4_isoc_t_tx_fifo_ae().

tx.

fifo.

af

This field specifies the Tx FIFO Almost Full setting. The Tx FIFO Almost Full status is asserted

(goes low) when the Tx FIFO contains this number of free spaces, or fewer. The valid value

range is from zero to 0xFFFF. The default is 0x7. The feature’s low level function is

sio4_isoc_t_tx_fifo_af().

tx.

fifo.

empty_cfg

This field configures the transmitter’s reaction to the Tx FIFO becoming empty. Valid values are

given in the table below. The feature’s low level function is

sio4_isoc_t_tx_fifo_empty_cfg().

Value Description

SIO4_ISOC_TX_FIFO_EMPTY_CFG_IGNORE
This specifies that the condition is to be

ignored. This is the default.

SIO4_ISOC_TX_FIFO_EMPTY_CFG_TX_OFF
This specifies that the transmitter be

disabled when the condition occurs.

tx.

fifo.

space_cfg

This field configures the FIFO space allocation between the transmitter and the receiver when the

Tx FIFO and Rx FIFO are of different sizes. Valid values are given in the table below. The

feature’s low level function is sio4_isoc_t_tx_fifo_space_cfg().

Value Description

SIO4_ISOC_TX_FIFO_SPACE_CFG_RX_2X
This specifies that the Rx FIFO be twice

as large as the Tx FIFO. This is the

default.

SIO4_ISOC_TX_FIFO_SPACE_CFG_TX_2X
This specifies that the Tx FIFO be twice

as large as the Rx FIFO.

tx.

io

This structure configures the transmitter’s software settings. These settings are used during

sio4_isoc_write() calls (see section 4.1.10, page 14).

SIO4/8, Isochronous Protocol Library, Reference Manual

26

General Standards Corporation, Phone: (256) 880-8787

tx.

io.

dma_thresh

This field configures the minimum size of Block Mode DMA transfers to be performed by the

write service. If the Tx FIFO has less than the specified amount of available space, then the

driver will wait a single system timer interval before trying again. However, if the Tx FIFO can

accommodate what remains of the current request, or if the output stream appears to be idle, then

the driver will perform a transfer rather than wait for more space. The valid range is any non-

negative value up to the size of the Tx FIFO. The default is 0. The feature’s low level function is

sio4_isoc_t_tx_io_dma_thresh(). Refer to the “Operating Information” section of the

SIO4 Reference Manual for additional information.

tx.

io.

mode

This field selects the mechanism used to transfer data from host memory to the channel’s Tx

FIFO. Valid values are given in the table below. The feature’s low level function is

sio4_isoc_t_tx_io_mode().

Value Description
SIO4_ISOC_TX_IO_MODE_BMDMA This selects Block Mode DMA mode transfers. *
SIO4_ISOC_TX_IO_MODE_DMDMA This selects Demand Mode DMA mode transfers. *
SIO4_ISOC_TX_IO_MODE_PIO This selects PIO mode transfers. This is the default.

* The SIO4 has only two DMA engines. A BMDMA or DMDMA transfer request will fail if

both DMA engines are already in use by other SIO4 channels.

tx.

io.

pio_thresh

This field specifies the threshold for write request sizes that force the use of PIO mode. If a write

request is this size or smaller, then the transfer will automatically use PIO. The valid range is any

non-negative value. The default is 44. The feature’s low level function is

sio4_isoc_t_tx_io_pio_thresh().

tx.

io.

timeout

This field specifies the maximum duration of write requests to the driver. The valid range is from

zero to 3600. The units are seconds. The default is 10 seconds. The value zero tells the driver to

write as much data as possible to the Tx FIFO, but not to wait for additional free space when

none is available. The feature’s low-level function is sio4_isoc_t_tx_io_timeout().

tx.

io.

overrun

This field tells the driver if it is to check for Tx FIFO overrun conditions before proceeding with

write requests. Valid values are given in the table below. The feature’s low level function is

sio4_isoc_t_tx_io_overrun().

Value Description

SIO4_ISOC_TX_IO_OVERRUN_CHECK
This specifies that the driver should check for

overrun conditions. This is the default.

SIO4_ISOC_TX_IO_OVERRUN_IGNORE
This specifies that the driver should not check

for overrun conditions.

4.3.1.4. sio4_isoc_t.rx

This section describes the structure’s receiver configuration fields.

Field Description
rx This structure configures the receiver portion of the channel.

rx.

mode

This field specifies the receiver’s operating mode. Valid values are given in the table below.

The feature’s low level function is sio4_isoc_t_rx_mode().

Value Description

SIO4_ISOC_RX_MODE_ISOC
This selects the Isochronous operating mode. This is the

default and the only valid option for this library.

rx.

enable

This field specifies if the receiver is to be enabled. When configuration is begun (see

sio4_isoc_set(), section 4.1.6.1, page 13) the receiver is initialized and disabled. The

option in this field is applied towards the end of the configuration process. Valid values are

given in the table below. The feature’s low level function is sio4_isoc_t_rx_enable().

Value Description
SIO4_ISOC_RX_ENABLE_NO_AFTER This disables the receiver after it has finished

SIO4/8, Isochronous Protocol Library, Reference Manual

27

General Standards Corporation, Phone: (256) 880-8787

the reception in progress.
SIO4_ISOC_RX_ENABLE_NO_NOW This disables the receiver immediately.

SIO4_ISOC_RX_ENABLE_YES_NOW
This enables the receiver immediately. This is

the default.

SIO4_ISOC_RX_ENABLE_YES_W_AE
This enables the receiver according to the state

of any hardware flow control lines.

rx.

char_len

This field specifies the size of received characters. The length specified does not include the

Parity Bit, if Parity is enabled. The data bits are the lower significant bits of the byte. Valid

values are given in the table below. The feature’s low level function is

sio4_isoc_t_rx_char_len().

Value Description
SIO4_ISOC_RX_CHAR_LEN_1 Characters are 1-bit in length.
SIO4_ISOC_RX_CHAR_LEN_2 Characters are 2-bits in length.
SIO4_ISOC_RX_CHAR_LEN_3 Characters are 3-bits in length.
SIO4_ISOC_RX_CHAR_LEN_4 Characters are 4-bits in length.
SIO4_ISOC_RX_CHAR_LEN_5 Characters are 5-bits in length.
SIO4_ISOC_RX_CHAR_LEN_6 Characters are 6-bits in length.
SIO4_ISOC_RX_CHAR_LEN_7 Characters are 7-bits in length.
SIO4_ISOC_RX_CHAR_LEN_8 Characters are 8-bits in length. This is the default.

rx.

encoding

This field specifies the encoding of the received data. Valid values are given in the table below.

The feature’s low level function is sio4_isoc_t_rx_encoding().

Value Description
SIO4_ISOC_RX_ENCODING_BI_MARK This refers to Biphase Mark encoding.
SIO4_ISOC_RX_ENCODING_BI_LEVEL This refers to Biphase Level encoding.
SIO4_ISOC_RX_ENCODING_BI_SPACE This refers to Biphase Space encoding.

SIO4_ISOC_RX_ENCODING_D_BI_LEVEL
This refers to Differential Biphase Level

encoding.

