
SIOB4/8-SYNC
Four Channel High Speed Serial I/O

All SIO4 and SIO8 Models
All Form Factors

All Standard SYNC Versions

Linux Device Driver
User Manual

Manual Revision: June 13, 2023

Driver Release Version 1.59.104.47.0

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

SIO4B4/8-SYNC, Linux Device Driver, User Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2004-2023, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or

software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Although extensive editing and reviews are performed before release, General Standards Corporation assumes no

responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are

made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this

documentation.

General Standards Corporation does not assume any liability arising out of the application or use of

documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or

any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,

software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

SIO4B4/8-SYNC, Linux Device Driver, User Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 7

1.1. Purpose .. 7

1.2. Acronyms ... 7

1.3. Definitions .. 7

1.4. Software Overview .. 7

1.5. Hardware Overview .. 8

1.6. Reference Material .. 8

1.7. Licensing .. 8

2. Installation ... 9

2.1. CPU and Kernel Support ... 9

2.2. Compiler Support ... 9

2.3. The /proc/ File System .. 10

2.4. File List .. 10

2.5. Directory Structure ... 10

2.6. Installation ... 11

2.7. Removal ... 11

2.8. Overall Make Script ... 12

3. Important Support Files ... 13

3.1. Main Header File .. 13

3.2. Main Library File ... 13
3.2.1. System Libraries ... 13

3.3. Protocol Libraries ... 13

3.4. Utility Libraries ... 14
3.4.1. Document Source Code Examples ... 14
3.4.2. Utility Source Code .. 14

3.5. Sample Applications ... 14

4. The Driver.. 15

4.1. Build ... 15

4.2. Startup ... 15
4.2.1. Manual Driver Startup Procedures ... 15
4.2.2. Automatic Driver Startup Procedures ... 16

4.3. Verification .. 18

4.4. Version ... 18

4.5. Shutdown ... 18

5. The SYNC Library ... 19

SIO4B4/8-SYNC, Linux Device Driver, User Manual

4

General Standards Corporation, Phone: (256) 880-8787

5.1. Build ... 19

5.2. Use 19

6. Driver Interface ... 20

6.1. Macros.. 20
6.1.1. IOCTL .. 20
6.1.2. Registers ... 20

6.2. Data Types ... 21
6.2.1. FIFO_STATUS .. 21
6.2.2. sio4_driver_info_t .. 22
6.2.3. SIO4_INTERRUPT_STATUS ... 22
6.2.4. sio4_mp_chip_t .. 22
6.2.5. sio4_mp_prot_t ... 23
6.2.6. sio4_mp_t ... 23
6.2.7. sio4_osc_chip_t .. 24
6.2.8. sio4_osc_t ... 24
6.2.9. sio4_reg_t ... 25
6.2.10. sio4_sync_rx_t .. 25
6.2.11. sio4_sync_t ... 26
6.2.12. sio4_sync_tx_t .. 27
6.2.13. TX_RX ... 28

6.3. Functions.. 29
6.3.1. close() ... 29
6.3.2. ioctl() .. 30
6.3.3. open().. 30
6.3.4. read() .. 31
6.3.5. sio4_sync_get()... 32
6.3.6. sio4_sync_gpio_rx() ... 33
6.3.7. sio4_sync_gpio_tx() ... 34
6.3.8. sio4_sync_rx_get() ... 35
6.3.9. sio4_sync_rx_set() .. 36
6.3.10. sio4_sync_set() ... 37
6.3.11. sio4_sync_tx_get() ... 38
6.3.12. sio4_sync_tx_set() .. 38
6.3.13. write() ... 39

6.4. IOCTL Services ... 40
6.4.1. SIO4_BOARD_JUMPERS .. 40
6.4.2. SIO4_FEATURE_TEST .. 41
6.4.3. SIO4_FW_TYPE_CONFIG ... 44
6.4.4. SIO4_GET_DRIVER_INFO .. 44
6.4.5. SIO4_INIT_BOARD .. 45
6.4.6. SIO4_INT_NOTIFY .. 45
6.4.7. SIO4_MOD_REGISTER ... 46
6.4.8. SIO4_MP_CONFIG ... 46
6.4.9. SIO4_MP_INFO... 46
6.4.10. SIO4_MP_INIT .. 46
6.4.11. SIO4_MP_RESET .. 47
6.4.12. SIO4_MP_TEST .. 47
6.4.13. SIO4_OSC_INFO ... 47
6.4.14. SIO4_OSC_INIT .. 47
6.4.15. SIO4_OSC_MEASURE ... 48
6.4.16. SIO4_OSC_PROGRAM .. 48
6.4.17. SIO4_OSC_REFERENCE ... 48

SIO4B4/8-SYNC, Linux Device Driver, User Manual

5

General Standards Corporation, Phone: (256) 880-8787

6.4.18. SIO4_OSC_RESET .. 49
6.4.19. SIO4_OSC_TEST .. 49
6.4.20. SIO4_READ_INT_STATUS ... 49
6.4.21. SIO4_READ_REGISTER .. 49
6.4.22. SIO4_READ_REGISTER_RAW... 50
6.4.23. SIO4_RESET_CHANNEL .. 50
6.4.24. SIO4_RESET_DEVICE ... 50
6.4.25. SIO4_RESET_FIFO ... 50
6.4.26. SIO4_RX_FIFO_AE_CONFIG ... 51
6.4.27. SIO4_RX_FIFO_AF_CONFIG .. 51
6.4.28. SIO4_RX_FIFO_COUNT .. 51
6.4.29. SIO4_RX_FIFO_FULL_CFG_CHAN ... 51
6.4.30. SIO4_RX_FIFO_FULL_CFG_GLB .. 52
6.4.31. SIO4_RX_FIFO_SIZE ... 52
6.4.32. SIO4_RX_FIFO_STATUS .. 52
6.4.33. SIO4_RX_IO_ABORT .. 53
6.4.34. SIO4_RX_IO_MODE_CONFIG ... 53
6.4.35. SIO4_SET_READ_TIMEOUT .. 54
6.4.36. SIO4_SET_WRITE_TIMEOUT .. 54
6.4.37. SIO4_TX_FIFO_AE_CONFIG .. 54
6.4.38. SIO4_TX_FIFO_AF_CONFIG .. 54
6.4.39. SIO4_TX_FIFO_COUNT .. 55
6.4.40. SIO4_TX_FIFO_SIZE ... 55
6.4.41. SIO4_TX_FIFO_STATUS ... 55
6.4.42. SIO4_TX_IO_ABORT ... 55
6.4.43. SIO4_TX_IO_MODE_CONFIG .. 56
6.4.44. SIO4_WRITE_REGISTER .. 56

7. Operation ... 57

7.1. I/O Modes .. 57
7.1.1. PIO - Programmed I/O ... 57
7.1.2. BMDMA - Block Mode DMA ... 57
7.1.3. DMDMA - Demand Mode DMA ... 57

7.2. Oscillator Programming ... 57
7.2.1. Cypress CY22393 (1x) Programmable Oscillator Support... 58
7.2.2. Cypress CY22393 (4x) Programmable Oscillator Support... 59
7.2.3. Cypress IDC2053B Programmable Oscillator Support .. 59
7.2.4. Fixed Oscillator Support ... 59
7.2.5. All Other Cases... 59

7.3. Multi-Protocol Transceiver Programming ... 59
7.3.1. Sipex SP508 Multi-Protocol Transceiver Support .. 60
7.3.2. Fixed Protocol Support ... 60
7.3.3. All Other Cases... 61

7.4. Interrupt Notification ... 61

8. Document Source Code Examples ... 63

8.1. Files .. 63

8.2. Build (Generic) .. 63

8.3. Build (SYNC) ... 63

8.4. Library Use .. 64

SIO4B4/8-SYNC, Linux Device Driver, User Manual

6

General Standards Corporation, Phone: (256) 880-8787

9. Utility Source Code ... 65

9.1. Files .. 65

9.2. Build ... 65

9.3. Library Use .. 65

10. Sample Applications ... 66

10.1. id - Identify Board - …/id/ .. 66

10.2. irq – Interrupt Test - …/irq/ .. 66

10.3. regs - Register Access - …/regs/ ... 66

10.4. sbtest - Single Board Test - …/sbtest/ .. 66

10.5. syncc2c - SYNC Channel-to-Channel - …/syncc2c/ ... 66

10.6. txrate - Transmit Rate - …/txrate/ .. 66

Document History ... 67

SIO4B4/8-SYNC, Linux Device Driver, User Manual

7

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

This user manual applies to the SYNC specific support provided by the driver. This user manual is intended for

those SIO4 and SIO8 models that support the –SYNC firmware. This includes those boards with the –SYNC in the

model number as well as those model boards that support software configurable firmware selection (see explanation,

section 6.4.3, page 44).

NOTE: The device models listed on the front cover are those that are specifically supported by

this release of the driver. Other models may be supported, though the level of support may vary.

The driver may work with other SIO4 models, but performance may be degraded due to device

feature and implementation differences.

1.1. Purpose

The purpose of this document is to describe the interface to the SIO4 Linux Device Driver and SYNC library, as it

relates to SYNC versions of the SIO4. This software provides the interface between “Application Software” and the

SIO4 board. The interface to this board is at the device level.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms Description

BMDMA Block Mode DMA

DMA Direct Memory Access

DMDMA Demand Mode DMA

GSC General Standards Corporation

LSBF Least Significant Bit First

MSBF Most Significant Bit First

PCI Peripheral Component Interconnect

PMC PCI Mezzanine Card

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

Application Application means the user mode process, which runs in user space with user mode privileges.

Driver
Driver means the kernel mode device driver, which runs in kernel space with kernel mode

privileges.

SIO4 This is used as a general reference to any SYNC version board supported by this driver.

1.4. Software Overview

This release of the SIO4 driver includes an executable device driver and a library of SYNC specific services. The

driver software executes under control of the Linux operating system and runs in Kernel Mode as a Kernel Mode

device driver. The SIO4 device driver is implemented as a standard loadable Linux device driver written in the ‘C’

programming language. With the driver, user applications are able to open and close a channel and, while open,

perform read, write and I/O control operations. SIO4-SYNC applications must link the SYNC library with their

application in order to utilize the additional, library-based services.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

8

General Standards Corporation, Phone: (256) 880-8787

1.5. Hardware Overview

NOTE: The SIO8 boards appear to the driver as two SIO4 boards.

The SIO4 is a four-channel high-speed serial interface I/O board. This board provides for bi-directional serial data

transfers between two computers, or one computer and an external peripheral.

This board also can transfer data indefinitely without host intervention. Once the data link between the two

computers is established, the desired transfers can be performed and will become transparent to the user.

The SIO4 board includes a DMA controller and comes with a maximum of 256K Bytes of FIFO storage, which is

32K per channel side (32K * 2 * 4). The FIFO configuration can vary greatly from one SIO4 version to another (i.e.,

32K * 2 * 4 to 1K * 2 *1 to none at all). The SIO4 includes configurable transceiver support that includes RS-232

and RS-485/422 transceiver options. The DMA controller is capable of transferring data to and from host memory;

whereas the FIFO memory provides a means for continuous transfer of data without interrupting the DMA transfers

or requiring intervention from the host CPU. The board also provides for interrupt generation for various states of

the board like FIFO empty, FIFO full and DMA complete.

1.6. Reference Material

The following reference material may be of particular benefit in using the SIO4 and its device driver. The

specifications provide the information necessary for an in depth understanding of the specialized features

implemented on this board.

• The applicable SIO4/SIO8 User Manual from General Standards Corporation.

• The PCI Bus Master Interface Chip data handbook for the PCI9056/9080 from PLX Technology, Inc.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE.txt in the root installation directory.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

9

General Standards Corporation, Phone: (256) 880-8787

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 4.x, 3.x, 2.6, 2.4 and 2.2 running on a PC system with

one or more x86 processors. This release of the driver supports the below listed kernels.

Kernel Distribution
X86

32-bit 64-bit

4.18.16 Red Hat Fedora Core 29 Yes Yes

4.16.3 Red Hat Fedora Core 28 Yes Yes

4.13.9 Red Hat Fedora Core 27 Yes

4.11.8 Red Hat Fedora Core 26 Yes Yes

4.8.6 Red Hat Fedora Core 25 Yes Yes

4.5.5 Red Hat Fedora Core 24 Yes Yes

4.2.3 Red Hat Fedora Core 23 Yes Yes

4.0.4 Red Hat Fedora Core 22 Yes Yes

3.11.10 Red Hat Fedora Core 20 Yes Yes

3.9.5 Red Hat Fedora Core 19 Yes Yes

3.6.10 Red Hat Fedora Core 18 Yes Yes

3.3.4 Red Hat Fedora Core 17 Yes Yes

3.1.0 Red Hat Fedora Core 16 Yes Yes

2.6.38 Red Hat Fedora Core 15 Yes Yes

2.6.35 Red Hat Fedora Core 14 Yes Yes

2.6.33 Red Hat Fedora Core 13 Yes Yes

2.6.31 Red Hat Fedora Core 12 Yes Yes

2.6.29 Red Hat Fedora Core 11 Yes Yes

2.6.27 Red Hat Fedora Core 10 Yes Yes

2.6.25 Red Hat Fedora Core 9 Yes Yes

2.6.23 Red Hat Fedora Core 8 Yes Yes

2.6.21 Red Hat Fedora Core 7 Yes Yes

2.6.18 Red Hat Fedora Core 6 Yes Yes

2.6.15 Red Hat Fedora Core 5 Yes Yes

2.6.11 Red Hat Fedora Core 4 Yes Yes

2.6.9 Red Hat Fedora Core 3 Yes Yes

NOTE: Some older kernel versions are supported (the sources are maintained), but are not tested.

NOTE: While only Red Hat Fedora distributions are listed, numerous other distributions are

supported and have been tested on an as needed basis.

NOTE: The driver will have to be rebuilt before being used as the driver is provided in source

form only.

NOTE: The driver has not been tested with a non-versioned kernel.

NOTE: The driver has not been tested on an SMP host.

2.2. Compiler Support

The 32-bit build for this driver relies on the use of the GCC compiler. This dependence is due only to the driver’s

use of the file divdi3.c, which is copied from GCC 2.95.1. The driver build process has been verified according

to the above CPU and kernel support paragraph. The build process may fail under other build environments.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

10

General Standards Corporation, Phone: (256) 880-8787

NOTE: The dependence on the GCC compiler is due to the driver’s use of 64-bit integer division.

This division is performed during configuration of the programmable oscillator present on some

versions of the SIO4. Under the 2.2 and 2.4 kernels the needed library services are linked

implicitly during the build process. Under the driver build process for the 2.6 and later kernels, the

needed services must be linked explicitly.

2.3. The /proc/ File System

NOTE: All SIO8 model boards appear as two SIO4 model boards.

While the driver is running, the /proc/sio4 file can be read to obtain information about the driver. Each file

entry includes an entry name followed immediately by a colon, a space character, and then the entry value. Below is

an example of what appears in the file, followed by descriptions of each entry.

version: 1.59.104.47

32-bit support: yes (native)

boards: 1

models: SIO4BX-SYNC

ids: 0x3

Entry Description

version This gives the driver version number in the form x.x.x.x.

32-bit support
This reports the driver’s support for 32-bit applications. This will be “yes (native)”

for 32-bit installations and “no” for 64-bit installations.

boards This identifies the total number of SIO4 boards the driver detected.

models

This is a list that identifies the basic model numbers of the boards detected by the driver.

The order in the list corresponds to the device node indexes in the /dev/ directory. If the

driver cannot specifically identify the board’s type it will be listed only as “SIO4”.

ids

This is a list identifying the values read from the boards’ user jumpers. This will be given

in the C form of printf("0x%lX", value). For SIO8 model boards this will be

given in the C form of printf("0x%lX.%ld", value, index), where index is

the zero-based index of the SIO4 on that board. Examples are 0xF and 0xF.0,

respectively.

2.4. File List

This release consists of the below listed files. The archive is described in detail in following subsections.

File Description
sio4.tar.gz This archive contains the driver, the API Library and all related files.
sio4_sync_linux_um.pdf This is a PDF version of this user manual, which is included in the archive.

2.5. Directory Structure

The following table describes the directory structure observed by the source archive.

Directory Content

…/sio4/
This is the driver root directory. It contains the documentation, the Overall

Make Script (section 2.8, page 12) and the below listed subdirectories.
…/async/ This directory contains the Asynchronous serial protocol support files.
…/async/lib/ This directory contains the Asynchronous library sources.
…/async/samples/ This directory contains the Asynchronous specific sample applications.

