
PEX8111
PCI Express/PCI Bus Bridge Interface

PEX8111

Linux Device Driver
And API Library

User Manual

Manual Revision: October 10, 2022

Driver Release Version 2.2.101.43.0

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

PEX8111, Linux Device Driver, User Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2011-2022, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or

software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Although extensive editing and reviews are performed before release, General Standards Corporation assumes no

responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are

made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this

documentation.

General Standards Corporation does not assume any liability arising out of the application or use of

documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or

any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,

software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

PEX8111, Linux Device Driver, User Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 7

1.1. Purpose.. 7

1.2. Acronyms .. 7

1.3. Definitions .. 7

1.4. Software Overview ... 7
1.4.1. Basic Software Architecture ... 7
1.4.2. API Library ... 8
1.4.3. Device Driver ... 8

1.5. Hardware Overview .. 8

1.6. Reference Material .. 8

1.7. Licensing ... 9

2. Installation ... 10

2.1. CPU and Kernel Support... 10
2.1.1. 32-bit Support Under 64-bit Environments .. 11

2.2. The /proc/ File System .. 11

2.3. File List ... 11

2.4. Directory Structure .. 11

2.5. Installation .. 12

2.6. Removal .. 12

2.7. Overall Make Script .. 12

2.8. Environment Variables ... 13
2.8.1. GSC_API_COMP_FLAGS .. 13
2.8.2. GSC_API_LINK_FLAGS .. 13
2.8.3. GSC_LIB_COMP_FLAGS .. 13
2.8.4. GSC_LIB_LINK_FLAGS .. 14
2.8.5. GSC_APP_COMP_FLAGS .. 14
2.8.6. GSC_APP_LINK_FLAGS .. 14

3. Main Interface Files .. 15

3.1. Main Header File .. 15

3.2. Main Library File .. 15
3.2.1. Build ... 15
3.2.2. System Libraries ... 15

4. API Library ... 17

4.1. Files ... 17

4.2. Build ... 17

4.3. Library Use ... 17

4.4. Macros .. 18
4.4.1. IOCTL .. 18

PEX8111, Linux Device Driver, User Manual

4

General Standards Corporation, Phone: (256) 880-8787

4.4.2. Registers ... 18

4.5. Data Types .. 18

4.6. Functions ... 18
4.6.1. pex8111_close() ... 18
4.6.2. pex8111_init() .. 19
4.6.3. pex8111_ioctl()... 20
4.6.4. pex8111_open() .. 20
4.6.5. pex8111_read() ... 22

4.7. IOCTL Services .. 23
4.7.1. PEX8111_IOCTL_BLIND_PREFETCH ... 23
4.7.2. PEX8111_IOCTL_CACHE_LINE_SIZE .. 23
4.7.3. PEX8111_IOCTL_COMP_FLOW_CTL_CRDT .. 23
4.7.4. PEX8111_IOCTL_PAYLOAD_SIZE_MAX .. 24
4.7.5. PEX8111_IOCTL_MAX_READ_REQ_SIZE .. 24
4.7.6. PEX8111_IOCTL_PREFETCH_SIZE ... 24
4.7.7. PEX8111_IOCTL_QUERY ... 25
4.7.8. PEX8111_IOCTL_REG_MOD .. 25
4.7.9. PEX8111_IOCTL_REG_READ .. 26
4.7.10. PEX8111_IOCTL_REG_WRITE .. 26

5. The Driver.. 28

5.1. Files ... 28

5.2. Build ... 28

5.3. Startup ... 28
5.3.1. Manual Driver Startup Procedures ... 28
5.3.2. Automatic Driver Startup Procedures ... 29

5.4. Verification ... 30

5.5. Version .. 31

5.6. Shutdown .. 31

6. Document Source Code Examples ... 32

6.1. Files ... 32

6.2. Build ... 32

6.3. Library Use ... 32

7. Utility Source Code ... 33

7.1. Files ... 33

7.2. Build ... 33

7.3. Library Use ... 33

8. Operating Information ... 34

8.1. Debugging Aids .. 34
8.1.1. Device Identification .. 34

9. Sample Applications ... 35

9.1. id - Identify Board - …/id/ .. 35

PEX8111, Linux Device Driver, User Manual

5

General Standards Corporation, Phone: (256) 880-8787

9.2. regs - Register Access - …/regs/ ... 35

9.3. payload – Payload ... 36
9.3.1. Build ... 36
9.3.2. Execute ... 36
9.3.3. Determining the Best Maximum Payload Size for Your Application .. 37
9.3.4. Using the Application ... 37

9.4. prefetch – Prefetch .. 38
9.4.1. Build ... 38
9.4.2. Execute ... 38
9.4.3. Determining the Best Prefetch Size for Your Application ... 39
9.4.4. Using the Application ... 39

Document History ... 40

PEX8111, Linux Device Driver, User Manual

6

General Standards Corporation, Phone: (256) 880-8787

Table of Figures

Figure 1 Architectural representation. ... 8

PEX8111, Linux Device Driver, User Manual

7

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

1.1. Purpose

The purpose of this document is to describe the interface to the PEX8111 API Library and to the underlying Linux

device driver. The API Library software provides the interface between "Application Software" and the device

driver. The driver software provides the interface between the API Library and the actual PEX8111 hardware. The

API Library and driver interfaces are based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms Description

GSC General Standards Corporation

PCI Peripheral Component Interconnect

PCIe PCI Express

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

… This is a shortcut representation of the PEX8111 installation directory or any of its subdirectories.