SIO4_ISOC_RX_ENCODING_NRZ
This refers to NRZ encoding. This is the

default.
SIO4_ISOC_RX_ENCODING_NRZB This refers to NRZB encoding.
SIO4_ISOC_RX_ENCODING_NRZI_MARK This refers to NRZI-Mark encoding.
SIO4_ISOC_RX_ENCODING_NRZI_SPACE This refers to NRZI-Space encoding.

rx.

bit_rate

This specifies the receive data bit rate. During the sio4_isoc_init_data() call (section

4.1.3, page 10) this is set to the sio4_isoc_init_t.rx_bit_rate field provided to the

call. The feature’s low level function is sio4_isoc_t_rx_bit_rate().The Rx Bit Rate

is provided for informational purposes only and is not recorded for later retrieval.

rx.

sync_byte

This specifies the value to be compared to received data as the data enters the Rx FIFO (the one

outside the USC). This comparison can be used for interrupt generation. Valid values are from

zero to 0xFF. The default is zero. The feature’s low level function is

sio4_isoc_t_rx_sync_byte().

rx.

status_word

This field controls whether the firmware will place the USC Receive Control/Status Register in

the Rx FIFO along with the received data. Valid values are given in the table below. The

feature’s low level function is sio4_isoc_t_rx_status_word().

Value Description

SIO4_ISOC_RX_STATUS_WORD_DISABLE
The RCSR is not placed in the Rx FIFO.

This is the default.
SIO4_ISOC_RX_STATUS_WORD_ENABLE The RCSR is placed in the Rx FIFO.

rx.

parity
This structure configures the receiver’s use of Parity checking.

SIO4/8, Isochronous Protocol Library, Reference Manual

28

General Standards Corporation, Phone: (256) 880-8787

rx.

parity.

enable

This field enables or disables the use of Parity. When enabled, the character size does not

include the Parity Bit. When used, the Parity Bit appears to the immediate left of the most

significant data bit. Valid values are given in the table below. The feature’s low level function

is sio4_isoc_t_rx_parity_enable().

Value Description

SIO4_ISOC_RX_PARITY_ENABLE_NO
Do not generate a Parity bit. This is the

default.
SIO4_ISOC_RX_PARITY_ENABLE_YES Do generate a Parity bit.

rx.

parity.

type

This field specifies the type of Parity to use, when its use is enabled. Valid values are given in

the table below. The feature’s low level function is sio4_isoc_t_rx_parity_type().

Value Description
SIO4_ISOC_RX_PARITY_TYPE_EVEN This specifies Even Parity. This is the default.
SIO4_ISOC_RX_PARITY_TYPE_ODD This specifies Odd Parity.

SIO4_ISOC_RX_PARITY_TYPE_ONE
This specifies One Parity (the parity bit is

always set).

SIO4_ISOC_RX_PARITY_TYPE_ZERO
This specifies Zero Parity (the parity bit is

always clear).

rx.

fifo
This structure configures the receiver’s FIFO parameters.

rx.

fifo.

size

This field is filled in by the sio4_isoc_init() call (section 4.1.3, page 10) with the size of

the channel’s Rx FIFO. This is offered for informational purposes only. The feature’s low level

function is sio4_isoc_t_rx_fifo_size().

rx.

fifo.

ae

This field specifies the Rx FIFO Almost Empty setting. The Rx FIFO Almost Empty status is

asserted (goes low) when the Rx FIFO contain this number of values, or fewer. The valid value

range is from zero to 0xFFFF. The default is 0x7. The feature’s low level function is

sio4_isoc_t_rx_fifo_ae().

rx.

fifo.

af

This field specifies the Rx FIFO Almost Full setting. The Rx FIFO Almost Full status is

asserted (goes low) when the Rx FIFO contain this number of values, or fewer. The valid value

range is from zero to 0xFFFF. The default is 0x7. The feature’s low level function is

sio4_isoc_t_rx_fifo_af().

rx.

fifo.

full_cfg

This field configures the receiver’s reaction to the Rx FIFO becoming full. Valid values are

given in the table below. The feature’s low level function is

sio4_isoc_t_rx_fifo_full_cfg(). This field refers to the channel specific setting,

when supported. The corresponding global setting is not supported by the Isochronous Protocol

Library because it affects channels other than the one being accessed. The global setting must

be handled separately by the application.

Value Description

SIO4_ISOC_RX_FIFO_FULL_CFG_DISABLE
This specifies that the receiver be

disabled when the condition occurs.

SIO4_ISOC_RX_FIFO_FULL_CFG_OVER
This specifies that the condition

produce an overflow. This is the

default.

rx.

io

This structure configures the receiver’s software settings. These settings are used during

sio4_isoc_read() calls (section 4.1.6.1, page 13).

rx.

io.

dma_thresh

This field specifies the minimum size of Block Mode DMA transfers when the driver needs to

wait for additional data to become available in the Rx FIFO. If data is available in the Rx FIFO,

but it is less than the specified threshold and won’t fulfill the request, then the driver will wait

for additional data become available. The wait period is one system timer tick. The valid range

is any non-negative value up to the size of the Rx FIFO. The default is 0. The feature’s low

level function is sio4_isoc_t_rx_io_dma_thresh(). Refer to the “Operating

Information” section of the SIO4 Reference Manual for additional information.

SIO4/8, Isochronous Protocol Library, Reference Manual

29

General Standards Corporation, Phone: (256) 880-8787

rx.

io.

mode

This field selects the mechanism used to transfer data from the channel’s Rx FIFO to host

memory. Valid values are given in the table below. The feature’s low level function is

sio4_isoc_t_rx_io_mode().

Value Description
SIO4_ISOC_RX_IO_MODE_BMDMA This selects Block Mode DMA mode transfers. *
SIO4_ISOC_RX_IO_MODE_DMDMA This selects Demand Mode DMA mode transfers. *
SIO4_ISOC_RX_IO_MODE_PIO This selects PIO mode transfers. This is the default.

* The SIO4 has only two DMA engines. A BMDMA or DMDMA transfer request will fail if

both DMA engines are already in use by other SIO4 channels.

rx.

io.

pio_thresh

This field specifies the threshold for read request sizes that force the use of PIO mode. If a read

request is this size or smaller, then the transfer will automatically use PIO. The valid range is

any non-negative value. The default is 44. The feature’s low level function is

sio4_isoc_t_rx_io_pio_thresh().

rx.

io.

timeout

This field specifies the maximum duration of read requests to the driver. The valid range is

from zero to 3600. The units are seconds. The default is 10 seconds. The value zero tells the

driver to read as much data as possible from the Rx FIFO, but not to wait for additional data

when none is available. The feature’s low-level function is

sio4_isoc_t_rx_io_timeout().

rx.

io.

overrun

This field tells the driver if it is to check for Rx FIFO overrun conditions before proceeding

with read requests. Valid values are given in the table below. The feature’s low level function is

sio4_isoc_t_rx_io_overrun().

Value Description

SIO4_ISOC_RX_IO_OVERRUN_CHECK
This specifies that the driver check for

overrun conditions. This is the default.

SIO4_ISOC_RX_IO_OVERRUN_IGNORE
This specifies that the driver not check for

overrun conditions.

rx.

io.

underrun

This field tells the driver if it is to check for Rx FIFO underrun conditions before proceeding

with read requests. Valid values are given in the table below. The feature’s low level function is

sio4_isoc_t_rx_io_underrun().