…/async/samples/asyncc2c/ This directory contains the Asynchronous asyncc2c sample application.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

11

General Standards Corporation, Phone: (256) 880-8787

…/async/samples/rxasync/ This directory contains the Asynchronous rxasync sample application.

…/async/samples/txasync/ This directory contains the Asynchronous txasync sample application.

…/docsrc/
This directory contains the code samples from this document (section

3.4.1, page 14).
…/driver/ This directory contains the driver and its sources (section 4, page 15).
…/async/include/ This directory contains the driver, library and utility interface header files.
…/async/lib/ This directory contains the driver, library and utility static libraries.
…/samples/ This directory contains sample applications.

…/samples/id/ This directory contains the id sample application.

…/samples/irq/ This directory contains the irq sample application.

…/samples/regs/ This directory contains the regs sample application.

…/samples/sbtest/ This directory contains the sbtest sample application.

…/sync/ This directory contains the SYNC model SIO4 support files.
…/sync/docsrc/ This directory contains the SYNC document code samples.
…/sync/lib/ This directory contains the SYNC model SIO4 library sources.
…/sync/samples/ This directory contains the SYNC specific sample applications.

…/sync/samples/syncc2c/ This directory contains the SYNC syncc2c sample application.

…/sync/samples/txrate/ This directory contains the SYNC txrate sample application.

…/utils/ This directory contains utility sources used by the sample applications.

2.6. Installation

Perform installation following the below listed steps. This installs the device driver, the API Library and all related

sources and documentation.

1. Create and change to the directory where the files are to be installed, such as /usr/src/linux/drivers/.

(The path name may vary among distributions and kernel versions.)

2. Copy the archive file sio4.tar.gz into the current directory.

3. Issue the following command to decompress and extract the files from the provided archive. This creates the

directory structure described earlier and copies all of the archive files into the created directories.

tar –xzvf sio4.tar.gz

2.7. Removal

Perform removal following the below listed steps. This removes the device driver, the API Library and all related

sources and documentation.

1. Shutdown the driver as described in previous paragraphs.

2. Change to the directory where the driver archive was installed. This should be

/usr/src/linux/drivers/.

3. Issue the below command to remove the driver archive and all of the installed driver files.

rm –rf sio4.tar.gz sio4

4. Issue the below command to remove all of the installed device nodes.

rm –f /dev/sio4*

SIO4B4/8-SYNC, Linux Device Driver, User Manual

12

General Standards Corporation, Phone: (256) 880-8787

5. If the automated startup procedure was adopted, then edit the system startup script rc.local and remove the

line that invokes the start script. The file rc.local should be located in the /etc/rc.d/ directory.

2.8. Overall Make Script

The Overall Make Script is included in the root installation directory. Executing this script will perform a make for

all build targets included in the release. The script is named make_all. Follow the below steps to perform an

overall make and to load the driver.

1. Change to the device’s root directory, which may be /usr/src/linux/drivers/sio4/.

2. Issue the below command to make all archive targets and load the driver.

./make_all

SIO4B4/8-SYNC, Linux Device Driver, User Manual

13

General Standards Corporation, Phone: (256) 880-8787

3. Important Support Files

3.1. Main Header File

The SIO4 driver package provides a main header file that does an include of all application level SIO4 headers.

Throughout this document references are given for a variety of SIO4 specific header files. Plus, these collectively

include numerous others not specifically named in this document, but which are also included in the SIO4 driver

package. For ease of use it is suggested that applications include only the main header file shown below rather than

individually including those headers identified separately throughout this document. Including the main header file

pulls in all other pertinent SIO4 specific header files. Therefore, sources may include only this one SIO4 header and

make files may reference only this one SIO4 include directory. All SIO4 API Library headers, all Protocol Library

headers, and all affiliated headers are included via this one header file and are all located in this one include

directory.

File Location
sio4_main.h …/sio4/include/

3.2. Main Library File

The SIO4 driver package provides a main statically linkable library that is a substitute for separately linking all

static libraries built individually as a part of the driver package. Throughout this document references are given for a

variety of SIO4 specific static libraries, though this is not all driver package created libraries. For ease of use it is

suggested that applications link only the main static library file shown below rather than individually linking the

entire set of SIO4 static libraries. Linking the main library file pulls in all other pertinent SIO4 specific static

libraries. Therefore, make files may link only this one SIO4 library and may reference only this one SIO4 library

directory. The SIO4 API Library file, all Protocol Library files, and all affiliated libraries are incorporate via this one

static library file and all are located in this one library directory.

File Location
sio4_main.a …/sio4/lib/

3.2.1. System Libraries

In addition to linking the static library named above, applications may need to also link in additional system libraries

as noted below.

Library gcc Link Flag

Math -lm

POSIX Thread -lpthread

Real Time -lrt

3.3. Protocol Libraries

The protocol libraries provide application interfaces that are tailored to the chosen serial communications protocol.

This allows one to focus on use of the protocol rather than the extensive features of the SIO4. Each protocol library

implements a small set of function calls that are library specific. In addition, each protocol library implements a

small number of data structures designed around the specific protocol and the underlying SIO4 hardware. This

allows a user to focus on the use of the protocol rather than on configuring numerous IOCTL services individually,

especially when their use may be order dependent or not applicable. The protocol libraries are bundled in their

entirety with the driver package. This includes source code and affiliated files for the statically linked protocol

libraries, utility code, samples and documentation. The table below summarizes the protocol library files.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

14

General Standards Corporation, Phone: (256) 880-8787

Description Files Location

Asynchronous

*.c, … …/sio4/async/lib/

sio4_async.h …/sio4/include/

sio4_async.a …/sio4/lib/

SYNC

*.c, … …/sio4/sync/lib/

sio4_sync.h …/sio4/include/

sio4_sync.a …/sio4/lib/

3.4. Utility Libraries

3.4.1. Document Source Code Examples

The source code examples given in this document are provided as C files included with the driver package. This is

done to verify that the code compiles correctly. Additionally, the sources are compiled and linked into a static

library to simplify use of the examples. The pertinent files are identified in the following tables.

Description Files Location

Source Files *.c, … …/sio4/docsrc/

Header File sio4_dsl.h …/sio4/include/

Library File sio4_dsl.a …/sio4/lib/

SYNC Files Location

Source Files *.c, … …/sio4/sync/docsrc/

Header File sio4_sync_dsl.h …/sio4/include/

Library File sio4_sync_dsl.a …/sio4/lib/

3.4.2. Utility Source Code

Additional utility sources are provided, which are also designed to aid in the understanding and use the SIO4. The

essence of these utilities is to implement visual wrappers around the corresponding service. The utility services are

used by the sample applications. The utility sources are compiled and linked into static libraries to simplify their use.

The pertinent files are identified in the following table.

Description Files Location

Source Files *.c, … …/sio4/utils/

Header File sio4_utils.h …/sio4/include/

Library File sio4_utils.a …/sio4/lib/

3.5. Sample Applications

The driver package includes several example applications. These may be useful both for testing and for

programming demonstration purposes. The examples make extensive use of the utility libraries also included in the

driver package. The files are located as given in the table below.

Description Location

Generic …/sio4/samples/

Asynchronous …/sio4/async/samples/

SYNC …/sio4/sync/samples/

SIO4B4/8-SYNC, Linux Device Driver, User Manual

15

General Standards Corporation, Phone: (256) 880-8787

4. The Driver

The paragraphs that follow give instructions on building, starting and verifying startup of the driver. These files are

installed into the /usr/src/linux/drivers/sio4/driver/ directory.

NOTE: This driver works with both SYNC and non-SYNC versions of the SIO4. The driver used

here is the same exact driver provided with the non-SYNC driver release.

File Description

*.c
These sources implement the driver interface and its functionality. Some functionality has

been modularized based on individual source file base names.
*.h These are driver header files. Others are listed below.
Makefile This is the driver make file.
makefile.dep This is a make dependency file. This is updated automatically.
sio4.h This is the driver interface header file. It should be included by SIO4 applications.
start This is a shell script to install the driver module and device nodes.

4.1. Build

Follow the below steps to build the driver.

1. Change to the directory where the driver and its sources were installed. This should be

/usr/src/linux/drivers/sio4/driver/.

2. Remove all existing build targets by issuing the below command.

make clean

3. Build the driver by issuing the below command.

make all

NOTE: Building the SIO4 driver requires installation of the kernel header sources. If they are not

present the build will fail.

NOTE: Due to the differences between the many Linux distributions some build errors may

occur. These errors may include system header location differences and should be easily

correctable. Other errors may also appear as some distributors port newer kernel changes into

older kernel distributions.

4.2. Startup

The startup script used in this procedure is designed to ensure that the driver module in the install directory is the

module that is loaded. This is accomplished by making sure that an already loaded module is first unloaded before

attempting to load the module from the disk drive. In addition, the script also deletes and recreates the device nodes.

This is done to ensure that the device nodes in use have the same major number as assigned dynamically to the

driver by the kernel, and so that the number of device nodes correspond to the number of boards identified by the

driver.

4.2.1. Manual Driver Startup Procedures

Start the driver manually by following the below listed steps.

1. Login as root user, as some of the steps require root privileges.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

16

General Standards Corporation, Phone: (256) 880-8787

2. Change to the directory where the driver was installed. This should be

/usr/src/linux/drivers/sio4/driver/.

3. Install the driver module and create the device nodes by executing the below command. If any errors are

encountered then an appropriate error message will be displayed.

./start

NOTE: While loading the amount of time taken for driver initialization will vary depending on

the number of boards and each board’s type. For those boards with programmable oscillators,

additional initialization time may be needed for programming of each channel.

NOTE: The script’s default specifies that the driver is installed in the same directory as the script.

The script will fail if this is not so.

NOTE: The above step must be repeated each time the host is rebooted.

NOTE: The SIO4 device node major number is assigned dynamically by the kernel. The minor

numbers and the device node suffix numbers are index numbers beginning with one, and increase

by one for each additional serial channel.

4. Verify that the device module has been loaded by issuing the below command and examining the output. The

module name sio4 should be included in the output.

lsmod

5. Verify that the device nodes have been created by issuing the below command and examining the output. The

output should include four nodes for each installed board.

ls –l /dev/sio4*

4.2.2. Automatic Driver Startup Procedures

Start the driver automatically with each system reboot by following the below listed steps.

1. Locate and edit the system startup script rc.local, which should be in the /etc/rc.d/ directory. Modify

the file by adding the below line so that it is executed with every reboot. The example is based on the driver

being installed in /usr/src/linux/drivers/, though it may have been installed elsewhere.

/usr/src/linux/drivers/sio4/driver/start

NOTE: For systemd installations the file rc.local may be located under the /etc/

directory rather than under /etc/rc.d/.

2. Load the driver and create the required device nodes by rebooting the system.

3. Verify that the driver is loaded and that the device nodes have been created. Do this by following the

verification steps given in the manual startup procedures.

4.2.2.1. File rc.local Not Present

Some distributions may not install a default version of rc.local. Some may not even create the directory

/etc/rc.d/. If the directory is not present, then it may be created. The directory must be created with the owner

and group set to root. The directory permissions must be set to rwxr-xr-x. If the file /etc/rc.d/rc.local

SIO4B4/8-SYNC, Linux Device Driver, User Manual

17

General Standards Corporation, Phone: (256) 880-8787

is not present, then it too may be created. The file must also be created with the owner and group set to root.

Additionally, the file permissions must also be set to rwxr-xr-x. After the directory and file are created as

described, reboot to verify boot time loading of the driver. Here is an example of a default version of rc.local.

#!/bin/bash

Add you local content here.

4.2.2.2. Default rc.local File Permissions

The rc.local script may fail to run at boot time because some distributions install a default version of the file

without execute permissions. Without execute permissions, boot time invocation of the script fails, which inhibits

boot time loading of the driver. If this is the case, then change the file permissions to rwxr-xr-x. After the file

permissions are adjusted as described, reboot to verify boot time loading of the driver.

4.2.2.3. systemd Installations

With the advent of the systemd startup implementation, rc.local may be accessed via a systemd startup

service. The service name may be rc-local, rc-local.service or something similar. This service may or

may not be enabled by default. If the service is disabled, then the script will not execute, which prevents boot time

loading of the driver. The service can be enabled with the below command line. After the service is enabled, reboot

to verify boot time loading of the driver.

systemctl enable rc-local

NOTE: For systemd installations the file rc.local may be located under the /etc/

directory rather than under /etc/rc.d/.

4.2.2.4. systemd and rc.local Timing

If the above steps have been performed but the driver still does not start then examine the dmesg output for driver

messages. If the output shows that the driver starts and immediately stops, then the problem may be timing. That is,

since systemd doesn’t serialize startup initialization as done in the past, driver loading may fail if required services

have not completed their own initialization. If this is the problem, then it may be corrected simply by inserting a

delay in rc.local prior to it calling the driver’s start script (i.e., sleep for one or more seconds).

4.2.2.5. SElinux Implications

If not disabled, then SElinux may prevent boot time loading of the driver. If this is the case, then it can be verified

and corrected using SElinux related tools and utilities. First, install the necessary software using the below

command. (As necessary, replace the yum command line with that which is available for your distribution.)

yum install setroubleshoot setools

Next, run the below command to determine if SElinux is preventing the driver from loading at boot time.

sealert –a /var/log/audit/audit.log

If SElinux is preventing the driver from loading, then the output from the above command should include a

reference to the driver’s start script, the insmod command that loads the driver or the name of the driver

executable. If so, then the output should also indicate the commands necessary to resolve the issue. The following is

an example of the instructions given when the culprit is insmod, which is the start script command that loads the

driver. After running these commands reboot the system to verify boot time loading of the driver.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

18

General Standards Corporation, Phone: (256) 880-8787

ausearch -c 'insmod' --raw | audit2allow -M my-insmod

semodule -X 300 -i my-insmod.pp

4.3. Verification

Follow the below steps to verify that the driver has been properly installed and started.

1. Issue the below command to view the content of the driver’s /proc/ file system text file.

cat /proc/sio4

2. If the file exists then the driver is installed and running.

4.4. Version

The driver version number can be obtained in a variety of ways. It is reported by the driver both when the driver is

loaded and when it is unloaded (depending on kernel configuration options, this may be visible only in

/var/log/messages). It is recorded in the file /proc/sio4. It can also be read by an application via the

SIO4_GET_DRIVER_INFO IOCTL services.

4.5. Shutdown

Shutdown the driver following the below listed steps.

1. Login as root user, as some of the steps require root privileges.

2. If the driver is currently loaded then issue the below command to unload the driver.

rmmod sio4

3. Verify that the driver module has been unloaded by issuing the below command. The module name sio4

should not be in the list.

lsmod

SIO4B4/8-SYNC, Linux Device Driver, User Manual

19

General Standards Corporation, Phone: (256) 880-8787

5. The SYNC Library

This library provides applications access to services and functionality specific to SIO4-SYNC boards. The driver

archive includes all of the library’s sources and make files. The library must be linked with SYNC applications in

order to exercise the library’s SYNC specific functionality. The source files are delivered undocumented but may be

used to assist in application development and to help ease the learning curve. The files are described here only

briefly, though library use is described in the following paragraph. The files are installed into the

…/sio4/sync/lib/ directory. The files included are listed below.

File Description
*.c These are the sources that implement the library’s functionality.
makefile This is the library make file.
makefile.dep This is a make dependency file. This is updated automatically.

sio4_sync.h
This is a header file that exports the library’s interface. This must be included by applications

using the library.

5.1. Build

Follow the below steps to compile the example files.

1. Change to the directory where the library source files were installed (…/sio4/sync/lib/).

2. Remove all existing build targets by issuing the below command.

make clean

3. Build the library issuing the below command.

make all

5.2. Use

Use of the library has compile and link time requirements. Compile time use requires inclusion of the library’s

header file and expansion of the include search path. The header file is named sio4_sync.h and the path to

include is …/sio4/include/. Link time use requires linking two additional libraries and expansion of the library

search path. The first library is the SYNC library, which is named sio4_sync.a and is located in

…/sio4/lib/. The second library is the primary document source code example library, which is named

sio4_sync_dsl.a and is also located in …/sio4/lib/. This library is described below.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

20

General Standards Corporation, Phone: (256) 880-8787

6. Driver Interface

The SIO4 driver conforms to the device driver standards required by the Linux Operating System and contains the

standard driver entry points. The device driver provides a standard driver interface to the GSC SIO4 board for Linux

applications. The interface includes various macros, data types and functions, all of which are described in the

following paragraphs. The SIO4 specific portion of the driver interface is defined in the header files sio4.h and

sio4_sync.h, portions of which are described in this section. The headers define numerous items in addition to

those described here.