Value Description

SIO4_ISOC_RX_IO_UNDERRUN_CHECK
This specifies that the driver check for

underrun conditions. This is the default.

SIO4_ISOC_RX_IO_UNDERRUN_IGNORE
This specifies that the driver not check for

underrun conditions.

rx.

time_stamp
This structure configures the receiver’s Time Stamp settings.

rx.

time_stamp.

enable

This field enables or disables the channel’s use of the Time Stamp feature. Valid values are

given in the table below. The feature’s low level function is

sio4_isoc_t_rx_time_stamp_enable().

Value Description

SIO4_ISOC_RX_TIME_STAMP_ENABLE_NO
Do not use the Time Stamp feature.

This is the default.
SIO4_ISOC_RX_TIME_STAMP_ENABLE_YES Do use the Time Stamp feature.

rx.

time_stamp.

clk_src

This field selects the Time Stamp clock source. Valid values are given in the table below. The

feature’s low level function is sio4_isoc_t_rx_time_stamp_clk_src().

Value Description

SIO4_ISOC_RX_TIME_STAMP_CLK_SRC_EXT
Use the board’s external TTL clock

source. *

SIO4_ISOC_RX_TIME_STAMP_CLK_SRC_INT
Use the board’s internal 1us clock.

This is the default. *

* All four channels on the SIO4 use the same clock source.

SIO4/8, Isochronous Protocol Library, Reference Manual

30

General Standards Corporation, Phone: (256) 880-8787

4.3.1.5. sio4_isoc_t.usc

This section describes the structure’s USC configuration fields.

Field Description
usc This structure configures the remaining USC portion of the channel.

usc.

mode

This field specifies the USC’s overall operating mode. Valid values are given in the table below.

The feature’s low level function is sio4_isoc_t_usc_mode().

Value Description
SIO4_ISOC_USC_MODE_AUTO_ECHO This is the USC’s Auto Echo mode.
SIO4_ISOC_USC_MODE_LOOPBACK_EXT This is the USC’s external loopback mode.
SIO4_ISOC_USC_MODE_LOOPBACK_INT This is the USC’s internal loopback mode.

SIO4_ISOC_USC_MODE_NORMAL
This is the USC’s normal operating mode.

This is the default.

usc.

txd

This field configures the operation of the USC’s Tx Data pin. Valid values are given in the table

below. The feature’s low level function is sio4_isoc_t_usc_txd().

Value Description
SIO4_ISOC_USC_TXD_OUT_0 The pin is driven low.
SIO4_ISOC_USC_TXD_OUT_1 The pin is driven high.

SIO4_ISOC_USC_TXD_OUT_TXD
The pin is driven from the transmitter’s Tx Data

signal. This is the default.
SIO4_ISOC_USC_TXD_TRI The pin is tri-stated.

usc.

cts

This field configures the operation of the USC’s CTS pin. Valid values are given in the table

below. The feature’s low level function is sio4_isoc_t_usc_cts().

Value Description
SIO4_ISOC_USC_CTS_OUT_0 The pin is driven low.
SIO4_ISOC_USC_CTS_OUT_1 The pin is driven high.

SIO4_ISOC_USC_CTS_IN_CBL_CTS
The pin is an input driver from the cable’s CTS

signal.
SIO4_ISOC_USC_CTS_TRI The pin is tri-stated. This is the default.

usc.

cts_legacy

This field configures the operation of the USC’s CTS pin for legacy mode cable interface

configurations. Valid values are given in the table below. The feature’s low level function is

sio4_isoc_t_usc_cts_legacy(). Please also read Cable Configuration Modes (section

5.5, page 40).

Value Description

SIO4_ISOC_USC_TX_CTS_LEG_IN
The pin operates as an input. This is the

default.
SIO4_ISOC_USC_TX_CTS_LEG_OUT_0 The pin operates as an output driven low.
SIO4_ISOC_USC_TX_CTS_LEG_OUT_1 The pin operates as an output driven high.

usc.

dcd

This field configures the operation of the USC’s DCD pin. Valid values are given in the table

below. The feature’s low level function is sio4_isoc_t_usc_dcd().

Value Description
SIO4_ISOC_USC_DCD_DISABLE The pin is disabled. This is the default.

SIO4_ISOC_USC_DCD_IN_DCD_CBL_DCD
The pin is an input for the receiver’s DCD

function and is driven from the cable’s

DCD signal.

SIO4_ISOC_USC_DCD_IN_SYNC_CBL_DCD
The pin is an input for the receiver’s

SYNC function and is driven from the

cable’s DCD signal.
SIO4_ISOC_USC_DCD_OUT_0 The pin is driven low. *

SIO4/8, Isochronous Protocol Library, Reference Manual

31

General Standards Corporation, Phone: (256) 880-8787

SIO4_ISOC_USC_DCD_OUT_1 The pin is driven high. *

* This option enables the cable DCD signal to be driven, though the cable.dcd field (section

4.3.1.2, page 20) may configure the cable to output an alternate signal.

usc.

dcd_legacy

This field configures the operation of the USC’s DCD pin for legacy mode cable interface

configurations. Valid values are given in the table below. The feature’s low level function is

sio4_isoc_t_usc_dcd_legacy(). Please also read Cable Configuration Modes (section

5.5, page 40).

Value Description

SIO4_ISOC_USC_DCD_LEG_IN_DCD
The pin operates as a DCD input. This is the

default.
SIO4_ISOC_USC_DCD_LEG_IN_SYNC The pin operates as a SYNC input.
SIO4_ISOC_USC_DCD_LEG_OUT_0 The pin operates as an output driven low.
SIO4_ISOC_USC_DCD_LEG_OUT_1 The pin operates as an output driven high.

usc.

tx
This structure configures the remaining USC transmitter settings.

usc.

tx.

clk_src

This field configures the source for the USC transmitter clock. Valid values are given in the table

below. The feature’s low level function is sio4_isoc_t_usc_tx_clk_src().

Value Description
SIO4_ISOC_USC_TX_CLK_SRC_BRG0 Select Baud Rate Generator 0.
SIO4_ISOC_USC_TX_CLK_SRC_BRG1 Select Baud Rate Generator 1.
SIO4_ISOC_USC_TX_CLK_SRC_CTR0 Select Counter 0.
SIO4_ISOC_USC_TX_CLK_SRC_CTR1 Select Counter 1.
SIO4_ISOC_USC_TX_CLK_SRC_DISABLE Disable the transmitter.
SIO4_ISOC_USC_TX_CLK_SRC_DPLL Select the DPLL.
SIO4_ISOC_USC_TX_CLK_SRC_RXC_PIN Select the Rx Clock pin.
SIO4_ISOC_USC_TX_CLK_SRC_TXC_PIN Select the Tx Clock pin. This is the default.

usc.

tx.

txc

This field configures the operation of the USC’s Tx Clock pin. Valid values are given in the table

below. The feature’s low level function is sio4_isoc_t_usc_tx_txc().

Value Description
SIO4_ISOC_USC_TX_TXC_IN_0 The pin is an input driven low.
SIO4_ISOC_USC_TX_TXC_IN_1 The pin is an input driven high.

SIO4_ISOC_USC_TX_TXC_IN_CBL_RXAUX
The pin is an input driven from the cable’s

Rx Aux signal.

SIO4_ISOC_USC_TX_TXC_IN_CBL_RXC
The pin is an input driven from the cable’s

Rx Clock signal.

SIO4_ISOC_USC_TX_TXC_IN_OSC
The pin is an input driven from the

onboard oscillator.

SIO4_ISOC_USC_TX_TXC_IN_OSC_INV
The pin is an input driven from the

inverted onboard oscillator.

SIO4_ISOC_USC_TX_TXC_OUT_BRG0
The pin is an output driven from Baud

Rate Generator 0.

SIO4_ISOC_USC_TX_TXC_OUT_BRG1
The pin is an output driven from Baud

Rate Generator 1.

SIO4_ISOC_USC_TX_TXC_OUT_BYTE_CLK
The pin is an output driven from the

transmitter’s Byte Clock.

SIO4_ISOC_USC_TX_TXC_OUT_CLK
The pin is an output driven from the

transmit clock. This is the default.

SIO4_ISOC_USC_TX_TXC_OUT_COMP
The pin is an output driven from the

transmit complete signal.

SIO4_ISOC_USC_TX_TXC_OUT_CTR1
The pin is an output driven from Counter

1.

SIO4/8, Isochronous Protocol Library, Reference Manual

32

General Standards Corporation, Phone: (256) 880-8787

SIO4_ISOC_USC_TX_TXC_OUT_DPLL_TX
The pin is an output driven from the

transmit clock from the DPLL.

usc.

tx.

txc_legacy

This field configures the operation of the USC’s Tx Clock pin for legacy mode cable interface

configurations. Valid values are given in the table below. The feature’s low level function is

sio4_isoc_t_usc_tx_txc_legacy(). Please also read Cable Configuration Modes

(section 5.5, page 40).

Value Description
SIO4_ISOC_USC_TX_TXC_LEG_IN The pin operates as an input.

SIO4_ISOC_USC_TX_TXC_LEG_OUT_BRG0
The pin is an output driven from

Baud Rate Generator 0.

SIO4_ISOC_USC_TX_TXC_LEG_OUT_BRG1
The pin is an output driven from

Baud Rate Generator 1.

SIO4_ISOC_USC_TX_TXC_LEG_OUT_BYTE_CLK
The pin is an output driven from the

transmitter’s Byte Clock.

SIO4_ISOC_USC_TX_TXC_LEG_OUT_CLK
The pin is an output driven from the

transmit clock. This is the default.

SIO4_ISOC_USC_TX_TXC_LEG_OUT_COMP
The pin is an output driven from the

transmit complete signal.

SIO4_ISOC_USC_TX_TXC_LEG_OUT_CTR1
The pin is an output driven from

Counter 1.

SIO4_ISOC_USC_TX_TXC_LEG_OUT_DPLL_TX
The pin is an output driven from the

transmit clock from the DPLL.

usc.

tx.

stop_bits

This field configures the number of Stop Bits injected by the transmitter after each data byte.

Valid values are given in the table below. The feature’s low level function is

sio4_isoc_t_usc_tx_stop_bits().

Value Description
SIO4_ISOC_USC_TX_STOP_BITS_1 This refers to a single stop bit. This is the default.
SIO4_ISOC_USC_TX_STOP_BITS_2 This refers to two stop bits.

usc.

rx
This structure configures the remaining USC receiver settings.

usc.

rx.

clk_src

This field configures the source for the USC receiver clock. Valid values are given in the table

below. The feature’s low level function is sio4_isoc_t_usc_rx_clk_src().

Value Description
SIO4_ISOC_USC_RX_CLK_SRC_BRG0 Select Baud Rate Generator 0.
SIO4_ISOC_USC_RX_CLK_SRC_BRG1 Select Baud Rate Generator 1.
SIO4_ISOC_USC_RX_CLK_SRC_CTR0 Select Counter 0.
SIO4_ISOC_USC_RX_CLK_SRC_CTR1 Select Counter 1.
SIO4_ISOC_USC_RX_CLK_SRC_DISABLE Disable the receiver.
SIO4_ISOC_USC_RX_CLK_SRC_DPLL Select the DPLL.
SIO4_ISOC_USC_RX_CLK_SRC_RXC_PIN Select the Rx Clock pin. This is the default.
SIO4_ISOC_USC_RX_CLK_SRC_TXC_PIN Select the Tx Clock pin.

usc.

rx.

rxc

This field configures the operation of the USC’s Rx Clock pin. Valid values are given in the table

below. The feature’s low level function is sio4_isoc_t_usc_rx_rxc().

Value Description
SIO4_ISOC_USC_RX_RXC_IN_0 The pin is an input driven low.
SIO4_ISOC_USC_RX_RXC_IN_1 The pin is an input driven high.

SIO4_ISOC_USC_RX_RXC_IN_CBL_RXAUX
The pin is an input driven from the cable’s

Rx Aux signal.

SIO4_ISOC_USC_RX_RXC_IN_CBL_RXC
The pin is an input driven from the cable’s

Rx Clock signal. This is the default.
SIO4_ISOC_USC_RX_RXC_IN_OSC The pin is an input driven from the

SIO4/8, Isochronous Protocol Library, Reference Manual

33

General Standards Corporation, Phone: (256) 880-8787

onboard oscillator.

SIO4_ISOC_USC_RX_RXC_IN_OSC_INV
The pin is an input driven from the

inverted onboard oscillator.

SIO4_ISOC_USC_RX_RXC_OUT_BRG0
The pin is an output driven from Baud

Rate Generator 0.

SIO4_ISOC_USC_RX_RXC_OUT_BRG1
The pin is an output driven from Baud

Rate Generator 1.

SIO4_ISOC_USC_RX_RXC_OUT_BYTE_CLK
The pin is an output driven from the

receiver’s Byte Clock.

SIO4_ISOC_USC_RX_RXC_OUT_CLK
The pin is an output driven from the

receiver clock.

SIO4_ISOC_USC_RX_RXC_OUT_CTR0
The pin is an output driven from Counter

0.

SIO4_ISOC_USC_RX_RXC_OUT_DPLL_RX
The pin is an output driven from the

DPLL receiver clock.

SIO4_ISOC_USC_RX_RXC_OUT_SYNC
The pin is an output driven from the

receiver’s SYNC signal.

usc.

rx.

rxc_legacy

This field configures the operation of the USC’s Rx Clock pin for legacy mode cable interface

configurations. Valid values are given in the table below. The feature’s low level function is

sio4_isoc_t_usc_rx_rxc_legacy(). Please also read Cable Configuration Modes

(section 5.5, page 40).

Value Description

SIO4_ISOC_USC_RX_RXC_LEG_IN
The pin is an input. This is the

default.

SIO4_ISOC_USC_RX_RXC_LEG_OUT_BRG0
The pin is an output driven from

Baud Rate Generator 0.

SIO4_ISOC_USC_RX_RXC_LEG_OUT_BRG1
The pin is an output driven from

Baud Rate Generator 1.

SIO4_ISOC_USC_RX_RXC_LEG_OUT_BYTE_CLK
The pin is an output driven from the

receiver’s Byte Clock.

SIO4_ISOC_USC_RX_RXC_LEG_OUT_CLK
The pin is an output driven from the

receiver clock.