NOTE: Contact General Standards Corporation if additional driver functionality is required.

NOTE: The driver included with this release is designed to work with the SIO4 models listed on

the cover page of this user manual, as well as other models not listed. The driver interface may

therefore include IOCTL services and support components intended for use with other models.

Services and support components not documented in this manual should therefore not be used

with the models listed on the cover. For other SIO4 models, refer to the applicable driver user

manual.

6.1. Macros

The driver interface includes the following macros which are defined in sio4.h and sio4_sync.h. These

headers contain numerous additional utility type macros in addition to those described here.

6.1.1. IOCTL

The IOCTL macros are documented following the function call descriptions.

6.1.2. Registers

The following table gives the complete set of SIO4-SYNC registers. The tables are divided by register categories.

6.1.2.1. GSC Registers

The following table gives the complete set of GSC specific SIO4-SYNC registers. For detailed definitions of these

registers refer to the relevant SIO4-SYNC User Manual. Please note that the set of registers supported by any given

board may vary according to model and firmware version. For the set of supported registers and detailed definitions

of these registers please refer to the appropriate SIO4 User Manual.

Macros Description
SIO4_GSC_BCR Board Control Register
SIO4_GSC_BSR Board Status Register
SIO4_GSC_CCR Clock Control Register
SIO4_GSC_CSR Control/Status Register
SIO4_GSC_FCR FIFO Count Register
SIO4_GSC_FDR FIFO Data Register
SIO4_GSC_FR Features Register
SIO4_GSC_FRR Firmware Revision Register
SIO4_GSC_FSR FIFO Size Register
SIO4_GSC_FTR Firmware Type Register
SIO4_GSC_GPIOSR GPIO Status Register (older boards)
SIO4_GSC_ICR Interrupt Control Register
SIO4_GSC_IOCR I/O Control Register (older boards)
SIO4_GSC_ISR Interrupt Status Register
SIO4_GSC_IELR Interrupt Edge/Level Register

SIO4B4/8-SYNC, Linux Device Driver, User Manual

21

General Standards Corporation, Phone: (256) 880-8787

SIO4_GSC_IHLR Interrupt Hi/low Register
SIO4_GSC_PCDR Programmable Clock/Divider Register (older boards)
SIO4_GSC_PCR Programmable Clock Register (older boards)
SIO4_GSC_POCSR Programmable Oscillator Control/Status Register
SIO4_GSC_PORAR Programmable Oscillator RAM Address Register
SIO4_GSC_PORDR Programmable Oscillator RAM Data Register
SIO4_GSC_PORD2R Programmable Oscillator RAM Data 2 Register
SIO4_GSC_PSRCR Pin Source Register
SIO4_GSC_PSTSR Pin Status Register
SIO4_GSC_RAR Receiver Almost Empty/Full Register
SIO4_GSC_RCR Rx Count Register
SIO4_GSC_SBR Sync Byte Register
SIO4_GSC_TAR Transmitter Almost Empty/Full Register
SIO4_GSC_TCR Tx Count Register
SIO4_GSC_TSR Timestamp Register

6.1.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of the PCI

register identifiers refer to the driver header file sio4.h.

6.1.2.3. PLX Feature Set Registers

Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the

PCI9056 and PCI9080 register identifiers refer to the driver header file sio4.h.

6.2. Data Types

This driver interface includes the following data types which are defined in sio4.h.

6.2.1. FIFO_STATUS

This enumeration defines various possible values that may be received when reading a FIFO’s status.

NOTE: Other values are possible but are not seen in normal use.

NOTE: The Almost Empty status becomes active when the FIFO contains ALMOST EMPTY or

fewer bytes. Here, ALMOST EMPTY refers to the value programmed into the lower 16 bits of the

Tx and Rx Almost Registers.

NOTE: The Almost Full status becomes active when the FIFO can receive ALMOST FULL or

fewer additional bytes before being full. Here, ALMOST FULL refers to the value programmed

into the upper 16 bits of the Tx and Rx Almost Registers.

Definition

typedef enum FIFOStatus

{

 …

} FIFO_STATUS;

Values Description
ALMOST_EMPTY_STATUS The FIFO is almost full.
ALMOST_FULL_STATUS The FIFO is almost full.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

22

General Standards Corporation, Phone: (256) 880-8787

EMPTY_STATUS The FIFO is empty.
FULL_STATUS The FIFO is full.
INVALID_STATUS The FIFO’s current status is invalid.
NOT_ALMOST_EMPTY_NOR

_ALMOST_FULL_STATUS
The FIFO level is between the almost full and the almost empty states.

6.2.2. sio4_driver_info_t

This structure defines the data fields for the information returned by the SIO4_GET_DRIVER_INFO IOCTL

service.

Definition

typedef struct SIO4DriverInfo

{

 __u8 version[8];

 __u8 built[32];

} sio4_driver_info_t;

Fields Description
version This field gives the driver version number as a string in the form of X.X.X.X.

built The driver no longer provides its build data and time, so this field will be empty.

6.2.3. SIO4_INTERRUPT_STATUS

This structure records the interrupt status bits from the SIO4 Interrupt Status Register for the current channel. The

bits reflect the accumulated status since the last interrupt notification or status request.

Definition

typedef struct IntStatus

{

 __u8 u8SIO4Status;

} SIO4_INTERRUPT_STATUS;

Fields Description

u8SIO4Status
The channel’s interrupt status from the Interrupt Status Register. This may consist of

either four or eight bits, depending on the board’s capabilities.

6.2.4. sio4_mp_chip_t

This enumeration identifies the supported options for identifying the Multi-Protocol transceiver feature on the SIO4.

The values are used in the chip field of the sio4_mp_t (section 6.2.6, page 23) data structure, which is used with

the Multi-Protocol transceiver based IOCTL services. Refers to the specific service for information on how this

structure is used.

Definition

typedef enum

{

 …

} sio4_mp_chip_t;

SIO4B4/8-SYNC, Linux Device Driver, User Manual

23

General Standards Corporation, Phone: (256) 880-8787

Values Description

SIO4_MP_CHIP_FIXED
This refers to a fixed protocol implementation. The driver may not know

which protocol is implemented on the SIO4.
SIO4_MP_CHIP_SP508 This refers to the Sipex SP508 Multi-Protocol transceiver chip.
SIO4_MP_CHIP_UNKNOWN The chip type is unknown.

6.2.5. sio4_mp_prot_t

This enumeration identifies the protocol options supported by the Multi-Protocol transceiver driver. The values are

used in the want and got fields of the sio4_mp_t (section 6.2.6, page 23) data structure, which is used with the

Multi-Protocol transceiver based IOCTL services. Refers to the specific service for information on how this

structure is used. Refer to the hardware user manual for detailed explanations of each protocol options.

Definition

typedef enum

{

 …

} sio4_mp_prot_t;

Values Description
SIO4_MP_PROT_RS_232 This refers to the RS-232 protocol.
SIO4_MP_PROT_RS_422_485 This refers to the RS-422/RS-485 protocol.
SIO4_MP_PROT_RS_422_423_MM1 This refers to the RS-422/RS-423, Mixed Mode 1 protocol.
SIO4_MP_PROT_RS_422_423_MM2 This refers to the RS-422/RS-423, Mixed Mode 2 protocol.
SIO4_MP_PROT_RS_423 This refers to the RS-423 protocol.
SIO4_MP_PROT_RS_530_M1 This refers to the RS-530, Mode 1 protocol.
SIO4_MP_PROT_RS_530_M2 This refers to the RS-530, Mode 2 protocol.
SIO4_MP_PROT_V35_M1 This refers to the V.35, Mode 1 protocol.
SIO4_MP_PROT_V35_M2 This refers to the V.35, Mode 2 protocol.
SIO4_MP_PROT_DISABLE This refers to the disabled or tri-stated condition.

SIO4_MP_PROT_INVALID
This is returned by the driver when a requested protocol is

unsupported or unrecognized.
SIO4_MP_PROT_READ This requests that the driver report the current protocol.
SIO4_MP_PROT_UNKNOWN This is returned by the driver when the protocol is unknown.

6.2.6. sio4_mp_t

This data structure is used to exchange information and requests about the board’s Multi-Protocol transceiver feature

between applications and the driver. This structure is used with the Multi-Protocol transceiver based IOCTL

services. Refers to the specific service for information on how this structure is used.

Definition

typedef struct

{

 __s32 chip;

 __s32 prot_want;

 __s32 prot_got;

} sio4_mp_t;

SIO4B4/8-SYNC, Linux Device Driver, User Manual

24

General Standards Corporation, Phone: (256) 880-8787

Field Description

chip

The driver will fill this field in with the Multi-Protocol transceiver chip identifier. Refer

to the sio4_mp_chip_t (section 6.2.4, page 22) data type documentation elsewhere in

this document.
prot_want This refers to the protocol desired by the application.
prot_got This refers to the protocol reported by the device.

6.2.7. sio4_osc_chip_t

This enumeration identifies the supported options for identifying the programmable oscillator feature on the SIO4.

The values are used in the chip field of the sio4_osc_t (section 6.2.8, page 24) data structure, which is used

with the programmable oscillator based IOCTL services. Refers to the specific service for information on how this

structure is used.

Definition

typedef enum

{

 …

} sio4_osc_chip_t;

Values Description

SIO4_OSC_CHIP_CY22393
This refers to a single Cypress CY22393, which provides each

SIO4 channel with its own programmable oscillator.

SIO4_OSC_CHIP_CY22393_2
This refers to two Cypress CY22393s, which provides each SIO4

channel with its own programmable oscillator.

SIO4_OSC_CHIP_FIXED
This refers to a fixed frequency, non-programmable oscillator that

is shared by all SIO4 channels.

SIO4_OSC_CHIP_IDC2053B
This refers to a single Cypress IDC2053B, which provides all SIO4

channel with the same programmable oscillator output.

SIO4_OSC_CHIP_IDC2053B_4
This refers to four Cypress IDC2053B programmable oscillators,

which provides each SIO4 channel with its own output.
SIO4_OSC_CHIP_UNKNOWN The oscillator is unknown.

6.2.8. sio4_osc_t

This data structure is used to exchange information and requests about the board’s programmable oscillator between

applications and the driver. This structure is used with the programmable oscillator based IOCTL services. Refers to

the specific service for information on how this structure is used.

Definition

typedef struct

{

 __u32 chip;

 __s32 freq_ref;

 __s32 freq_want;

 __s32 freq_got;

} sio4_osc_t;

Field Description

chip

The driver will fill this field in with the oscillator chip identifier. Refer to the

sio4_osc_chip_t (section 6.2.7, page 24) data type documentation elsewhere in this

document.
freq_ref This refers to the frequency of the oscillator’s reference source.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

25

General Standards Corporation, Phone: (256) 880-8787

freq_want This refers to the clock output frequency desired by the application.
freq_got This refers to the clock output frequency produced by the device.

6.2.9. sio4_reg_t

This structure defines the data fields applicable to performing register read, write, and read-modify-write operations

with the register access IOCTL services.

Definition

typedef struct

{

 __u32 reg;

 __u32 value;

 __u32 mask;

} sio4_reg_t;

Fields Description
reg This identifies the register to access.

value
The register value is placed here. This is either the value read from the register, the value to

write to the register, or the bits to apply for modifications.

mask
This is the set of bits to modify for a read-modify-write access. If a bit is set here, then the

corresponding “value” bit is applied to the register. Otherwise, the register bit is unmodified.

6.2.10. sio4_sync_rx_t

This structure defines SYNC specific receiver data fields. It is used both for retrieving configuration settings and

applying configuration settings.

NOTE: This data type is defined in sio4_sync.h.

Definition

typedef struct

{

 int enable;

 int lsbf;

 int reset;

 __u16 word_size;

 struct

 {

 int high;

 } clock;

 struct

 {

 int enable;

 int high;

 } env;

 struct

 {

 int high;

 } data;

SIO4B4/8-SYNC, Linux Device Driver, User Manual

26

General Standards Corporation, Phone: (256) 880-8787

} sio4_sync_rx_t;

Fields Description

enable
This refers to the enabled/disabled state of the receiver. If zero, then the receiver is

disabled. If non-zero, then the receiver is enabled.

lsbf

This refers to the bit order that data is received in. If zero, then data is clocked in Most

Significant Bit First. If non-zero, then data is clocked in Least Significant Bit First,

hence the field name lsbf.

reset

This refers to Rx Count errors. If this is reported as zero, then no errors have occurred. If

non-zero an error has occurred and needs to be reset. If zero when settings are being

applied, then no action is taken. If non-zero then the error is reset.
word_size This refers to the number of bits in the last received word.
clock This refers to the Rx Clock configuration.

clock.high
If zero, then the Rx Clock is active low (falling edge). If non-zero, then it is active high

(rising edge).
env This refers to the Rx Envelope configuration.

env.enable

This refers to enabling or disabling the use of the Rx Envelope. If zero, then it is

disabled. This is applicable for two-wire configurations. If non-zero, then it is enabled.

This is applicable to three-wire configurations.

env.high
If zero, then Rx Envelope is active low. If non-zero, then it is active high. This is

ignored when Rx Envelope is disabled.
data This refers to the Rx Data configuration.

data.high
If zero, then Rx Data is active low. If non-zero, then it is active high. This is ignored

when Rx Data is disabled.

6.2.11. sio4_sync_t

This structure defines SYNC specific data fields that are independent of the board’s transmitter and receiver. It is

used both for retrieving configuration settings and applying configuration settings.

NOTE: This data type is defined in sio4_sync.h.

Definition

typedef struct

{

 int dce_enable;

 int dte_enable;

 struct

 {

 int enable;

 int internal;

 } lb;

} sio4_sync_t;

Fields Description

dce_enable
This refers to the board’s DCE configuration. If zero, then the DCE mode is disabled. If

non-zero, then the DCE mode is enabled. *

dte_enable

This refers to the board’s DTE configuration. If zero, then the DTE mode is disabled. If

non-zero, then the DTE mode is enabled. The SYNC library ignores this field if the

dce_enable field is non-zero. *

lb This substructure refers to the board’s loopback configuration.

enable
This refers to the board’s signal loopback capability. If zero, then the loopback feature is

disabled. If non-zero, then the feature is enabled.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

27

General Standards Corporation, Phone: (256) 880-8787

internal

This refers to the use of internal or external loopback. If zero, then external loopback is

utilized. If non-zero, then internal loopback is used. This field is ignored when loopback

is disabled.

* Either the DCE mode or the DTE mode must be enabled for data to be transferred across the cable

interface. If both are disabled, then no data can be transferred.

6.2.12. sio4_sync_tx_t

This structure defines SYNC specific transmitter data fields. It is used both for retrieving configuration settings and

applying configuration settings.

NOTE: This data type is defined in sio4_sync.h.