SIO4_ISOC_USC_RX_RXC_LEG_OUT_CTR0
The pin is an output driven from

Counter 0.

SIO4_ISOC_USC_RX_RXC_LEG_OUT_DPLL_RX
The pin is an output driven from the

DPLL receiver clock.

SIO4_ISOC_USC_RX_RXC_LEG_OUT_SYNC
The pin is an output driven from the

receiver’s SYNC signal.

usc.

brg0
This structure configures settings for Baud Rate Generator 0 (BRG0).

usc.

brg0.

enable

This field enables or disabled Baud Rate Generator 0. Valid values are given in the table below.

The feature’s low level function is sio4_isoc_t_usc_brg0_enable().

Value Description
SIO4_ISOC_USC_BRG0_ENABLE_NO This disables BRG0. This is the default.
SIO4_ISOC_USC_BRG0_ENABLE_YES This enables BRG0.

usc.

brg0.

clk_src

This field selects the clock source for Baud Rate Generator 0. Valid values are given in the table

below. The feature’s low level function is sio4_isoc_t_usc_brg0_clk_src().

Value Description

SIO4_ISOC_USC_BRG0_CLK_SRC_CTR0
This selects the output from Counter 0.

This is the default.
SIO4_ISOC_USC_BRG0_CLK_SRC_CTR1 This selects the output from Counter 1.
SIO4_ISOC_USC_BRG0_CLK_SRC_RXC_PIN This selects the signal present at the

SIO4/8, Isochronous Protocol Library, Reference Manual

34

General Standards Corporation, Phone: (256) 880-8787

USC’s Rx Clock pin.

SIO4_ISOC_USC_BRG0_CLK_SRC_TXC_PIN
This selects the signal present at the

USC’s Tx Clock pin.

usc.

brg0.

divider

This field specifies the clock divider value for Baud Rate Generator 0. The valid value range is

from zero to 0xFFFF. The default is zero. The feature’s low level function is

sio4_isoc_t_usc_brg0_divider().

usc.

brg0.

mode

This field specifies the Baud Rate Generator 0 operating mode. Valid values are given in the

table below. The feature’s low level function is sio4_isoc_t_usc_brg0_mode().

Value Description

SIO4_ISOC_USC_BRG0_MODE_CONT
This selects continuous operation. This is the

default.

SIO4_ISOC_USC_BRG0_MODE_SINGLE
This selects single shot mode, in which

clocking stops when the counter value reaches

zero.

usc.

brg1
This structure configures settings for Baud Rate Generator 1 (BRG1).

usc.

brg1.

enable

This field enables or disabled Baud Rate Generator 1. Valid values are given in the table below.

The feature’s low level function is sio4_isoc_t_usc_brg1_enable().

Value Description
SIO4_ISOC_USC_BRG1_ENABLE_NO This disables BRG1. This is the default.
SIO4_ISOC_USC_BRG1_ENABLE_YES This enables BRG1.

usc.

brg1.

clk_src

This field selects the clock source for Baud Rate Generator 1. Valid values are given in the table

below. The feature’s low level function is sio4_isoc_t_usc_brg1_clk_src().

Value Description
SIO4_ISOC_USC_BRG1_CLK_SRC_CTR0 This selects the output from Counter 0.

SIO4_ISOC_USC_BRG1_CLK_SRC_CTR1
This selects the output from Counter 1.

This is the default.

SIO4_ISOC_USC_BRG1_CLK_SRC_RXC_PIN
This selects the signal present at the

USC’s Rx Clock pin.

SIO4_ISOC_USC_BRG1_CLK_SRC_TXC_PIN
This selects the signal present at the

USC’s Tx Clock pin.

usc.

brg1.

divider

This field specifies the clock divider value for Baud Rate Generator 1. The valid value range is

from zero to 0xFFFF. The default is zero. The feature’s low level function is

sio4_isoc_t_usc_brg1_divider().

usc.

brg1.

mode

This field specifies the Baud Rate Generator 1 operating mode. Valid values are given in the

table below. The feature’s low level function is sio4_isoc_t_usc_brg1_mode().

Value Description

SIO4_ISOC_USC_BRG1_MODE_CONT
This selects continuous operation. This is the

default.

SIO4_ISOC_USC_BRG1_MODE_SINGLE
This selects single shot mode, in which

clocking stops when the counter value reaches

zero.

usc.

ctr0
This structure configures settings for Counter 0 (CTR0).

usc.

ctr0.

clk_src

This field selects the clock source for Counter 0. Valid values are given in the table below. The

feature’s low level function is sio4_isoc_t_usc_ctr0_clk_src().

Value Description

SIO4_ISOC_USC_CTR0_CLK_SRC_DISABLE
This disables Counter 0. This is the

default.
SIO4_ISOC_USC_CTR0_CLK_SRC_RXC_PIN This selects the signal present at the

SIO4/8, Isochronous Protocol Library, Reference Manual

35

General Standards Corporation, Phone: (256) 880-8787

USC’s Rx Clock pin.

SIO4_ISOC_USC_CTR0_CLK_SRC_TXC_PIN
This selects the signal present at the

USC’s Tx Clock pin.

usc.

ctr0.

rate

This field selects the divider rate for Counter 0. Valid values are given in the table below. The

feature’s low level function is sio4_isoc_t_usc_ctr0_rate().

Value Description
SIO4_ISOC_USC_CTR0_RATE_4X This sets the output as the input divided by four.
SIO4_ISOC_USC_CTR0_RATE_8X This sets the output as the input divided by eight.
SIO4_ISOC_USC_CTR0_RATE_16X This sets the output as the input divided by 16.

SIO4_ISOC_USC_CTR0_RATE_32X
This sets the output as the input divided by 32.

This is the default.

usc.

ctr1
This structure configures settings for Counter 1 (CTR1).

usc.

ctr1.

clk_src

This field selects the clock source for Counter 1. Valid values are given in the table below. The

feature’s low level function is sio4_isoc_t_usc_ctr1_clk_src().

Value Description

SIO4_ISOC_USC_CTR1_CLK_SRC_DISABLE
This disables Counter 1. This is the

default.

SIO4_ISOC_USC_CTR1_CLK_SRC_RXC_PIN
This selects the signal present at the

USC’s Rx Clock pin.

SIO4_ISOC_USC_CTR1_CLK_SRC_TXC_PIN
This selects the signal present at the

USC’s Tx Clock pin.

usc.

ctr1.

rate_src

This field selects the source for the rate divider used by Counter 1. Valid values are given in the

table below. The feature’s low level function is sio4_isoc_t_usc_ctr1_rate_src().

Value Description
SIO4_ISOC_USC_CTR1_RATE_SRC_CTR0 This selects the rate divider used by CTR0.

SIO4_ISOC_USC_CTR1_RATE_SRC_DPLL
This selects the rate divider used by the

DPLL. This is the default.

SIO4/8, Isochronous Protocol Library, Reference Manual

36

General Standards Corporation, Phone: (256) 880-8787

5. Operating Information

This section explains some basic operational procedures for using the SIO4 with the Isochronous Protocol Library.

This is in no way intended to be a comprehensive guide. This is simply to address a very few issues relating to their

use.

5.1. Basic Illustration

The below figure is included to assist individuals in the configuration of the SIO4. The figure illustrates boards with

more recent firmware. The DMA references are handled automatically by the driver to facilitate movement of data

between the USC and the on-board FIFOs.