Definition

typedef struct

{

 int enable;

 int auto_dis;

 int lsbf;

 __u16 word_size;

 __u16 gap_size;

 struct

 {

 int clock;

 int ext;

 int high;

 int idle;

 } clock;

 struct

 {

 int env;

 int high;

 } env;

 struct

 {

 int data;

 int high;

 } data;

 struct

 {

 int enable;

 int clock;

 int high;

 } aux_clock;

 struct

 {

 int enable;

 int high;

 } spare;

} sio4_sync_tx_t;

SIO4B4/8-SYNC, Linux Device Driver, User Manual

28

General Standards Corporation, Phone: (256) 880-8787

Fields Description

enable
This refers to the enabled/disabled state of the transmitter. If zero, then the

transmitter is disabled. If non-zero, then the transmitter is enabled.

auto_dis

This refers to automatic disabling of the transmitter when the Tx FIFO runs

empty. If zero, then the transmitter is not automatically disabled when the Tx

FIFO runs empty. If non-zero, then the transmitter is automatically disabled

when the Tx FIFO runs empty.

lsbf

This refers to the bit order that data is transmitted. If zero, then data is clocked

out Most Significant Bit First. If non-zero, then data is clocked out Least

Significant Bit First, hence the field name lsbf. This refers to each byte

within each transmit word. Multi-byte words are always sent out in the order

that appear in the Tx FIFO.
word_size This refers to the size of each transmit word in bits.

gap_size
This refers to the number of bits transmitter at the completion of each transmit

word.
clock This refers to the Tx Clock configuration.

clock.clock
This refers to the functionality of the Tx Clock signal. If zero, then the signal is

a GPIO Output. If non-zero, then it is the transmit clock.

clock.ext
This refers to the transmit clock’s input source. If zero, then it is the onboard

oscillator divided by two. If non-zero, then it is the Rx Auxiliary Clock.

clock.high

If Tx Clock is functioning as the transmit clock, then it is active low (falling

edge) when zero, and active high (rising edge) when non-zero. For the GPIO

functionality, it is low when zero and high when non-zero.

clock.idle

This refers to the transmit clock’s operation when the transmitter is idle. When

zero, the signal is not idle. It is driven with the transmit clock. When non-zero

the signal is idle and is driven low.
env This refers to the Tx Envelope configuration.

env.env
This refers to the functionality of the Tx Envelope signal. If zero, then the

signal is a GPIO Output. If non-zero, then it is the transmit envelope.

env.high

If Tx Envelope is functioning as the transmit envelope, then it is active low

when zero, and active high when non-zero. For the GPIO functionality, it is

low when zero and high when non-zero.
data This refers to the Tx Data configuration.

data.data
This refers to the functionality of the Tx Data signal. If zero, then the signal is a

GPIO Output. If non-zero, then it is the transmit data.

data.high

If Tx Data is functioning as the transmit data, then it is active low when zero,

and active high when non-zero. For the GPIO functionality, it is low when zero

and high when non-zero.
aux_clock This refers to the Tx Auxiliary Clock configuration.

aux_clock.enable
This refers to the enable/disable state of the signal. If zero, then it is disabled

and tri-stated. If non-zero, then it operates according to the below settings.

aux_clock.clock

This refers to the functionality of the Tx Auxiliary Clock signal. If zero, then

the signal is a GPIO Output. If non-zero, then it is driven with the onboard

oscillator divided by two.

aux_clock.high

If Tx Auxiliary Clock is functioning as a clock output, then it is active low

(falling edge) when zero, and active high (rising edge) when non-zero. For the

GPIO functionality, it is low when zero and high when non-zero.
spare This refers to the Tx Spare configuration.

spare.enable
This refers to the enable/disable state of the signal. If zero, then it is disabled

and tri-stated. If non-zero, then it is a GPIO output.
spare.high If Tx Spare is enabled, then it is low when zero and high when non-zero.

6.2.13. TX_RX

This enumeration defines the possible external FIFO reset selection options.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

29

General Standards Corporation, Phone: (256) 880-8787

Definition

typedef enum TxRx

{

 …

} TX_RX;

Fields Description
RX_FIFO Reset the receive FIFO.
TX_FIFO Reset the transmit FIFO.
TX_AND_RX_FIFO Reset both FIFOs.

6.3. Functions

This driver interface includes the following functions.

6.3.1. close()

This function is the entry point to close a connection to an open SIO4 serial channel. The device is put in an

initialized state before this call returns. The programmable oscillator, if present, is not modified.

NOTE: This call does not change the firmware type on those boards whose firmware type is

configurable.

Prototype

int close(int fd);

Argument Description
fd This is the file descriptor of the device to be closed.

Return Value Description
-1 An error occurred. Consult errno.

0 The operation succeeded.

Example

#include <stdio.h>

#include "sio4_dsl.h"

int sio4_close(int fd)

{

 int errs;

 int ret;

 ret = close(fd);

 if (ret)

 printf("ERROR: close() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

SIO4B4/8-SYNC, Linux Device Driver, User Manual

30

General Standards Corporation, Phone: (256) 880-8787

6.3.2. ioctl()

This function is the entry point to performing setup and control operations on an open SIO4 serial channel. This

function should only be called after a successful open of the respective device. The specific operation performed

varies according to the request argument. The request argument also governs the use and interpretation of any

additional arguments. The set of supported IOCTL services is defined in a following section.

Prototype

int ioctl(int fd, int request, ...);

Argument Description
fd This is the file descriptor of the device to access.
request This specifies the desired operation to be performed.

...

This is any additional arguments. If request does not call for any additional arguments,

then any additional arguments provided are ignored. The SIO4 IOCTL services use at most

one argument, which is represented by a 32-bit value.

Return Value Description
-1 An error occurred. Consult errno.

0 The operation succeeded.

Example

#include <stdio.h>

#include "sio4_dsl.h"

int sio4_ioctl(int fd, int request, void* arg)

{

 int errs;

 int ret;

 ret = ioctl(fd, request, arg);

 if (ret)

 printf("ERROR: ioctl() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

6.3.3. open()

This function is the entry point to open a connection to an SIO4 serial channel. The device is initialized before the

function returns. The programmable oscillator, if present, is not modified.

NOTE: The SIO8 appears to the driver as two SIO4 boards.

NOTE: This call does not change the firmware type on those boards whose firmware type is

configurable.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

31

General Standards Corporation, Phone: (256) 880-8787

Prototype

int open(const char* pathname, int flags);

Argument Description
pathname This is the name of the device to open.
flags This is the desired read/write access. Use O_RDWR.

NOTE: Another form of the open() function has a mode argument. This form is not displayed

here as the mode argument is ignored when opening an existing file/device.

Return Value Description
-1 An error occurred. Consult errno.

else A valid file descriptor.

Example

#include <errno.h>

#include <stdio.h>

#include "sio4_dsl.h"

int sio4_open(int device, int* fd)

{

 int errs = 0;

 char name[128];

 int ret;

 sprintf(name, "/dev/sio4%d", device);

 ret = open(name, O_RDWR);

 if (ret < 0)

 {

 printf("ERROR: open() returned %d\n", ret);

 errs = 1;

 }

 if (fd)

 fd[0] = ret;

 return(errs);

}

6.3.4. read()

This function is the entry point to reading received data from an open SIO4 serial channel. This function should only

be called after a successful open of the respective device. The function reads up to bytes bytes from the receive

FIFO. If the number of bytes requested is not available within the configured time limit, the read operation times

out.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

32

General Standards Corporation, Phone: (256) 880-8787

NOTE: Refer to the SIO4_RX_IO_MODE_CONFIG IOCTL services to configure this call for

use of PIO, Block Mode DMA or Demand Mode DMA data transfer.

Prototype

int read(int fd, void *buf, size_t bytes);

Argument Description
fd This is the file descriptor of the device to access.
buf The data read will be put here.
bytes This is the desired number of bytes to read.

Return Value Description

-1 An error occurred. Consult errno.

0 to bytes
The operation succeeded. If the return value is less than bytes, then the request timed

out.

Example

#include <stdio.h>

#include "sio4_dsl.h"

int sio4_read(int fd, void* dst, size_t bytes, size_t* qty)

{

 int errs;

 int ret;

 ret = read(fd, dst, bytes);

 if (ret < 0)

 printf("ERROR: read() returned %d\n", ret);

 if (qty)

 qty[0] = (ret < 0) ? 0 : (size_t) ret;

 errs = (ret < 0) ? 1 : 0;

 return(errs);

}

6.3.5. sio4_sync_get()

This function is the entry point to retrieving SYNC configuration settings that are independent of the transmitter and

receiver. This function should only be called after a successful open of the respective device.

NOTE: The prototype for this function is in sio4_sync.h.

Prototype

int sio4_sync_get(int fd, sio4_sync_t* sync);

SIO4B4/8-SYNC, Linux Device Driver, User Manual

33

General Standards Corporation, Phone: (256) 880-8787

Argument Description
fd This is the file descriptor of the device to access.

sync
This points to the structure that is to receive the current configuration state (section 6.2.11,

page 26). This pointer may be NULL.

Return Value Description
0 No errors were encountered.
> 0 An appropriate error value, which is the applicable errno value.

Example

#include <errno.h>

#include <stdio.h>

#include "sio4_sync_dsl.h"

int sio4_sync_dce_set(int fd, int enable, int verbose)

{

 sio4_sync_t sync;

 int status;

 const char* str = "sio4_sync_get";

 status = sio4_sync_get(fd, &sync);

 if (status == 0)

 {

 sync.dce_enable = enable;

 status = sio4_sync_set(fd, &sync);

 str = "sio4_sync_set";

 }

 if ((verbose) && (status == -1))

 printf("%s() failure, errno = %d\n", str, errno);

 return(status);

}

6.3.6. sio4_sync_gpio_rx()

This function is the entry point to reading the SYNC board’s GPIO inputs. The value read represents the current

value of all signals included in the Pin Source Register, even those not configured as GPIO. Bits undefined in the

register are returned as zero. This function should only be called after a successful open of the respective device.

NOTE: The prototype for this function is in sio4_sync.h.

Prototype

int sio4_sync_gpio_rx(int fd, __u32* value);

Argument Description
fd This is the file descriptor of the device to access.
value This points to the variable to receive the value read. This pointer may be NULL.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

34

General Standards Corporation, Phone: (256) 880-8787

Return Value Description
0 No errors were encountered.
> 0 An appropriate error value, which is the applicable errno value.

Example

#include <errno.h>

#include <stdio.h>

#include "sio4_sync_dsl.h"

int sio4_sync_gpio_read_tx(int fd, __u32* value, int verbose)

{

 int status;

 status = sio4_sync_gpio_rx(fd, value);

 value[0] &= 0x2F0;

 if ((verbose) && (status == -1))

 printf("sio4_sync_gpio_read() failure, errno = %d\n",

errno);

 return(status);

}

6.3.7. sio4_sync_gpio_tx()

This function is the entry point to writing to the SYNC board’s GPIO outputs. Only those signals currently

configured as GPIO outputs are affected. All bits that do not correspond to GPIO outputs are quietly ignored. This

function should only be called after a successful open of the respective device.

NOTE: The prototype for this function is in sio4_sync.h.

Prototype

int sio4_sync_gpio_tx(int fd, __u32 value);

Argument Description
fd This is the file descriptor of the device to access.
value This is the value to write to the GPIO outputs.

Return Value Description
0 No errors were encountered.
> 0 An appropriate error value, which is the applicable errno value.

Example

#include <errno.h>

#include <stdio.h>

#include "sio4_sync_dsl.h"

SIO4B4/8-SYNC, Linux Device Driver, User Manual

35

General Standards Corporation, Phone: (256) 880-8787

int sio4_sync_gpio_mod(int fd, __u32 value, __u32 mask, int verbose)

{

 int status;

 const char* str = "sio4_sync_gpio_rx";

 __u32 v;

 status = sio4_sync_gpio_rx(fd, &v);

 if (status == 0)

 {

 value = (value & mask) | (v & ~mask);

 status = sio4_sync_gpio_tx(fd, value);

 str = "sio4_sync_gpio_tx";

 }

 if ((verbose) && (status == -1))

 printf("%s() failure, errno = %d\n", str, errno);

 return(status);

}

6.3.8. sio4_sync_rx_get()

This function is the entry point to retrieving receiver specific SYNC configuration settings. This function should

only be called after a successful open of the respective device.

NOTE: The prototype for this function is in sio4_sync.h.

Prototype

int sio4_sync_rx_get(int fd, sio4_sync_rx_t* rx);

Argument Description
fd This is the file descriptor of the device to access.

rx
This points to the structure that is to receive the current configuration state (section 6.2.10,

page 25). This pointer may be NULL.

Return Value Description
0 No errors were encountered.
> 0 An appropriate error value, which is the applicable errno value.

Example

#include <errno.h>

#include <stdio.h>

#include "sio4_sync_dsl.h"

int sio4_sync_rx_data_get(int fd, int* high, int verbose)

{

 sio4_sync_rx_t rx;

SIO4B4/8-SYNC, Linux Device Driver, User Manual

36

General Standards Corporation, Phone: (256) 880-8787

 int status;

 status = sio4_sync_rx_get(fd, &rx);

 high[0] = rx.data.high;

 if ((verbose) && (status == -1))

 printf("sio4_sync_rx_get() failure, errno = %d\n", errno);

 return(status);

}

6.3.9. sio4_sync_rx_set()

This function is the entry point to applying receiver specific SYNC configuration settings. This function should only

be called after a successful open of the respective device.

NOTE: The prototype for this function is in sio4_sync.h.

Prototype

int sio4_sync_rx_set(int fd, const sio4_sync_rx_t* rx);

Argument Description
fd This is the file descriptor of the device to access.

rx
This points to the structure that contains the settings to apply (section 6.2.10, page 25). This

pointer may be NULL.

Return Value Description
0 No errors were encountered.
> 0 An appropriate error value, which is the applicable errno value.

Example

#include <errno.h>

#include <stdio.h>

#include "sio4_sync_dsl.h"

int sio4_sync_rx_env_set(int fd, int enable, int high, int verbose)

{

 sio4_sync_rx_t rx;

 int status;

 const char* str = "sio4_sync_rx_get";

 status = sio4_sync_rx_get(fd, &rx);

 if (status == 0)

 {

 rx.env.enable = enable;

 rx.env.high = high;

 status = sio4_sync_rx_set(fd, &rx);

 str = "sio4_sync_rx_set";

SIO4B4/8-SYNC, Linux Device Driver, User Manual

37

General Standards Corporation, Phone: (256) 880-8787

 }

 if ((verbose) && (status == -1))

 printf("%s() failure, errno = %d\n", str, errno);

 return(status);

}

6.3.10. sio4_sync_set()

This function is the entry point to applying SYNC configuration settings that are independent of the transmitter and

receiver. This function should only be called after a successful open of the respective device.

NOTE: The prototype for this function is in sio4_sync.h.

Prototype

int sio4_sync_set(int fd, const sio4_sync_t* sync);

Argument Description
fd This is the file descriptor of the device to access.

sync
This points to the structure containing the setting to apply (section 6.2.11, page 26). This

pointer may be NULL.

Return Value Description
0 No errors were encountered.
> 0 An appropriate error value, which is the applicable errno value.

Example

#include <errno.h>

#include <stdio.h>

#include "sio4_sync_dsl.h"

int sio4_sync_dte_get(int fd, int* enable, int verbose)

{

 sio4_sync_t sync;

 int status;

 status = sio4_sync_get(fd, &sync);

 enable[0] = sync.dte_enable;

 if ((verbose) && (status == -1))

 printf("sio4_sync_get() failure, errno = %d\n", errno);

 return(status);

}

SIO4B4/8-SYNC, Linux Device Driver, User Manual

38

General Standards Corporation, Phone: (256) 880-8787

6.3.11. sio4_sync_tx_get()

This function is the entry point to retrieving transmitter specific SYNC configuration settings. This function should

only be called after a successful open of the respective device.

NOTE: The prototype for this function is in sio4_sync.h.

Prototype

int sio4_sync_tx_get(int fd, sio4_sync_tx_t* tx);

Argument Description
fd This is the file descriptor of the device to access.

tx
This points to the structure that is to receive the current configuration state (section 6.2.12,

page 27). This pointer may be NULL.

Return Value Description
0 No errors were encountered.
> 0 An appropriate error value, which is the applicable errno value.

Example

#include <errno.h>

#include <stdio.h>

#include "sio4_sync_dsl.h"

int sio4_sync_tx_env_get(int fd, int* env, int* high, int verbose)

{

 sio4_sync_tx_t tx;

 int status;

 status = sio4_sync_tx_get(fd, &tx);

 env[0] = tx.env.env;

 high[0] = tx.env.high;

 if ((verbose) && (status == -1))

 printf("sio4_sync_tx_get() failure, errno = %d\n", errno);

 return(status);

}

6.3.12. sio4_sync_tx_set()

This function is the entry point to applying transmitter specific SYNC configuration settings. This function should

only be called after a successful open of the respective device.

NOTE: The prototype for this function is in sio4_sync.h.

Prototype

int sio4_sync_tx_set(int fd, const sio4_sync_tx_t* tx);

SIO4B4/8-SYNC, Linux Device Driver, User Manual

39

General Standards Corporation, Phone: (256) 880-8787

Argument Description
fd This is the file descriptor of the device to access.

tx
This points to the structure that contains the settings to apply (section 6.2.12, page 27). This

pointer may be NULL.

Return Value Description
0 No errors were encountered.
> 0 An appropriate error value, which is the applicable errno value.

Example

#include <errno.h>

#include <stdio.h>

#include "sio4_sync_dsl.h"

int sio4_sync_tx_data_set(int fd, int data, int high, int verbose)

{

 sio4_sync_tx_t tx;

 int status;

 const char* str = "sio4_sync_tx_get";

 status = sio4_sync_tx_get(fd, &tx);

 if (status == 0)

 {

 tx.data.data = data;

 tx.data.high = high;

 status = sio4_sync_tx_set(fd, &tx);

 str = "sio4_sync_tx_set";

 }

 if ((verbose) && (status == -1))

 printf("%s() failure, errno = %d\n", str, errno);

 return(status);

}

6.3.13. write()

This function is the entry point to writing data for transmission to an open SIO4 serial channel. This function should

only be called after a successful open of the respective device. The function writes up to bytes bytes to the

transmit FIFO. If the number of bytes requested cannot be sent within the configured time limit, the write operation

times out.