Tx FIFO
Oscillator Inv

RxClk
0
1

TxClk

0
1

CTS

DCD

RTS0
1

AF

DCD
0
1

AuxC
0
1

TxD0
1

TxD

RxD

RxD

RxC

TxC

0
1

Rx

Tx

CTS

HiZ

HiZ

HiZ

Rx FIFO

CTR0

CTR1

TxC

RxC

Disable

BRG1

BRG0

DPLL

T
x
C

lk
R

x
C

lk

Dis

Tx

Rx

32/16/8/4

CTR0/DPLL

32/16/8(/4)

CTS

Tx
CTS

Rx
DCDDCD

D/S

TxDTxD

HiZ
TxCC TxC

RxCC RxS

USC

RxDRxD

Data

Data

0
1

0
1

TxRMode TxAMode

(DMA)

RxRMode RxAMode

(DMA)

Cable

DCE/DTE/

Legacy

Transceivers

Loopback Int/Ext

Disable
SC/Cont

SC/Cont

En/Disable

En/Disable

Disable

H/L/B/N

0
1

Auto Echo

Dis

SIO4B and later

Enable/Disable

Enable/Disable

DTR/

DST0
1

HiZ

RTS

RTS

Figure 2 A functional illustration of an SIO4B or later model board.

5.2. Getting Started

To configure the SIO4 for HDLC operation meeting specific requirements, the recommended starting point is a

local, customizable copy of the hdlcc2c sample application included with the driver. This application is designed

to transfer bulk data between an SIO4 transmitter and an SIO4 receiver. The transmitter and receiver can be from

two channels on different boards, two channels on the same board, or by loopback mode using the transmitter and

receiver from the very same channel. There are two loopback configurations. Internal Loopback performs the

transfer by routing signals totally onboard the SIO4 without driving the cable transceivers. External Loopback

performs the transfer by routing the signals through the cable transceivers.

NOTE: When using Loopback operation, it is recommended that cabling and any remote

equipment be disconnected from the SIO4. This is because External Loopback is the default when

Internal Loopback is not supported by firmware.

SIO4/8, Isochronous Protocol Library, Reference Manual

37

General Standards Corporation, Phone: (256) 880-8787

5.2.1. Cable Validation

The first step in deriving a customized configuration is to verify cabling. This should be done using the application’s

default settings. It is recommended that one channel be used for loopback testing and that two other channels on the

same board be connected by the cabling to be tested. A script with the below commands is a convenient means of

repeating these tests until cabling has been verified successfully.

./hdlcc2c 0 0 -i

./hdlcc2c 0 0 -e

./hdlcc2c 1 2

5.2.2. Customizing the Configuration

The second step in deriving a customized configuration is to methodically modify the application code, one

parameter at a time, until all necessary parameter changes have been accommodated. That is, choose a parameter

from the documentation that must be changed from its default, modify the application so the required setting can be

specified from the command line, then test the resulting changes. A script with the below commands is a convenient

means of repeating these tests. In this example the “-X” represents the new command line argument for the

parameter being altered from its default. This script tests all three cabling setups both without the change and with

the change. This is done to verify that the default operation remains functional after the code modifications. In some

cases, the script may need to be expanded to test each parameter addition to ensure prior changes remain functional.

It is suggested that parameter changes be accommodated one at a time to ease the development and testing process.

./hdlcc2c 0 0 -I

./hdlcc2c 0 0 -e

./hdlcc2c 1 2 -I

./hdlcc2c 0 0 -I -X

./hdlcc2c 0 0 -e -X

./hdlcc2c 1 2 -X

NOTE: At times modifications for a parameter may need to be implemented on the transmitter or

receiver first in order to facilitate validation. At other times the transmitter and receiver may

temporarily be configured differently in order to verify that a change is implemented properly.

NOTE: It is best to initially test parameter additions separately, one at a time. Where there are

parameter interactions, testing parameter combinations should be completed before moving on.

The general sequence for addition of a new parameter modification is as follows.

1. Add a field representing the parameter to the args_t structure defined in main.h.

2. Add command line support for the new parameter by updating the _parse_args() function at the top of

main.c. At minimum, the list[] table must be updated to associate assignment of a setting with a command

line argument. This may also mean assigning a default to the new field following the memset() function call.

NOTE: One may have to review multiple sample applications to get a feel for how to add specific

command line argument types to the argument table.

3. Update the _setup_apply() function at the top of setup.c to apply the value from the new field to the

sio4_hdlc_t structure prior to calling sio4_hdlc_set().

4. Now update the script steps given above for the code changes just implemented. Continue adding support for

other required parameter changes when testing is complete. Update the above script for each addition.

SIO4/8, Isochronous Protocol Library, Reference Manual

38

General Standards Corporation, Phone: (256) 880-8787

5.3. Debugging Aids

The SIO4 driver archive includes the following debugging aids appropriate for use with the Isochronous Protocol

Library.

5.3.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id

example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as

follows.

Description File Location OS

Application
id …/id/ Linux
id.rta …\id\ INtime

5.3.2. sio4_isoc_show()

The function sio4_isoc_show() (section 4.1.9, page 14) is part of the protocol library interface. The purpose of

the function is to produce a human readable report of all fields included in the sio4_isoc_t structure (section

4.3.1, page 16) passed in as a function argument. The function is best used to report the structure’s content before it

is passed to sio4_isoc_set() (section 4.1.8, page 13) or after it is passed to sio4_isoc_get() (section

4.1.2, page 10). The output can be used with Figure 2 to help visualize the channel configuration reflected by the

structure content. When used in conjunction with sio4_isoc_set(), the sio4_isoc_show() output

indicates the state that sio4_isoc_set() is expected to produce. When used in conjunction with

sio4_isoc_get(), the sio4_isoc_show() output indicates the channel’s current state. This may be

beneficial after calling sio4_isoc_set() in order to verify the results achieved. The pair of calls may also be

used before or after read or write requests in order to help explain the results of individual transfer requests.

5.3.3. Detailed Register Dump

The utility function sio4_reg_list() is included in the sio4 utility library. The purpose of the function is to

report the current content of registers for the referenced serial channel. The arguments control the set of registers

included in the output and the detail with which the register content is reported. This function can be called at any

time to report the device state, but it is most often called after completing board setup, or just before or after read or

write requests in order to help explain the results of individual transfer requests.

Prototype

int sio4_reg_list(int fd, int gsc, int gsc_detail,

 int usc, int usc_detail);

Argument Description

fd This is a file descriptor obtained from sio4_isoc_open() (section 4.1.6, page 12).

gsc
If non-zero, then the output will include a dump of all GSC_SIO4_xxx registers. Refer

to sio4.h for a complete list of these registers.

gsc_detail
If non-zero, then the dump of the above registers will include detailed information about

all register fields, including the field value and the meaning of the value.

usc
If non-zero, then the output will include a dump of all GSC_USC_xxx registers. Refer

to sio4.h for a complete list of these registers.

usc_detail
If non-zero, then the dump of the above registers will include detailed information about

all register fields, including the field value and the meaning of the value.

SIO4/8, Isochronous Protocol Library, Reference Manual

39

General Standards Corporation, Phone: (256) 880-8787

Return Value Description
>= 0 This is the number of errors encountered during execution of the function.