NOTE: Refer to the SIO4_TX_IO_MODE_CONFIG IOCTL services to configure this call for

use of PIO, Block Mode DMA or Demand Mode DMA data transfer.

Prototype

int write(int fd, const void *buf, size_t bytes);

SIO4B4/8-SYNC, Linux Device Driver, User Manual

40

General Standards Corporation, Phone: (256) 880-8787

Argument Description
fd This is the file descriptor of the device to access.
buf The data written comes from here.
bytes This is the desired number of bytes to write.

Return Value Description

-1 An error occurred. Consult errno.

0 to bytes
The operation succeeded. If the return value is less than bytes, then the request timed

out.

Example

#include <stdio.h>

#include "sio4_dsl.h"

int sio4_write(int fd, const void *src, size_t bytes, size_t* qty)

{

 int errs;

 int ret;

 ret = write(fd, src, bytes);

 if (ret < 0)

 printf("ERROR: write() returned %d\n", ret);

 if (qty)

 qty[0] = (ret < 0) ? 0 : (size_t) ret;

 errs = (ret < 0) ? 1 : 0;

 return(errs);

}

6.4. IOCTL Services

The SIO4 driver implements the following IOCTL services. Each service is described along with the applicable

ioctl() function arguments. In the definitions given the optional argument is identified as arg and is an

unsigned 32-bit data type. Unless otherwise stated the return value definitions are those defined for the ioctl()

function call.

NOTE: Many of the IOCTL services alter the state of the channel’s operation and can adversely

affect the channel’s proper operation if data transfer is in progress. Exercise care when using these

services to ensure that data integrity is maintained.

6.4.1. SIO4_BOARD_JUMPERS

This service reads the jumper information for the user jumpers. If the jumpers are not supported on the board in use,

then the returned value is the XXX_UNKNOWN macro. If the jumpers are supported, then the value returned will be

from 0x0 to 0x3 for boards with two jumpers and from 0x0 to 0xF for boards with four jumpers.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

41

General Standards Corporation, Phone: (256) 880-8787

Usage

ioctl() Argument Description

request SIO4_BOARD_JUMPERS

arg __s32*

The table below lists the predefined macros used with this service.

Macros Description
SIO4_BOARD_JUMPERS_UNSUPPORTED The board jumpers are unsupported.

6.4.2. SIO4_FEATURE_TEST

This service provides information on an SIO4’s feature set. To gain support information on a specific feature the

corresponding macro is supplied. The value returned will be the corresponding support information, which may be

the XXX_YES or XXX_NO macro or some other feature specific value. If the XXX_COUNT macro is supplied, the

value returned is the number of feature options supported by the service, and should be one more that the service’s

XXX_LAST_INDEX macro.

Usage

ioctl() Argument Description

request SIO4_FEATURE_TEST

arg __s32*

The table below lists the options used with this service.

Macros Description

SIO4_FEATURE_BOARD_RESET
Does the Board Control Register support the Board

Reset bit?

SIO4_FEATURE_BUS_SPEED

This indicates the maximum PCI bus speed the board

was designed for. This should be 33 (for 33MHz) or

66 (for 66MHz).

SIO4_FEATURE_BUS_WIDTH

This indicates the PCI bus width the board was

designed for. This should be 32 (for 32-bits) or 64

(for 64-bits).

SIO4_FEATURE_CHANNEL_QTY
This refers to the number of channels on the entire

board and should be either four or eight.

SIO4_FEATURE_COUNT
This reports the number of features supported by the

service.

SIO4_FEATURE_DEVICE_QTY

This reports the number of SIO4 products built into

the board. This is one for SIO4 model boards and two

for SIO8 model boards.

SIO4_FEATURE_DMDMA_SCD
Does the Board Control Register support the Single

Cycle Disable bit?

SIO4_FEATURE_FIFO_SIZE_RX
This is the size of the channel’s Rx FIFO, or zero if

the size is unknown.

SIO4_FEATURE_FIFO_SIZE_TOTAL

This is the total combined size for the eight FIFOs of

each device’s four channels. (This is typically half the

total size for SIO8 boards.)

SIO4_FEATURE_FIFO_SIZE_TX
This is the size of the channel’s Tx FIFO, or zero if

the size is unknown.

SIO4_FEATURE_FORM_FACTOR
This indicates the board’s basic form factor, and

should be a value from the sio4_form_factor_t

SIO4B4/8-SYNC, Linux Device Driver, User Manual

42

General Standards Corporation, Phone: (256) 880-8787

enumeration.

SIO4_FEATURE_FW_TYPE

This is a value from the sio4_fw_type_t

enumeration. For Z16C30 based boards, the value

returned should be SIO4_FW_TYPE_Z16C30.

SIO4_FEATURE_FW_TYPE_CONFIG

This indicates if the board supports both the SYNC

firmware and the Z16C30 firmware. If it does, then

the SIO4_FEATURE_FW_TYPE_CONFIG IOCTL

service (section 6.4.3, page 44) can be used to select

the firmware type.

SIO4_FEATURE_IRQ_32
Are all 32-bits of the interrupt configuration registers

significant?

SIO4_FEATURE_FIFO_SPACE_CFG

This indicates if the firmware supports the option of

configuring the amount of FIFO space for the receiver

and transmitter.

SIO4_FEATURE_INDEX_BOARD

This returns the zero-based index of the board. Each

SIO4 counts as one board. Each SIO8 counts as two

boards.

SIO4_FEATURE_INDEX_CHANNEL
This returns the channel index on the board. Values

returned are from zero to three.

SIO4_FEATURE_INDEX_DEVICE
This returns the zero-based serial channel device

index relative to all serial channels.

SIO4_FEATURE_INDEX_SUBDEVICE

This is the sub-device index for the SIO4 being

accessed. The value will be zero for SIO4 boards and

zero or one for SIO8 boards.

SIO4_FEATURE_LED_CHANNEL
This indicates the number of LEDs on the board

dedicated to each channel.

SIO4_FEATURE_LED_MAIN
This indicates the number of LEDs on the board that

are not associated with the serial channels.

SIO4_FEATURE_LEGACY_CABLE
Does the firmware include the legacy cable interface

control?

SIO4_FEATURE_MODEL_BASE
This returns the base model of the board and is a

member of the sio4_model_t enumeration.

SIO4_FEATURE_MODEL_SYNC

Is this a SYNC based version of the SIO4? This is one

for yes and zero for no. (Please note that on some

boards the firmware type may be selectable (section

6.4.3, page 44).)

SIO4_FEATURE_MODEL_Z16C30

Is this a Zilog Z16C30 based version of the SIO4?

This is one for yes and zero for no. (Please note that

on some boards the firmware type may be selectable

(section 6.4.3, page 44).)
SIO4_FEATURE_MP Is the Multi-Protocol transceiver feature in firmware?

SIO4_FEATURE_MP_BITMAP

This is a bitmap of the transceiver options supported

by the board. The bits correspond to the protocols

given by the sio4_mp_prot_t (section 6.2.5, page

23) enumeration.
SIO4_FEATURE_MP_CHIP Which Multi-Protocol transceiver chip is present?
SIO4_FEATURE_MP_PROGRAM Can a transceiver selection be reprogrammed?
SIO4_FEATURE_OSC_CHIP Which programmable oscillator chip is present?

SIO4_FEATURE_OSC_MEASURE
Is the driver able to measure the oscillator’s

frequency?

SIO4_FEATURE_OSC_PD_MAX
This is the maximum value that can be assigned to the

firmware post dividers.

SIO4_FEATURE_OSC_PER_CHANNEL
Is each channel separately and individually

programmable?

SIO4B4/8-SYNC, Linux Device Driver, User Manual

43

General Standards Corporation, Phone: (256) 880-8787

SIO4_FEATURE_OSC_PROGRAM Is the driver able to program the oscillator?
SIO4_FEATURE_REG_BSR Is the Board Status Register supported?
SIO4_FEATURE_REG_CCR Are the Clock Control Registers supported?
SIO4_FEATURE_REG_FCR Are the FIFO Count registers supported?
SIO4_FEATURE_REG_FR Is the Features Register supported?
SIO4_FEATURE_REG_FSR Are the FIFO Size registers supported?
SIO4_FEATURE_REG_FTR Is the Firmware Type Register supported?
SIO4_FEATURE_REG_GPIOSR Is the GPIO Source Register supported?
SIO4_FEATURE_REG_IELR Is the Interrupt Edge/Level Register supported?
SIO4_FEATURE_REG_IHLR Is the Interrupt High/Low Register supported?
SIO4_FEATURE_REG_IOCR Is the I/O Control Register supported?
SIO4_FEATURE_REG_PCR Is the Programmable Clock Register supported?

SIO4_FEATURE_REG_POCSR
Is the Programmable Oscillator Control/Status

Register supported?

SIO4_FEATURE_REG_PORAR
Is the Programmable Oscillator RAM Address

Register supported?

SIO4_FEATURE_REG_PORDR
Is the Programmable Oscillator RAM Data Register

supported?

SIO4_FEATURE_REG_PORD2R
Is the Programmable Oscillator RAM Data Register 2

supported?
SIO4_FEATURE_REG_PSRCR Are the Pin Source Registers supported?

SIO4_FEATURE_REG_PSRCR_BITS
This is a bitmap of supported bits in the Pin Source

Register. This is zero if the register is not supported.
SIO4_FEATURE_REG_PSTSR Are the Pin Status Registers supported?

SIO4_FEATURE_REG_PSTSR_BITS
This is a bitmap of supported bits in the Pin Status

Register. This is zero if the register is not supported.
SIO4_FEATURE_REG_RCR Is the Rx Count Register supported?
SIO4_FEATURE_REG_SBR Is the Sync Byte Register supported?
SIO4_FEATURE_REG_TCR Is the Tx Count Register supported?
SIO4_FEATURE_REG_TSR Is the Timestamp Register supported?

SIO4_FEATURE_RX_FIFO_FULL_CFG
Does the Control/Status Register support the channel

specific Rx FIFO Full Configuration bit?

SIO4_FEATURE_RX_FIFO_FULL_CFG_GLB
Does the Board Control Register support the global

Rx FIFO Full Configuration bit?
SIO4_FEATURE_RX_FIFO_OVERRUN Does the board support the Rx FIFO Overrun feature?

SIO4_FEATURE_RX_FIFO_UNDERRUN
Does the board support the Rx FIFO Underrun

feature?

SIO4_FEATURE_RX_STATUS_WORD
Does the board support the feature of including the

USC Rx Status Register in the data stream?

SIO4_FEATURE_SIO4_TYPE

This indicates the basic model type for the SIO4 and

should be a value from the sio4_type_t

enumeration.
SIO4_FEATURE_TIME_STAMP Does the board support the Time stamping feature?

SIO4_FEATURE_TX_FIFO_EMPTY_CFG
Does the board support the channel specific Tx FIFO

Full Configuration bit?

SIO4_FEATURE_TX_FIFO_OVERRUN
This indicates if the board supports the Tx FIFO

Overrun feature.
SIO4_FEATURE_USER_JUMPER_QTY This is the number of jumpers supported by the board.

SIO4_FEATURE_USER_JUMPER_SENSE
This is the bit value returned if a jumper is present.

This is zero if no jumpers are supported.

SIO4_FEATURE_USER_JUMPER_VAL
This is the value read from the user jumpers pins.

This is zero if no jumpers are supported.

The table below lists common response values for most the feature options.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

44

General Standards Corporation, Phone: (256) 880-8787

Macros Description
SIO4_FEATURE_NO The feature is not supported.
SIO4_FEATURE_UNKNOWN Either the feature is unknown or support for the feature is unknown.
SIO4_FEATURE_YES The feature is supported.

6.4.3. SIO4_FW_TYPE_CONFIG

This service configures the channel for operation under the specified firmware type. If one of the predefined

firmware types is requested, then it is applied. If the XXX_READ macro is supplied, then the current firmware type is

not changed. Before returning, the current configuration is obtained and reported to the caller. If the feature is not

configurable on the current board, then no change can be applied.

Later SIO4 models include firmware for both SYNC and Zilog based operation and allow applications to change the

current firmware type on a per-channel-basis. As of driver release version 1.59, the instances where the driver

changes the firmware type has been reduced. Accordingly, the driver changes the current firmware type only under

the following circumstances.

1. When the driver is loaded the firmware type for all four channels is set to the board’s default.

2. When the Initialize Board IOCTL service is called (section 6.4.5, page 45), the firmware type for all four

channels is set to the board’s default.

3. When an application calls the Firmware Type Configuration IOCTL service, the firmware type for the accessed

channel is updated as requested.

NOTE: It is recommended that the firmware type be changed once only, as required for

application operation. It is recommended that the firmware type not me changed repeatedly.

NOTE: Refer to the SIO4_FEATURE_FW_TYPE_CONFIG feature option to determine

availability of this feature (section 6.4.2, page 41).

NOTE: Selecting the Z16C30 firmware type results in the entire USC chip being reset, which

affects both channels using that chip (i.e., channels 1 and 2 or channels 3 and 4).

Usage

ioctl() Argument Description

request SIO4_FW_TYPE_CONFIG

arg __s32*

The table below lists the options used by this service.

Macros Description
SIO4_FW_TYPE_CONFIG_READ This is used to retrieve the current configuration.

SIO4_FW_TYPE_CONFIG_SYNC
This refers to the SYNC firmware, which is the default for all –

SYNC model SIO4 boards.

SIO4_FW_TYPE_CONFIG_Z16C30

This refers to the Z16C30 firmware, which is the default for all

non–SYNC model SIO4 boards. For driver support under this

firmware please refer to the appropriate user manual.

6.4.4. SIO4_GET_DRIVER_INFO

This service retrieves information about the driver itself. At this time this includes only a driver version string.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

45

General Standards Corporation, Phone: (256) 880-8787

Usage

ioctl() Argument Description

request SIO4_GET_DRIVER_INFO

arg Sio4_driver_info_t* (section 6.2.2, page 22)

6.4.5. SIO4_INIT_BOARD

This service initializes all of the board’s hardware for all four channels. This includes the transmitters, the receivers,

the FIFOs, the cable configurations, the transceivers and the programmable oscillators. For boards with

programmable oscillators and programmable transceivers, these features are initialized in preparation for use.

WARNING: This service affects all four channels on the board and should be used with care.

NOTE: If the firmware type is configurable, this service resets the firmware type for all four

channels to the board’s default.

Usage

ioctl() Argument Description

request SIO4_INIT_BOARD

arg Not used.

6.4.6. SIO4_INT_NOTIFY

This service requests that the application be notified of one or more interrupts on the given serial channel. The

parameter value is the bit wise or-ing of the possible notification bits. (The bits are defined in a previous section of

this document.) Notification is given only for those bits which are set. Passing in a value of zero (0) cancels all

notification requests. Once a specified interrupt occurs the driver clears and disables the interrupt, then notifies the

application via a SIGIO (from signal.h) signal. To receive any subsequent notifications the application must

make another notification request. The referenced interrupts are enabled. Unreferenced interrupts are disabled.

NOTE: Interrupt options referenced but unsupported by the current hardware are quietly ignored.

Usage

ioctl() Argument Description

request SIO4_INT_NOTIFY

arg unsigned char

The table below lists the options used with this service. These options may be used in any bitwise combination.

Macros Description
SIO4_INT_NOTIFY_RX_FIFO_AF The Rx FIFO Almost Full interrupt.
SIO4_INT_NOTIFY_RX_FIFO_E The Rx FIFO Empty interrupt.
SIO4_INT_NOTIFY_RX_FIFO_F The Rx FIFO Full interrupt.
SIO4_INT_NOTIFY_TX_FIFO_AE The Tx FIFO Almost Empty interrupt.
SIO4_INT_NOTIFY_TX_FIFO_E The Tx FIFO Empty interrupt.
SIO4_INT_NOTIFY_TX_FIFO_F The Tx FIFO Full interrupt.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

46

General Standards Corporation, Phone: (256) 880-8787

6.4.7. SIO4_MOD_REGISTER

This service performs a read-modify-write operation on an SIO4 register. This includes only the GSC firmware

registers and USC registers. The PCI registers and the PLX feature set registers are read-only. Refer to the SIO4

User Manual and to sio4.h for a complete list of the available registers.