5.4. Clocking Configurations

The Isochronous serial protocol requires an Rx Clock signal for data reception. This limits the clocking

configuration options when using the SIO4 for full duplex data transfer. The SIO4 receiver clocks in data from the

cable’s Tx Data signal using the cable’s Rx Clock signal. In this case both signals are routed directly from the cable

interface to the USC. The SIO4 transmitter clocks out data to the cable’s Tx Data signal using the clock driven on

the cable’s Tx Clock signal. In this case the origin of the cable’s Tx Clock signal and the USC’s transmit clock is the

SIO4’s programmable oscillator, which is programmed to the desired Tx bit rate. The Tx Data is routed directly

from the USC to the cable interface. Clock and data signal routing for SIO4B and later model boards is illustrated in

Figure 3. This signal routing pictured is the configuration produced by the sio4_isoc_init_data() function,

which initializes the sio4_isoc_t structure given as an argument.

NOTE: On SIO4A model boards, full duplex operation requires either that the driver be updated

to support programming of the SIO4A’s programmable oscillator or an alternate signal routing

configuration which may require an Rx Clock cable signal that is active full time.

NOTE: On SIO4 model boards (with no ‘A’ or ‘B’ suffix) full duplex operation requires either

that the board’s fixed frequency oscillator be replaced to match the desired transmit bit rate or an

alternate signal routing configuration which may require an Rx Clock cable signal that is active

full time.

The below code sample illustrates the minimum required steps to configure an SIO4 for Isochronous operation.

Error checking is omitted for brevity.

void config_sample(int fd)

{

 const char* err = NULL;

 sio4_isoc_init_t init;

 sio4_isoc_t isoc;

 init.tx_bit_rate = 1000000L;

 init.rx_bit_rate = 1000000L;

 sio4_isoc_init_data(fd, &init, &isoc, &err);

 sio4_isoc_set(fd, &isoc, &err);

}

SIO4/8, Isochronous Protocol Library, Reference Manual

40

General Standards Corporation, Phone: (256) 880-8787

Tx FIFO
Oscillator Inv

RxClk
0
1

TxClk

0
1

CTS

DCD

RTS0
1

AF

DCD
0
1

AuxC
0
1

TxD0
1

TxD

RxD

RxD

RxC

TxC

0
1

Rx

Tx

CTS

HiZ

HiZ

HiZ

Rx FIFO

CTR0

CTR1

TxC

RxC

Disable

BRG1

BRG0

DPLL

T
x
C

lk
R

x
C

lk

Dis

Tx

Rx

32/16/8/4

CTR0/DPLL

32/16/8(/4)

CTS

Tx
CTS

Rx
DCDDCD

D/S

TxDTxD

HiZ
TxCC TxC

RxCC RxS

USC

RxDRxD

Data

Data

0
1

0
1

TxRMode TxAMode

(DMA)

RxRMode RxAMode

(DMA)

Cable

DCE/DTE/

Legacy

Transceivers

Loopback Int/Ext

Disable
SC/Cont

SC/Cont

En/Disable

En/Disable

Disable

H/L/B/N

0
1

Auto Echo

Dis

SIO4B and later

Enable/Disable

Enable/Disable

DTR/

DST0
1

HiZ

RTS

RTS

Figure 3 This illustrates the default Isochronous clock routing on SIO4B and later model boards.

5.5. Cable Configuration Modes

The SIO4 supports two cable interfacing modes; DCE/DTE mode and Legacy mode. Older boards support only

Legacy mode. More recent boards support only DCE/DTE mode. Intermediate boards support both modes. When

both are available selection of the active mode is governed by enabling or disabling the transceivers. This is done

through the sio4_isoc_t.cable.enable field, which is described under section 4.3.1.2 beginning on page

20.

5.5.1. DCE/DTE Mode

The DCE/DTE Mode controls cable signaling according to the DCE or DTE selection, as described in the board user

manual. When available in firmware this mode is enabled by enabling the cable transceivers (see paragraph above).

The Isochronous Protocol Library passes all DCE/DTE mode settings to the driver unconditionally. DCE/DTE mode

settings received by the driver are applied only if this mode is supported by the board. The driver otherwise ignores

these settings.

5.5.2. Legacy Mode

The Legacy More of operation controls signal routing for the cable interface, according to the Upper and Lower

settings, and the USC, as described in the board user manual. When available in firmware this is the default mode of

operation. When selectable this mode is activated by disabling the cable transceivers (see paragraph above). The

Isochronous Protocol Library’s sio4_isoc_set() function (section 4.1.8, page 13) applies Legacy mode

settings only if the Legacy mode will be active when the function exits. The library otherwise ignores the Legacy

settings. All other library functions process their settings unconditionally. Legacy mode settings received by the

driver are applied only if this mode is supported by the board. The driver otherwise ignores these settings.

SIO4/8, Isochronous Protocol Library, Reference Manual

41

General Standards Corporation, Phone: (256) 880-8787

5.6. Simple Data Transfer

The steps needed to transmit or receive data using the Isochronous protocol can be minimal, and are as follows.

These minimal steps are illustrated in the simple_xfer sample application under the sio4/isoc subdirectory.

1. Initialize the Isochronous library as follows.

int ret;

ret = sio4_isoc_init();

if (ret)

{

 printf("ERROR: sio4_isoc_init(): errno %d\n", -ret);

 return(ret);

}

2. Gain access to the desired SIO4. The argument “index” refers to the zero based index of the board to access.

int fd;

fd = sio4_isoc_open(index);

if (fd < 0)

{

 printf("ERROR: sio4_isoc_open(): errno %d\n", -fd);

 return(fd);

}

3. Initialize an sio4_isoc_init_t structure. This simply requires that the transmit and receive bit rates be

identified. This can be done simply as follows.

sio4_isoc_init_t init;

init.tx_bit_rate = 1000000L;

init.rx_bit_rate = 1000000L;

4. Pass the initialized sio4_isoc_init_t structure to the sio4_isoc_init_data() function, along with

the other required arguments. This will initialize the passed in sio4_isoc_t structure, using the

sio4_isoc_init_t structure’s content where necessary.

const char* err = NULL;

sio4_isoc_t isoc;

ret = sio4_isoc_init_data(fd, &init, &isoc, &err);

if ((ret) || (err))

{

 printf("ERROR: sio4_isoc_init_data(): field '%s'\n", err);

 return(ret);

}

5. Just for development purposes, print the structure’s content to the console. Again, this is for development

purposes and should be removed from production code.

SIO4/8, Isochronous Protocol Library, Reference Manual

42

General Standards Corporation, Phone: (256) 880-8787

ret = sio4_isoc_show(fd, &isoc, &err);

if ((ret) || (err))

{

 printf("ERROR: sio4_isoc_show(): field '%s'\n", err);

 return(ret);

}

6. Review both the output produced from the above step and the documentation for the sio4_isoc_t structure

to determine what settings, if any, need changing for your particular application. Depending on the SIO4 model

board in use, it may be that the DCE/DTE and transceiver settings are the only settings that need changing.