Usage

ioctl() Argument Description

request SIO4_MOD_REGISTER

arg Sio4_reg_t* (section 6.2.9, page 25)

6.4.8. SIO4_MP_CONFIG

This service is used to select and/or report on the current transceiver protocol. The driver uses the prot_want field

and ignores all others. The results are recorded in the data structure’s prot_got field. Refer to the Multi-Protocol

transceiver programming information later in this document for more information.

NOTE: The driver will fulfill the request based on the SIO4’s capabilities. When the protocol can

be changed and that requested is available, the requested change will be selected. Requests will

otherwise fail and the protocol will be unchanged.

Usage

ioctl() Argument Description

request SIO4_MP_CONFIG

arg sio4_mp_t* (section 6.2.6, page 23)

6.4.9. SIO4_MP_INFO

This service returns information about the current Multi-Protocol transceiver configuration. All field contents are

ignored and are set by the driver according to the current configuration. Refer to the Multi-Protocol transceiver

programming information later in this document for more information.

Usage

ioctl() Argument Description

request SIO4_MP_INFO

arg sio4_mp_t* (section 6.2.6, page 23)

6.4.10. SIO4_MP_INIT

This service initializes the board’s Multi-Protocol transceiver feature. This returns the Multi-Protocol transceivers to

their initial power up state. The results are recorded in the data structure’s prot_got field. Refer to the Multi-

Protocol transceiver programming information later in this document for more information.

Usage

ioctl() Argument Description

request SIO4_MP_INIT

arg sio4_mp_t* (section 6.2.6, page 23)

SIO4B4/8-SYNC, Linux Device Driver, User Manual

47

General Standards Corporation, Phone: (256) 880-8787

6.4.11. SIO4_MP_RESET

This service resets the board’s Multi-Protocol transceiver feature. This disables the transceivers by tri-stating the

outputs. The results are recorded in the data structure’s prot_got field. Refer to the Multi-Protocol transceiver

programming information later in this document for more information.

Usage

ioctl() Argument Description

request SIO4_MP_RESET

arg sio4_mp_t* (section 6.2.6, page 23)

6.4.12. SIO4_MP_TEST

This service is used to determine if the board’s Multi-Protocol transceiver feature supports a given protocol. The

protocol to be tested is recorded in the structure’s prot_want field. The results are recorded in the data structure’s

prot_got field. The reported value will be SIO4_MP_PROT_INVALID if the requested protocol value is

unrecognized or unsupported. It will be SIO4_MP_PROT_UNKNOWN when support for the specified protocol is

unknown. This is applicable when the SIO4 doesn’t support the feature or when the chip used is unsupported by the

driver. The reported value will equal the requested protocol when that protocol is supported. Refer to the Multi-

Protocol transceiver programming information later in this document for more information.

Usage

ioctl() Argument Description

request SIO4_MP_TEST

arg sio4_mp_t* (section 6.2.6, page 23)

6.4.13. SIO4_OSC_INFO

This service returns current configuration information about the channel’s oscillator. The driver ignores the

structure’s current content and fills in all fields according to the channel’s current configuration. Refer to the

oscillator programming information later in this document for more information.

Usage

ioctl() Argument Description

request SIO4_OSC_INFO

arg sio4_osc_t* (section 6.2.8, page 24)

6.4.14. SIO4_OSC_INIT

This service initializes the channel’s programmable oscillator hardware. The channel’s input clock will be

reprogrammed to output the reference frequency as a result of this service, depending on the device’s capabilities.

The driver ignores the structure’s current content and fills in all fields according to the channel’s post-initialization

configuration. The reference frequency is unaltered, the desired frequency is set to the reference frequency, and the

frequency obtained is reported. Refer to the oscillator programming information later in this document for more

information.

Usage

ioctl() Argument Description

request SIO4_OSC_INIT

arg sio4_osc_t* (section 6.2.8, page 24)

SIO4B4/8-SYNC, Linux Device Driver, User Manual

48

General Standards Corporation, Phone: (256) 880-8787

6.4.15. SIO4_OSC_MEASURE

This service is used to measure the frequency produced by the current oscillator hardware configuration. The driver

ignores all structure field values and fills them in according to the test results and the channel’s current

configuration. The test results are recorded in the data structure’s freq_got field. A value of -1 is reported when

the frequency can’t be measured. Refer to the oscillator programming information later in this document for more

information.

NOTE: The driver will perform a measurement test based on the SIO4’s capabilities. When a

measurement can be made, the test duration and the accuracy of the results are dependent on the

board’s capabilities. Refer to the hardware manual for additional details.

Usage

ioctl() Argument Description

request SIO4_OSC_MEASURE

arg sio4_osc_t* (section 6.2.8, page 24)

6.4.16. SIO4_OSC_PROGRAM

This service is used to update and report on the programmed frequency produced by the channel’s oscillator

hardware. This service will reprogram the channel’s oscillator hardware to produce the requested frequency, or one

as near as possible to that requested. The resulting frequency will depend on the capability of the hardware and how

its resources are being used, as applicable. If the requested value is -1, then the service will report the channel’s

current configuration without making any changes. The driver ignores all other fields and fills them in according to

the channel’s post-programming configuration. Refer to the oscillator programming information later in this

document for more information.

Usage

ioctl() Argument Description

request SIO4_OSC_PROGRAM

arg sio4_osc_t* (section 6.2.8, page 24)

6.4.17. SIO4_OSC_REFERENCE

This service is used to update and report on the recorded frequency for the channel’s reference source. Changing this

setting does not alter any existing programming results. New settings apply to subsequent calculations only! The

only argument field used by the driver is the freq_ref field. If its value is -1, then the driver will report the

current recorded reference frequency. The value supplied will otherwise be qualified per the requirements of the

channel’s oscillator and recorded for subsequent use. An error will be reported if it is invalid. The driver ignores all

other fields and fills them in according to the channel’s current configuration. This service does not alter any other

oscillator related parameter. Refer to the oscillator programming information later in this document for more

information.

CAUTION: Setting the reference frequency to an incorrect value may have an adverse effect on

the programmable oscillator. The results depend on the oscillator and the incorrect value specified.

Usage

ioctl() Argument Description

request SIO4_OSC_REFERENCE

arg sio4_osc_t* (section 6.2.8, page 24)

SIO4B4/8-SYNC, Linux Device Driver, User Manual

49

General Standards Corporation, Phone: (256) 880-8787

6.4.18. SIO4_OSC_RESET

This service resets the channel’s oscillator hardware. The channel’s input clock will be set to the lowest possible

frequency as a result of this service, depending on the device’s capabilities. The driver ignores the structure’s current

content and fills in all fields according to the channel’s post-reset configuration. The reference frequency is

unaltered, the desired frequency is set to zero, and the frequency obtained is reported. Refer to the oscillator

programming information later in this document for more information.

Usage

ioctl() Argument Description

request SIO4_OSC_RESET

arg sio4_osc_t* (section 6.2.8, page 24)

6.4.19. SIO4_OSC_TEST

This service reports the frequency that should be produced were the programming service requested for the desired

frequency. The channel’s input clock will be set to the lowest possible frequency as a result of this service,

depending on the device’s capabilities. The driver ignores the structure’s current content and fills in all fields

according to the channel’s post-reset configuration. The reference frequency is unaltered, the desired frequency is

set to zero, and the frequency obtained is reported. Refer to the oscillator programming information later in this

document for more information.

Usage

ioctl() Argument Description

request SIO4_OSC_TEST

arg sio4_osc_t* (section 6.2.8, page 24)

6.4.20. SIO4_READ_INT_STATUS

This service requests the interrupt status information following interrupt notification. The status reported reflects all

of the interrupts for the channel. The recorded status represents the accumulated status of all interrupts since the

status was last read or notification requested. Once read, the recorded status is cleared.

NOTE: Due to the timeliness of various interacting events it is possible for multiple interrupts to

occur before the status is read. This can result in one SIGIO prompted status read reporting

multiple interrupts and the next SIGIO prompted status read reporting no interrupts.

Usage

ioctl() Argument Description

request SIO4_READ_INT_STATUS

arg SIO4_INTERRUPT_STATUS* (section 6.2.3, page 22)

6.4.21. SIO4_READ_REGISTER

This service reads the value of an SIO4 register. This includes all PCI registers, all PLX feature set registers, and all

GSC firmware registers for the referenced channel. Refer to the SIO4 User Manual and to sio4.h for a complete

list of the available registers.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

50

General Standards Corporation, Phone: (256) 880-8787

Usage

ioctl() Argument Description

request SIO4_READ_REGISTER

arg Sio4_reg_t* (section 6.2.9, page 25)

6.4.22. SIO4_READ_REGISTER_RAW

This service reads the value of an SIO4 firmware register without respect to the channel being accessed. This applies

to firmware registers only. Permissible values are from zero to 63. All other values result in failure. Refer to the

SIO4 User Manual and to sio4.h for a complete list of the predefined register identifiers.

Usage

ioctl() Argument Description

request SIO4_READ_REGISTER_RAW

arg Sio4_reg_t* (section 6.2.9, page 25)

6.4.23. SIO4_RESET_CHANNEL

This service performs a reset of the entire channel. This includes the transmitter, the receiver, the FIFOs, the cable

configuration, the transceivers and the programmable oscillator. (The programmable oscillator is reset only if the

SIO4 supports a different programmable source for each channel.)

NOTE: If the firmware type is configurable, it is left unchanged. Thus, only those resources for

the current Firmware Type are reset.

Usage

ioctl() Argument Description

request SIO4_RESET_CHANNEL

arg Not used.

6.4.24. SIO4_RESET_DEVICE

This service resets all of the board’s hardware. This includes the transmitter, the receiver, the FIFOs, the cable

configurations, the transceivers and the programmable oscillators. The programmable transceivers and

programmable oscillators are disabled, if supported in hardware.

WARNING: This service affects all four channels on the board and should be used with care.

NOTE: If the firmware type is configurable, this service resets the firmware type for all four

channels to the board’s default.

Usage

ioctl() Argument Description

request SIO4_RESET_DEVICE

arg Not used.

6.4.25. SIO4_RESET_FIFO

This service resets either or both of the channel FIFOs.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

51

General Standards Corporation, Phone: (256) 880-8787

Usage

ioctl() Argument Description

request SIO4_RESET_FIFO

arg TX_RX* (section 6.2.13, page 28)

6.4.26. SIO4_RX_FIFO_AE_CONFIG

This service configures the Rx FIFO Almost Empty level and reports the current level. When applying a setting, the

Rx FIFO is reset and the current content is lost. If the XXX_READ macro is supplied then no change is applied.

Before returning the current programmed level is obtained and supplied to the caller.

Usage

ioctl() Argument Description

request SIO4_RX_FIFO_AE_CONFIG

arg __s32*

6.4.27. SIO4_RX_FIFO_AF_CONFIG

This service configures the Rx FIFO Almost Full level and reports the current level. When applying a setting, the Rx

FIFO is reset and the current content is lost. If the XXX_READ macro is supplied then no change is applied. Before

returning the current programmed level is obtained and supplied to the caller.

Usage

ioctl() Argument Description

request SIO4_RX_FIFO_AF_CONFIG

arg __s32*

6.4.28. SIO4_RX_FIFO_COUNT

This service retrieves the current Rx FIFO fill level. The value obtained is either the number of bytes of data in the

Rx FIFO or the XXX_UNKNOWN macro if the Rx FIFO Count Register is unsupported.

Usage

ioctl() Argument Description

request SIO4_RX_FIFO_COUNT

arg __s32*

The value returned is from zero to the size of the FIFO or the value given below.

Macros Description
SIO4_FIFO_COUNT_UNKNOWN The FIFO fill level is unknown.

6.4.29. SIO4_RX_FIFO_FULL_CFG_CHAN

This service configures the channel specific setting for how the receiver responds to an Rx FIFO Full condition and

reports on the current configuration. If one of the predefined configurations is requested, it is applied. If the

XXX_READ macro is supplied, then the current configuration is not changed. Before returning, the current

configuration is obtained and reported to the caller. If the feature is not configurable on the current board, then no

change can be applied. The channel specific setting is ignored if the global setting is the over option.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

52

General Standards Corporation, Phone: (256) 880-8787

Usage

ioctl() Argument Description

request SIO4_RX_FIFO_FULL_CFG_CHAN

arg __s32*

The table below lists the options used by this service.

Macros Description
SIO4_RX_FIFO_FULL_CFG_CHAN_READ This is used to retrieve the current configuration.
SIO4_RX_FIFO_FULL_CFG_CHAN_HALT Disable the FIFO and halt the inflow of data.
SIO4_RX_FIFO_FULL_CFG_CHAN_OVER Let the FIFO overrun by discarding excess data.

6.4.30. SIO4_RX_FIFO_FULL_CFG_GLB

This service configures the global setting for how the receivers respond to an Rx FIFO Full condition and reports on

the current configuration. If one of the predefined configurations is requested, it is applied. If the XXX_READ macro

is supplied, then the current configuration is not changed. Before returning, the current configuration is obtained and

reported to the caller. If the feature is not configurable on the current board, then no change can be applied.

Usage

ioctl() Argument Description

request SIO4_RX_FIFO_FULL_CFG_GLB

arg __s32*

The table below lists the options used by this service.

Macros Description
SIO4_RX_FIFO_FULL_CFG_GLB_READ This is used to retrieve the current configuration.

SIO4_RX_FIFO_FULL_CFG_GLB_HALT
Disable the receiver and halt the inflow of data. This

setting overrides the per channel settings, if supported.

SIO4_RX_FIFO_FULL_CFG_GLB_OVER

Let the FIFO overrun by discarding excess data. With

this setting, the per channel setting take effect, if

supported.

6.4.31. SIO4_RX_FIFO_SIZE

This service retrieves the size of the Rx FIFO. The value obtained is either the capacity of the Rx FIFO in bytes or

zero if the size is unknown.

Usage

ioctl() Argument Description

request SIO4_RX_FIFO_SIZE

arg __s32*

6.4.32. SIO4_RX_FIFO_STATUS

This service retrieves the Rx FIFO fill level status. The value obtained reflects the FIFO’s relative fill level.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

53

General Standards Corporation, Phone: (256) 880-8787

Usage

ioctl() Argument Description

request SIO4_RX_FIFO_SIZE

arg __s32*

The value returned should be one of the below listed options.

Value Description
SIO4_FIFO_STATUS_EMPTY The FIFO is empty.

SIO4_FIFO_STATUS_ALMOST_EMPTY
The FIFO contains Almost Empty or fewer data values

(section 6.4.26, page 51).

SIO4_FIFO_STATUS_MEDIAN
The FIFO fill level is between the Almost Empty and

Almost Full levels.

SIO4_FIFO_STATUS_ALMOST_FULL
The FIFO can receive Almost Full or fewer data value

before becoming full (section 6.4.27, page 51).
SIO4_FIFO_STATUS_FULL The FIFO is full.

6.4.33. SIO4_RX_IO_ABORT

This service aborts a read() operation. This service waits for up to 10 seconds to abort either a currently active

read() operation or one that is initiated during the abort waiting period.

Usage

ioctl() Argument Description

request SIO4_RX_IO_ABORT

arg __s32*

The table below lists the options used with this service.

Macros Description
0 An abort did not take place.
1 An abort did take place.

6.4.34. SIO4_RX_IO_MODE_CONFIG

This service updates and reports the mode used by the driver for data read operations. This refers to how data is

moved from the SIO4 to host memory when the read() function is called.

Usage

ioctl() Argument Description

request SIO4_RX_IO_MODE_CONFIG

arg __s32*

The table below lists the options used with this service.

Macros Description
SIO4_IO_MODE_DEFAULT This refers to the default I/O mode, which is PIO.

SIO4_IO_MODE_BMDMA
This refers to Block Mode DMA, which is generally performed without

regard to the FIFO’s content.

SIO4_IO_MODE_DMDMA
This refers to Demand Mode DMA, which transfers data as it becomes

available.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

54

General Standards Corporation, Phone: (256) 880-8787

SIO4_IO_MODE_PIO This refers to PIO, which uses repetitive register accesses.
SIO4_IO_MODE_READ This is used to retrieve the current configuration.

6.4.35. SIO4_SET_READ_TIMEOUT

This service sets the timeout limit for read requests, and is the maximum amount of time the driver will wait for a

blocking read() request to complete. The timeout period is specified in seconds. Timeout values of zero (0) or

less mean do not wait.

Usage

ioctl() Argument Description

request SIO4_SET_READ_TIMEOUT

arg __u32

6.4.36. SIO4_SET_WRITE_TIMEOUT

This service sets the timeout limit for write requests, and is the maximum amount of time the driver will wait for a

blocking write() request to complete. The timeout period is specified in seconds. Timeout values of zero (0) or

less mean do not wait.

Usage

ioctl() Argument Description

request SIO4_SET_WRITE_TIMEOUT

arg __u32

6.4.37. SIO4_TX_FIFO_AE_CONFIG

This service configures the Tx FIFO Almost Empty level and reports the current level. When applying a setting, the

Tx FIFO is reset and the current content is lost. If the XXX_READ macro is supplied then no change is applied.

Before returning the current programmed level is obtained and supplied to the caller.

Usage

ioctl() Argument Description

request SIO4_TX_FIFO_AE_CONFIG

arg __s32*

6.4.38. SIO4_TX_FIFO_AF_CONFIG

This service configures the Tx FIFO Almost Full level and reports the current level. When applying a setting, the Tx

FIFO is reset and the current content is lost. If the XXX_READ macro is supplied then no change is applied. Before

returning the current programmed level is obtained and supplied to the caller.

Usage

ioctl() Argument Description

request SIO4_TX_FIFO_AF_CONFIG

arg __s32*

SIO4B4/8-SYNC, Linux Device Driver, User Manual

55

General Standards Corporation, Phone: (256) 880-8787

6.4.39. SIO4_TX_FIFO_COUNT

This service retrieves the current Tx FIFO fill level. The value obtained is either the number of bytes of data in the

Tx FIFO or the XXX_UNKNOWN macro if the Tx FIFO Count Register is unsupported.

Usage

ioctl() Argument Description

request SIO4_TX_FIFO_COUNT

arg __s32*

The value returned is from zero to the size of the FIFO or the value given below.

Macros Description
SIO4_FIFO_COUNT_UNKNOWN The FIFO fill level is unknown.

6.4.40. SIO4_TX_FIFO_SIZE

This service retrieves the size of the Tx FIFO. The value obtained is either the capacity of the Tx FIFO in bytes or

zero if the size is unknown.

Usage

ioctl() Argument Description

request SIO4_TX_FIFO_SIZE

arg __s32*

6.4.41. SIO4_TX_FIFO_STATUS

This service retrieves the Tx FIFO fill level status. The value obtained reflects the FIFO’s relative fill level.

Usage

ioctl() Argument Description

request SIO4_TX_FIFO_SIZE

arg __s32*

The value returned should be one of the below listed options.

Value Description
SIO4_FIFO_STATUS_EMPTY The FIFO is empty.

SIO4_FIFO_STATUS_ALMOST_EMPTY
The FIFO contains Almost Empty or fewer data values

(section 6.4.37, page 54).

SIO4_FIFO_STATUS_MEDIAN
The FIFO fill level is between the Almost Empty and

Almost Full levels.

SIO4_FIFO_STATUS_ALMOST_FULL
The FIFO can receive Almost Full or fewer data value

before becoming full (section 6.4.38, page 54).
SIO4_FIFO_STATUS_FULL The FIFO is full.

6.4.42. SIO4_TX_IO_ABORT

This service aborts a write() operation. This service waits for up to 10 seconds to abort either a currently active

write() operation or one that is initiated during the abort waiting period.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

56

General Standards Corporation, Phone: (256) 880-8787

Usage

ioctl() Argument Description

request SIO4_TX_IO_ABORT

arg __s32*

The table below lists the options used with this service.

Macros Description
0 An abort did not take place.
1 An abort did take place.

6.4.43. SIO4_TX_IO_MODE_CONFIG

This service updates and reports the mode used by the driver for data write operations. This refers to how data is

moved from host memory to the SIO4 when the write() function is called.

Usage

ioctl() Argument Description

request SIO4_TX_IO_MODE_CONFIG

arg __s32*

The table below lists the options used with this service.

Macros Description
SIO4_IO_MODE_DEFAULT This refers to the default I/O mode, which is PIO.

SIO4_IO_MODE_BMDMA
This refers to Block Mode DMA, which is generally performed without

regard to the FIFO’s content.

SIO4_IO_MODE_DMDMA
This refers to Demand Mode DMA, which transfers data as space

becomes available.
SIO4_IO_MODE_PIO This refers to PIO, which uses repetitive register accesses.
SIO4_IO_MODE_READ This is used to retrieve the current configuration.

6.4.44. SIO4_WRITE_REGISTER

This service writes a value to an SIO4 register. This includes GSC firmware registers and the USC registers only.

All PCI and PLX feature set registers are read-only. Refer to the SIO4 User Manual and to sio4.h for a complete

list of available registers. Applications should exercise care in writing to some of these registers. This is because

some are used by the driver for interrupt and DMA purposes. Writing to these registers may interfere with proper

SIO4 and driver operation and may disrupt the stability of the operating system. The registers of concern are those

listed below.

• The GSC Board Control Register

• The GSC Interrupt Control Register (and the interrupt configuration registers)

• The GSC Interrupt Status Register

Usage

ioctl() Argument Description

request SIO4_WRITE_REGISTER

arg Sio4_reg_t* (section 6.2.9, page 25)

SIO4B4/8-SYNC, Linux Device Driver, User Manual

57

General Standards Corporation, Phone: (256) 880-8787

7. Operation

This section explains some operational procedures on using the driver. This is in no way intended to be a

comprehensive guide on using the SIO4. This is simply to address a very few issues relating to GSC specific

features of the SIO4.

7.1. I/O Modes

The following describes the three supported I/O modes used for data transfer between the host and the SIO4. All

three modes are available using the C library routines read() and write(). Applications select the desired mode

using IOCTL services. Use the SIO4_TX_IO_MODE_CONFIG IOCTL service to configure the write() data

transfer mode and use the SIO4_RX_IO_MODE_CONFIG IOCTL service to configure the read() data transfer

mode.

7.1.1. PIO - Programmed I/O

This mode uses repetitive register accesses. While it is the least efficient method it accommodates simultaneous

transfers on any number of channels and in both directions. Applications can make PIO mode I/O requests without

having to monitor FIFO fill levels.

7.1.2. BMDMA - Block Mode DMA

This refers to Block Mode DMA. This mode transfers data with little CPU overhead, but is suitable only for requests

that do not exceed the size of the installed FIFOs. Using this mode, applications much monitor a FIFO’s fill level to

ensure that it can accommodate desired requests. Calling read() when the Rx FIFO contains insufficient data will

result in indeterminate data at the point where the FIFO runs empty. Calling write() when the Tx FIFO contains

insufficient free space will result in data loss at the point the FIFO becomes full. Since the SIO4 can have up to eight

data streams (4 Rx and 4 Rx) and only two DMA engines are available, applications must make selective use of

DMA and non-DMA I/O requests.

7.1.3. DMDMA - Demand Mode DMA

This mode transfers data with the least amount of CPU overhead. It accommodates transfers that exceed the size of

the installed FIFOs and uses the FIFO fill level to throttle data movement over the PCI bus. This permits efficient

data movement over the PCI bus and also permits the transfer to remain active while data is being transferred over

the cable interface. Since the SIO4 can have up to eight data streams (4 Rx and 4 Rx) and only two DMA engines

are available, applications must make selective use of DMA and non-DMA I/O requests. Applications can make

DMDMA mode I/O requests without having to monitor FIFO fill levels.

7.2. Oscillator Programming

The ability to program the SIO4’s onboard oscillators depend on the board’s hardware capabilities and on support

included in the driver. The driver can identify the oscillator chip for all SIO4 implementations up to and including

those using the Cypress CY22393 Programmable Oscillator. At present however, the driver includes built-in

programming support only for those SIO4s using a single CY22393. The driver will return an error status when

exercising the programmable oscillator features for all other programmable oscillator types. The general procedure

to follow when using the programmable oscillator features are as follows.

NOTE: The driver measures the SIO4’s reference frequency when the driver is first loaded. If it

cannot be measures, then it is initialized to 20MHz. Thereafter, the reference frequency is changed

only when done explicitly by application requests using the SIO4_OSC_REFERENCE IOCTL

service.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

58

General Standards Corporation, Phone: (256) 880-8787

1. Determine if the driver is able to perform oscillator programming for the device. This can be done using the

SIO4_FEATURE_TEST IOCTL service on the SIO4_FEATURE_OSC_PROGRAM feature. If the feature in

unsupported, then do not attempt programming. Attempting to use the driver’s built-in programming features

will be unsuccessful when this feature is unsupported. If the feature is supported, then continue with the

following steps.

2. Tell the driver the SIO4’s reference frequency. This is done using the SIO4_OSC_REFERENCE IOCTL

service. The specified reference frequency is applicable to all channels since the SIO4 has only a single

reference oscillator. The specified reference frequency is used for subsequent operations only.

3. Reset the channel’s clock. This is done using the SIO4_OSC_RESET IOCTL service. Depending on the

oscillator, this may disable the channel’s clock. Depending on the SIO4, this effort may affect all channels.

4. Initialize the channel’s clock. This is done using the SIO4_OSC_INIT IOCTL service. Depending on the

oscillator, this should configure the channel to output the reference frequency. Depending on the SIO4, this

effort may affect all channels.

5. Request that the oscillator be reprogrammed for the desired frequency. This is done using the

SIO4_OSC_PROGRAM IOCTL service. The resulting frequency will be as close as possible to the requested

frequency. How close this actually is depends on the oscillator’s capabilities, its current resource usage and the

reference frequency. Check the sio4_osc_t (section 6.2.8, page 24) structure’s freq_got field after

programming to verify that the resulting frequency is sufficient. Depending on the SIO4, the programming

effort may affect all channels.

NOTE: On occasion, the oscillator programming effort may not take full affect even though the

operation completes successfully. Applications should therefore measure the oscillator frequency

following programming requests. If the measured results differ significantly from what the

programming request indicated would be produced, then repeat the programming and measurement

steps until the results are satisfactory.

6. If desired, the channel’s current frequency can be measured at any time using the SIO4_OSC_MEASURE

IOCTL service. However, this should only be done if the frequency can be measured. This capability depends

on the SIO4’s feature set. Support for this feature can be determined by using the SIO4_FEATURE_TEST

IOCTL service with the SIO4_FEATURE_OSC_MEASURE feature argument.

7. If desired, the current configuration may be determined at any time using the SIO4_OSC_INFO IOCTL

service. The information returned will be based on the driver’s recorded state information.

7.2.1. Cypress CY22393 (1x) Programmable Oscillator Support

The SIO4’s support for this device includes a fixed reference oscillator, a Cypress CY22393 (with four

programmable oscillators), and four firmware-based post dividers. The driver defaults the reference frequency to the

measured frequency at startup and initializes the programmable oscillators to their off state. The driver manages the

firmware post dividers and the CY22393, with its oscillators and Digital Phase Lock Loop Generators, as best as

possible to fulfill application requests. When a programming request is made the driver applies the appropriate

changes, measures the results, and reprograms the changes as necessary. The measurement and reprogramming steps

occur when a channel is opened and closed, and when operations are requested by an application. The driver

responds to the services according to the following table.

Service Response
SIO4_OSC_INFO The current settings are reported.

SIO4_OSC_INIT
The desired frequency is set to the reference frequency and the channel is

reconfigured accordingly.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

59

General Standards Corporation, Phone: (256) 880-8787

SIO4_OSC_MEASURE
The output frequency is measured using SIO4 firmware resources. The measured

value is reported in the freq_got field.

SIO4_OSC_PROGRAM

If the requested frequency is non-negative and 20MHz or less, then the driver

programs in that configuration that will most closely match the request. This is done

based on the CY22393’s resources available at that moment.
SIO4_OSC_REFERENCE The requested value is recorded if it is 8MHz or higher and 30MHz or lower.
SIO4_OSC_RESET The desired frequency is set to zero and the channel is reconfigured accordingly.

7.2.2. Cypress CY22393 (4x) Programmable Oscillator Support

The driver does not include support for this device configuration. The driver returns EIO for all programmable

oscillator requests when the SIO4 uses this chip configuration.

7.2.3. Cypress IDC2053B Programmable Oscillator Support

The driver does not include support for this device. The driver returns EIO for all programmable oscillator requests

when the SIO4 uses this chip.

7.2.4. Fixed Oscillator Support

When the SIO4 has a fixed oscillator, no programming can be performed. Rather than return errors though, the

driver treats the hardware as a programmable oscillator capable only of supply the reference frequency. The driver

responds to the IOCTL services according to the following table.

Service Response
SIO4_OSC_INFO The current settings are reported.
SIO4_OSC_INIT The freq_got value is updated to the reference frequency.

SIO4_OSC_MEASURE The freq_got value is reported as -1 (due to firmware limitations).

SIO4_OSC_PROGRAM The requested value is recorded if it is non-zero and 20MHz or lower.
SIO4_OSC_REFERENCE The requested value is recorded if it is 1MHz or higher and 20MHz or lower.
SIO4_OSC_RESET The freq_got value is updated to the reference frequency.

7.2.5. All Other Cases

This applies when the SIO4 includes no programmable oscillator support and when the SIO4 uses a programmable

oscillator unrecognized by the driver. The driver responds to the IOCTL services according to the following table.

Service Response
SIO4_OSC_INFO The current recorded settings are reported.

SIO4_OSC_INIT The recorded freq_want and freq_got values are set to the reference frequency.

SIO4_OSC_MEASURE The freq_got value is reported as zero.

SIO4_OSC_PROGRAM
The recorded freq_want and freq_got values are set to the requested value if it

is non-zero and 20MHz or lower.
SIO4_OSC_REFERENCE The requested value is recorded if it is 1MHz or higher and 20MHz or lower.

SIO4_OSC_RESET The recorded freq_want and freq_got values are set to zero.

7.3. Multi-Protocol Transceiver Programming

This feature includes boards with varying capabilities. Some boards are able to change the transceiver protocol

under software control. Some have fixed transceiver protocols and can report the protocol via firmware. Others have

fixed transceiver protocols, but are not able to report the protocol. The general procedure to follow when using this

feature is as follows.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

60

General Standards Corporation, Phone: (256) 880-8787

1. Determine if the SIO4 supports this feature. This can be done using the SIO4_FEATURE_TEST IOCTL

service on the SIO4_FEATURE_MP feature. If this feature in unsupported, then do not attempt to exercise the

board’s Multi-Protocol transceiver feature. Attempting to do so will be unsuccessful when this feature is

unsupported. If the feature is supported, then continue with the following steps.

2. Determine if the SIO4’s transceiver protocol can be changed. This can be done using the

SIO4_FEATURE_TEST IOCTL service on the SIO4_FEATURE_MP_CHANGE feature. If this feature is

unsupported, then do not attempt to exercise the board’s Multi-Protocol transceiver feature. Attempting to do so

will be unsuccessful when this feature is unsupported. If the feature is supported, then continue with the

following steps.

3. Determine if the transceiver protocol desired is supported. This can be done using the SIO4_MP_TEST

IOCTL. If a suitable protocol cannot be selected, then do not attempt to further exercise the board’s Multi-

Protocol transceiver feature. If a suitable protocol is available, then continue with the following steps.

4. Select a suitable transceiver protocol. This can be done using the SIO4_MP_CONFIG IOCTL.

5. If desired, the current configuration can be determined at any time using the SIO4_OSC_INFO IOCTL service.

7.3.1. Sipex SP508 Multi-Protocol Transceiver Support

When the SIO4 includes these transceiver chips, the driver responds to the services according to the following table.

Service Response

SIO4_MP_CONFIG
The chip will be given as the SP508 option. The resulting protocol will equal the requested

protocol if it is supported. The resulting protocol will otherwise be the invalid option.

SIO4_MP_INFO
The chip will be given as the SP508 option. The desired protocol will be the read option.

The resulting protocol will reflect the board’s current configuration.

SIO4_MP_INIT
The chip will be given as the SP508 option. The desired and resulting protocol will both be

the RS-422/485 option.

SIO4_MP_RESET
The chip will be given as the SP508 option. The desired and resulting protocol will both be

the disable option.

SIO4_MP_TEST
The chip will be given as the SP508 option. The resulting protocol will be the requested

protocol if it is supported. The resulting protocol will otherwise be the invalid option.

7.3.2. Fixed Protocol Support

Some SIO4s include Multi-Protocol support in firmware but not in hardware. This applies when the SIO4 has fixed

transceivers whose type is reported by firmware. Under these circumstances the driver responds to the IOCTL

services according to the following table.