Review the board user manual and documentation for your equipment to determine if the SIO4 should be

configured as DCE or DTE.

isoc.cable.mode = SIO4_ISOC_CABLE_MODE_DCE;

isoc.cable.protocol = SIO4_ISOC_CABLE_PROTOCOL_RS422_RS485;

7. Apply the settings to the SIO4 in order to configure the device according to the content of the sio4_isoc_t

structure.

ret = sio4_isoc_set(fd, &isoc, &err);

if ((ret) || (err))

{

 printf("ERROR: sio4_isoc_set(): field '%s'\n", err);

 return(ret);

}

8. The SIO4 is now ready to transmit and/or receive data using the API’s write and/or read calls.

5.7. Error and Status Detection

The serial controller used on the SIO4 incorporates the ability to detect a number of error and other conditions for

both the transmit and the receive data streams.

5.7.1. Interrupt Events

The most efficient means of detecting the various conditions, especially errors, is by use of interrupts. The basic

steps for this are to enable the interrupts of interest then have a thread wait for a corresponding interrupt event. (See

the Interrupt and the Wait Event services in the driver reference manual.) This is illustrated in the following code

fragments.

Thread A Thread B
For (;;)

{

 …

 read SIO4 data

 if (error recorded)

 {

 Error exists in

1) Read buffer, or
2) SIO4 Rx FIFO
Resync data stream.

 }

For (;;)

{

 …

 Enable desired interrupts.

 Wait for an interrupt.

 if (error interrupt occurred)

 {

 Record the error.

 }

 …

}

SIO4/8, Isochronous Protocol Library, Reference Manual

43

General Standards Corporation, Phone: (256) 880-8787

 else

 {

 Read buffer is error free.

 }

 …

}

5.7.2. Rx Status Word

The SIO4 can also provide status in the Rx data stream on a per byte basis. This is done by enabling the Rx Status

Word feature (sio4_isoc_t.rx.status_word, section 4.3.1.4, page 26). When enabled, the SIO4 places the

lower eight bits of the USC’s Receive Command/Status Register in the Rx FIFO immediately after the data itself.

This allows an application to identity the precise location in the data stream where some Rx related conditions occur.

The downside of this is that it doubles the volume of data going through the Rx FIFO and effectively reduces its size

by 1/2. Refer to the Z16C30 Data Handbook for information on the USC’s Receive Command/Status Register.

5.8. Debugging Aids

The SIO4 driver archive includes two debugging aids appropriate for use with the Isochronous Protocol Library. The

aids are described below.

5.8.1. sio4_isoc_show()

The function sio4_isoc_show() (section 4.1.9, page 14) is part of the protocol library interface. The purpose of

the function is to produce a human readable report of all fields included in the sio4_isoc_t structure (section

4.3.1, page 16) passed in as a function argument. The function is best used to report the structure’s content before it

is passed to sio4_isoc_set() (section 4.1.6.1, page 13) or after it is passed to sio4_isoc_get() (section

4.1.2, page 10). The output can be used with Figure 2 to help visualize the channel configuration reflected by the

structure content. When used in conjunction with sio4_isoc_set(), the sio4_isoc_show() output

indicates the state that sio4_isoc_set() is expected to produce. When used in conjunction with

sio4_isoc_get(), the sio4_isoc_show() output indicates the channel’s current state. This may be

beneficial after calling sio4_isoc_set() in order to verify the results achieved. The pair of calls may also be

used before or after the API’s read or write calls in order to help explain the results of individual transfer requests.

5.8.2. sio4_reg_list()

The function sio4_reg_list() is included in the SIO4 utility library. The purpose of the function is to report

the current content of registers for the referenced serial channel. The arguments control the set of registers included

in the output and the detail with which the register content is reported. This function can be called at any time to

report the device state, but it is most often called after completing board setup, or just before or after

sio4_isoc_read() or sio4_isoc_write() calls in order to help explain the results of individual transfer

requests.

Prototype

int sio4_reg_list(int fd, int gsc, int gsc_detail,

 int usc, int usc_detail);

Argument Description

fd This is a file descriptor obtained from sio4_isoc_open() (section 4.1.6, page 12).

gsc
If non-zero, then the output will include a dump of all GSC_SIO4_xxx registers. Refer

to sio4.h for a complete list of these registers.

SIO4/8, Isochronous Protocol Library, Reference Manual

44

General Standards Corporation, Phone: (256) 880-8787

gsc_detail
If non-zero, then the dump of the GSC registers will include detailed information about

all register fields, including the field value and the meaning of the value.

usc
If non-zero, then the output will include a dump of all GSC_USC_xxx registers. Refer

to sio4_usc.h for a complete list of these registers.

usc_detail
If non-zero, then the dump of the USC registers will include detailed information about

all register fields, including the field value and the meaning of the value.

Return Value Description
>= 0 This is the number of errors encountered during execution of the function.

5.9. Exclusions

5.9.1. Global Rx FIFO Full Configuration

The global Rx FIFO Full Configuration setting (see SIO4_IOCTL_RX_FIFO_FULL_CFG_GLB in sio4.h) is

not included as part of the Isochronous Protocol Library. It is excluded because the setting can override the channel

specific settings for all four channels. If an application is to access this feature it must be done in parallel with use of

the Isochronous Protocol Library.

SIO4/8, Isochronous Protocol Library, Reference Manual

45

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

March 19, 2024
Updated release date. Added comment about use of the static libraries. Removed the Cable

Protocol Disable option as it is unsupported by hardware.

November 16, 2023 Updated release date.

June 15, 2023 Updated release date. Minor editorial modifications.

December 13, 2022 Updated release date. Minor editorial modifications.

June 2, 2022 Updated release date. Updated the description of the Tx Idle Line conditions.

February 8, 2022

Updated release date. Reorganized the Operating Information section (section 5, page 36).

Added a Getting Started section (section 5.2, page 36). Updated the Debugging Aids section

(section 5.3, page 38).

August 9, 2021

Updated release date. Updated the I/O timeout field descriptions. Updated the descriptions

of the I/O return values. Changed some argument and field names for consistency and

clarity. Added a note about read requests being serialized. Added a note about write requests

being serialized. Added statements about the read and write services being blocking calls.

May 5, 2021 Updated release date.

February 26, 2021 Updated release date.

February 18, 2021 Updated release date.

October 12, 2020 Updated release date.

July 30, 2019 Updated release date.

March 24, 2019 Updated release date.

March 15, 2019 Updated release date.

October 18, 2018
Updated the default PIO threshold values based on testing. Updated the inside cover page.

Added Tx and Rx I/O DMA Threshold fields.

October 31, 2017
Added information on the Cable Configuration Modes. Updated some legacy setting

information.

October 17, 2017

Removed library versioning. Added information on opening device index -1. Added section

on library interface files. Updated return status information for high level services. Added

support for device index -1. Numerous editorial changes throughout.

December 7, 2016 Modified for updated driver release.

November 18, 2016
Intermediate release. Updated the “simple” example. Updated information on loopback

mode.

November 11, 2016
Intermediate release. Updated the operating information section. Made various

miscellaneous updates. Added information on minimal setup for data transfer.

September 16, 2016 Updated to version 1.4. Changed the defaults for several settings.

April 13, 2016 Updated to version 1.3.

September 7, 2015 Updated to version 1.2.

December 9, 2014 Updated to version 1.1. Added retrieval information for the oscillator programming field.

December 4, 2014 Initial release, version 1.0.