Service Response

SIO4_MP_CONFIG
The chip will be given as the fixed option. The resulting protocol will reflect the board’s

hardwired protocol.

SIO4_MP_INFO
The chip will be given as the fixed option. The desired protocol will be the read option and

the resulting protocol will reflect the board’s hardwired protocol.

SIO4_MP_INIT
The chip will be given as the fixed option. The desired and resulting protocols will reflect

the board’s hardwired protocol option.

SIO4_MP_RESET
The chip will be given as the fixed option. The desired and resulting protocols will reflect

the board’s hardwired protocol.

SIO4_MP_TEST

The chip will be given as the fixed option. The resulting protocol will be the test protocol if

it is the board’s hardwired protocol. The resulting protocol will otherwise be the invalid

option.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

61

General Standards Corporation, Phone: (256) 880-8787

7.3.3. All Other Cases

This applies when the firmware includes no Multi-Transceiver protocol support and when support is present but the

protocol is fixed. In these cases, the driver responds to the IOCTL services according to the following table.

Service Response
SIO4_MP_CONFIG The chip and resulting protocol will each be given as their respective unknown options.

SIO4_MP_INFO
The desired protocol will be the read option. The chip and resulting protocol will each be

given as their respective unknown options.

SIO4_MP_INIT
The chip, the desired protocol and resulting protocol will all be given as their respective

unknown options.

SIO4_MP_RESET
The desired protocol will be the disable option. The chip and resulting protocol will each be

given as their respective unknown options.
SIO4_MP_TEST The chip and resulting protocol will each be given as their respective unknown options.

7.4. Interrupt Notification

Applications can make indirect use of SIO4 interrupts by using the Interrupt Notification IOCTL services. This

requires the following basic steps. These steps are illustrated in the source code sample that follows.

1. Use the fcntl interface to register the application’s signal handler.

2. Issue the SIO4_INT_NOTIFY IOCTL service to request notification.

3. When the SIGIO signal is received, issue the SIO4_READ_INT_STATUS IOCTL service to determine which

interrupt occurred.

4. Perform any application required actions.

5. If additional notification is required for an interrupt that was reported then repeat steps two through five as

required.

6. When finished issue the SIO4_INT_NOTIFY IOCTL service with an argument value of zero (0) to specify

that notification be terminated.

Example

#include <errno.h>

#include <fcntl.h>

#include <signal.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/ioctl.h>

#include "sio4_dsl.h"

static int _fd;

static void handle_sigio(int signo)

{

 SIO4_INTERRUPT_STATUS int_stat;

 int status;

 status = ioctl(_fd, SIO4_READ_INT_STATUS, &int_stat);

SIO4B4/8-SYNC, Linux Device Driver, User Manual

62

General Standards Corporation, Phone: (256) 880-8787

 if (status == -1)

 {

 // The request failed.

 }

 else if (int_stat.u8SIO4Status & SIO4_INT_NOTIFY_TX_FIFO_AE)

 {

 // Handle the Tx FIFO Almost Empty condition.

 }

}

int sio4_async_setup(int fd)

{

 int flags;

 unsigned char notify;

 pid_t pid;

 int status;

 ioctl(fd, SIO4_INT_NOTIFY, 0);

 _fd = fd;

 signal(SIGIO, handle_sigio);

 pid = getpid();

 fcntl(fd, F_SETOWN, pid);

 flags = fcntl(fd, F_GETFL);

 flags |= FASYNC;

 fcntl(fd, F_SETFL, flags);

 notify = SIO4_INT_NOTIFY_TX_FIFO_AE;

 status = ioctl(fd, SIO4_INT_NOTIFY, notify);

 return(status);

}

SIO4B4/8-SYNC, Linux Device Driver, User Manual

63

General Standards Corporation, Phone: (256) 880-8787

8. Document Source Code Examples

The source code examples included in this document are built into a statically linkable library usable with console

applications. The purpose of these files is to verify that the documentation samples compile and to provide a library

of working sample code to assist in a user’s learning curve and application development effort.

8.1. Files

The library files are summarized in the tables below.

File Description
docsrc/*.c These are the C source files.
docsrc/makefile This is the library make file.
docsrc/makefile.dep This is an automatically generated make dependency file.
include/sio4_dsl.h This is the primary utility header file.
lib/sio4_dsl.a This is the statically linkable library file.

File Description
sync/docsrc/*.c These are the C source files.
sync/docsrc/makefile This is the library make file.
sync/docsrc/makefile.dep This is an automatically generated make dependency file.
include/sio4_sync_dsl.h This is the SYNC specific primary utility header file.
lib/sio4_sync_dsl.a This is the SYNC specific statically linkable library file.

8.2. Build (Generic)

The library is built via the Overall Make Script (section 2.8, page 12), but can be built separately following the

below steps.

1. Change to the directory where the documentation sources are installed (…/docsrc/).

2. Remove all existing build targets by issuing the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make all

8.3. Build (SYNC)

The library is built via the Overall Make Script (section 2.8, page 12), but can be built separately following the

below steps.

1. Change to the directory where the documentation sources are installed (…/sync/docsrc/).

2. Remove all existing build targets by issuing the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make all

SIO4B4/8-SYNC, Linux Device Driver, User Manual

64

General Standards Corporation, Phone: (256) 880-8787

8.4. Library Use

The libraries are used both at application compile time and at application link time. At compile time include the

below listed header file in each source file using a component of the respective interface. At link time include the

below listed library files with the objects being linked with the application.

File Location
sio4_dsl.h …/sio4/include

sio4_dsl.a …/sio4/lib

sio4_sync_dsl.h …/sio4/include

sio4_sync_dsl.a …/sio4/lib

SIO4B4/8-SYNC, Linux Device Driver, User Manual

65

General Standards Corporation, Phone: (256) 880-8787

9. Utility Source Code

The driver archive includes bodies of utility services built into statically linkable libraries that are usable with

console applications. The primary purpose of the services is both for code reuse in the sample applications and to

provide wrappers, mostly visual, around the driver’s IOCTL services. The aim of the visual wrappers is to facilitate

structured console output for the sample applications. An additional purpose of these utility services is to provide a

library of working sample code to assist in a user’s learning curve and application development effort.

9.1. Files

The library files are summarized in the table below.

File Description
utils/util_*.c These are device specific utility source files.
utils/gsc_*.c These are device and OS independent utility source files.
utils/os_*.c These are OS specific utility source files.
utils/*.h These are local header files.
utils/makefile This is the library make file.
utils/makefile.dep This is an automatically generated make dependency file.
include/sio4_utils.h This is the primary utility header file.
lib/sio4_utils.a This is the statically linkable library file.

9.2. Build

The libraries are built via the Overall Make Script (section 2.8, page 12), but can be built separately following the

below steps.

1. Change to the directory where the utility sources are installed (see above table).

2. Remove all existing build targets by issuing the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make all

9.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the below

listed header file in each source file using a component of the library interface. At link time include the below listed

library file with the objects being linked with the application.

File Location
sio4_utils.h …/sio4/include/

sio4_utils.a …/sio4/lib/

SIO4B4/8-SYNC, Linux Device Driver, User Manual

66

General Standards Corporation, Phone: (256) 880-8787

10. Sample Applications

The driver archive includes a variety of sample and test applications. While they are provided without support and

without any external documentation, any problems reported will be addressed as time permits. The applications are

command line based and produce text output for display on a console. All of the applications are built via the

Overall Make Script (section 2.8, page 12), but each may be built individually by changing to its respective directory

and issuing the commands “make clean” and “make all”. The initial output from each application includes

information on its supported command line arguments. The following gives a brief overview of each application.

NOTE: These sample applications are designed to function with the SIO4 models listed on the

cover of this user manual. The sample applications may work with other models, but may not

function as expected since they are not necessarily intended for those models. Refer to the driver

user manual and sample applications supplied with the SIO4 model in question, as applicable.

NOTE: None of the sample application are specifically written to support simultaneous execution.

The applications may function satisfactorily when multiple instances are run simultaneously on

the same serial channel or board, but they may not.

10.1. id - Identify Board - …/id/

This application reports detailed board identification information. This can be used with tech support to help identify

as much technical information about the board as possible from software.

10.2. irq – Interrupt Test - …/irq/

This application performs complete testing to verify the operation of the board’s firmware interrupts.

10.3. regs - Register Access - …/regs/

This application provides menu based interactive access to the board’s registers, and reports other pertinent

information to the console.

10.4. sbtest - Single Board Test - …/sbtest/

This application performs functional testing of the driver and a user specified board, at least to the extent possible

with just a single board and no additional equipment.

NOTE: Multiple instances should not be run simultaneously on the same SIO4.

10.5. syncc2c - SYNC Channel-to-Channel - …/syncc2c/

This application performs an automated test of SYNC transmit and receive functionality on a pair of user specified

transmit and receive channels.

10.6. txrate - Transmit Rate - …/txrate/

This application reports the expected transmit clock rate and configuration for a user specific rate.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

67

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

June 13, 2023

Updated to release version 1.59.104.47.0. Minor editorial changes. Updated the description

of the open and close calls. Added a note to the Firmware Type Configuration IOCTL

service description. Updated information on the Initialize Board and Reset Device service.

Updated information on the Channel Reset service. Updated information on the open() call.

Updated information on the close() call. Added section and page links to data types

definitions where they are used by IOCTL services and other data types.

April 30, 2021 Updated to release version 1.58.93.36.0. Expanded automatic startup information.

March 26, 2021
Updated to release version 1.57.93.36.0. Added notes about multiple instances of the

sample applications running simultaneously. Numerous minor editorial changes.

December 9, 2020

Updated to release version 1.57.92.35.0. Updated the kernel support table. Minor editorial

changes. Updated the inside cover page. Updated Block Mode DMA macro and associated

information. Added a licensing subsection. Expanded automatic startup information.

November 21, 2017

Updated to release version 1.55.73.20.0. Removed library versioning along with the

sync/utils/ code and directory. Directory reorganization. Removed the synctest

sample application. Removed “_lib” from file names. Added section on important files.

Numerous editorial modifications.

December 8, 2016

Updated to release version 1.55.69.18.0. Updated the kernel support table. Some document

reorganization. Removed the “built” information from the proc file. The build date and time

field in the driver information structure is now empty.

March 25, 2014

Updated to release version 1.53.52.0. Added information and support for the Firmware

Type Configuration feature. Updated the command line arguments for some of the sample

applications. Combined the SYNC and Zilog releases into a single release.

November 15, 2013 Updated to release version 1.52.50.0.

October 10, 2013
Updated to release version 1.51.0. Updated information on the irq sample application

execution time.

September 25, 2013

Updated to release version 1.50.0. Added cabling notes for the syncc2c sample

application. Removed the notes about the sample applications not working with the

SIO4BXR-SYNC boards. Removed all references to the use of interrupts by the driver

itself. Moved driver release version specific notes to this table. Removed the synctest

sample application.

August 27, 2013
Updated to release version 1.49.0. Updated some of the SIO4_FEATURE_INDEX_*

documentation. Updated some of the device index information for the sample applications.

June 29, 2013
Updated to release version 1.48.0. Added several feature query options. Updated the

firmware register table. Added a few IOCTL services. Added a few transceiver protocols.

April 17, 2013
Updated to release version 1.47.0. Added documentation for the

SIO4_RX_FIFO_FULL_CFG_CHAN and SIO4_RX_FIFO_FULL_CFG_GLB services.

April 17, 2013

Updated to release version 1.46.0. Renamed the feature option

SIO4_FEATURE_BCR_RX_FFC to SIO4_FEATURE_BCR_RX_FFC_GLB. Added the

feature option SIO4_FEATURE_CSR_RX_FFC_CHAN.

July 24, 2012 Updated to release version 1.45.0.

May 3, 2012 Updated to release version 1.44.0.

April 13, 2012

Updated to release version 1.43.0. Added numerous options for the Feature Test IOCTL

service. Corrected the spelling of the SIO4_FEATURE_BCR_RX_CFG Feature Test

option. If the FIFO size is unknown, the SIO4_RX/TX_FIFO_SIZE and xxx services

now return zero. Updated the CPU support data.

January 16, 2012
Updated to release version 1.42.0. Modified the title page model number. Updated the

kernel support table. Updated the compiler support information.

August 19, 2011 Updated to release version 1.41.0.

August 11, 2011 Updated to release version 1.40.1.

June 17, 2011 Updated to release version 1.40.0.

March 2, 2011 Updated to release version 1.39.0.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

68

General Standards Corporation, Phone: (256) 880-8787

March 1, 2011
Updated to release version 1.38.1. Removed app4. Updated some version notes. Renamed

the app1 application to synctest. Renamed the app2 application to syncc2c.

December 11, 2010 Updated to release version 1.38.0. Various editorial changes.

November 22, 2010

Updated to release version 1.37.0. Removed termination configuration from the

sio4_sync_t structure. Removed all items and services relating to a FIFO’s type. Added

several Feature Test IOCTL options. Removed the Read FIFO Status IOCTL service.

Removed the app3 sample application and added sbtest.

July 27, 2010 Updated to release version 1.36.0. Updated the CPU and Kernel Support information.

June 10, 2010 Updated to release version 1.35.0.

March 18, 2010 Updated to release version 1.33.0.

February 18, 2010 Updated to release version 1.32.1.

February 13, 2010 Updated to release version 1.32.0.

January 25, 2010 Updated to release version 1.31.0. Added the id sample application.

December 18, 2009
Updated to release version 1.30.0. Added information regarding the SIO4BXR

programmable oscillator feature.

November 12, 2009 Updated to release version 1.29.0.

September 19, 2009 Updated to release version 1.28.0. Updated kernel support list.

September 11, 2009 Updated to release version 1.27.0. Updated kernel support list.

August 23, 2009
Updated to release version 1.26.0. Updated kernel support list. Renamed Overall Make

Script. Renamed the driver startup script.

June 2, 2009 Updated to release version 1.25.1.

March 7, 2009 Updated to release version 1.25.0.

February 21, 2009

Updated to release version 1.24.0. Added the sample application sync/txrate.

Reorganized the installed files sections. Added the SIO4_FEATURE_FW_PD_BITS

feature test option.

June 25, 2008

Updated to release version 1.23.0. Corrected the names of some IOCTL macros. The

accumulated interrupt status is no longer cleared when a new notification request is made.

Added information on I/O interrupt usage. Additional kernel porting.

March 29, 2007
Updated to release version 1.22.0. Notes were added for oscillator programming changes

applicable to programmable oscillator models.

August 25, 2006 Updated to release version 1.21.0. List specific 2.2, 2.4, 2.6 and 32/64-bit kernels tested.

August 8, 2006 Updated to release version 1.20.0. Added driver updates.

January 30, 2006

Updated to release version 1.19.2. Added an Overall Make Script. Altered the directory

structure. As of release this release the directory structure changed to accommodate the

asynchronous library code and any associated files and build targets. Only the library

sources are included in the SYNC version of the release.

January 25, 2006 Updated to release version 1.19.1.

December 19, 2005 Updated to release version 1.19.0.

October 4, 2005 Updated to release version 1.18.3.

September 30, 2005 Updated to release version 1.18.2.

September 26, 2005 Updated to release version 1.18.1.

July 15, 2005
Updated to release version 1.18.0. Removed feature definitions that are no longer

supported.

May 24, 2005 Updated to release version 1.17.1.

May 19, 2005 Updated to release version 1.17.0.

May 10, 2005
Updated to release version 1.16.0. Corrected timeout information. Corrected remarks about

the sio4_sync_tx_t.clock.idle bit. Added new feature options.

April 5, 2005 Updated to release version 1.15.1.

March 23, 2005 Updated to release version 1.15.0.

January 25, 2005 Updated to release version 1.14.0.

January 24, 2005 Updated to the driver to support the 2.6 kernel.

November 3, 2004 Updated to release version 1.12.1.

November 2, 2004 Updated to release version 1.12.0.

October 18, 2004 Updated to release version 1.11.0.

SIO4B4/8-SYNC, Linux Device Driver, User Manual

69

General Standards Corporation, Phone: (256) 880-8787

August 30, 2004 Updated to release version 1.10.0.

August 18, 2004 Updated to release version 1.09.0. Updated documentation on some init and reset services.

August 17, 2004 Updated to release version 1.08.0. Fixed driver SIO4_INIT_CHANNEL bug.

August 11, 2004 Updated to release version 1.07.2. Changed UART references to USC.

August 10, 2004 Updated to release version 1.07.1. Added information on supported devices.

August 9, 2004 Updated to release version 1.07.0. Initial driver release.