API Library This refers to the library implementing the PEX8111 API, which is implemented as a shared library.

Application This is a user mode process, which runs in user space with user mode privileges.

Driver This is a kernel mode device driver, which runs in kernel space with kernel mode privileges.

Library This is usually a general reference to the API Library.

PEX8111 This is used as a general reference to any board supported by this driver.

1.4. Software Overview

1.4.1. Basic Software Architecture

This section describes the general architecture for the basic components that comprise PEX8111 applications. The

overall architecture is illustrated in Figure 1 below.

PEX8111, Linux Device Driver, User Manual

8

General Standards Corporation, Phone: (256) 880-8787

PEX8111

Hardware

PEX8111

Device Driver

Hardware Level

PEX8111

API Library

PEX8111

Application

Kernel Level

Application Level

Figure 1 Architectural representation.

1.4.2. API Library

The primary means of accessing PEX8111 boards is via the PEX8111 API Library. This library forms a very thin

layer between the application and the driver. Additional information is given in section 4 beginning on page 17.

With the library, applications are able to open and close a device and, while open, perform I/O control and read

operations. (See Figure 1 above.)

1.4.3. Device Driver

The device driver is the host software that provides a means of communicating directly with PEX8111 hardware.

The driver executes under control of the operating system and runs in Kernel Mode as a Kernel Mode device driver.

The driver is implemented as a standard dynamically loadable Linux device driver written in the C programming

language. While applications can access the driver directly without use of the API Library, it is recommended that

all access is made through the library. (See Figure 1 above.)

1.5. Hardware Overview

The PEX8111 is a high-performance bridge interface chip providing an interface between a PCI Express slot and a

PCI Bridge chip, such as the PLX PCI 9056 or the PLX PCI 9656. The PEX8111 may appear as a separate device or

it may integrated in another device, such as the PEX8311. The PEX8111 appears on some of our PCI Express

adapter boards and is labeled PEX8111. The PEX8111 also appears in some of our native PCI Express boards and is

inside a chip labeled PEX8311.

1.6. Reference Material

The following reference material may be of particular benefit in using the PEX8111. The specifications provide the

information necessary for an in depth understanding of the specialized features implemented on this board.

• The PEX8111 PCI Express Bridge Chip data handbook from PLX Technology, Inc.

PLX Technology Inc.

PEX8111, Linux Device Driver, User Manual

9

General Standards Corporation, Phone: (256) 880-8787

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE.txt in the root installation directory.

http://www.plxtech.com/

PEX8111, Linux Device Driver, User Manual

10

General Standards Corporation, Phone: (256) 880-8787

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 5.x, 4.x, 3.x, 2.6, 2.4 and 2.2 running on a PC system

with one or more x86 processors. This release of the driver supports the below listed kernels.

Kernel Distribution

5.14.10 Red Hat Fedora Core 35

5.11.12 Red Hat Fedora Core 34

5.8.15 Red Hat Fedora Core 33

5.6.6 Red Hat Fedora Core 32

5.3.7 Red Hat Fedora Core 31

5.0.9 Red Hat Fedora Core 30

4.18.16 Red Hat Fedora Core 29

4.16.3 Red Hat Fedora Core 28

4.13.9 Red Hat Fedora Core 27

4.11.8 Red Hat Fedora Core 26

4.8.6 Red Hat Fedora Core 25

4.5.5 Red Hat Fedora Core 24

4.2.3 Red Hat Fedora Core 23

4.0.4 Red Hat Fedora Core 22

3.17.4 Red Hat Fedora Core 21

3.11.10 Red Hat Fedora Core 20

3.9.5 Red Hat Fedora Core 19

3.6.10 Red Hat Fedora Core 18

3.3.4 Red Hat Fedora Core 17

3.1.0 Red Hat Fedora Core 16

2.6.38 Red Hat Fedora Core 15

2.6.35 Red Hat Fedora Core 14

2.6.33 Red Hat Fedora Core 13

2.6.31 Red Hat Fedora Core 12

2.6.29 Red Hat Fedora Core 11

2.6.27 Red Hat Fedora Core 10

2.6.25 Red Hat Fedora Core 9

2.6.23 Red Hat Fedora Core 8

2.6.21 Red Hat Fedora Core 7

2.6.18 Red Hat Fedora Core 6

2.6.15 Red Hat Fedora Core 5

2.6.11 Red Hat Fedora Core 4

2.6.9 Red Hat Fedora Core 3

NOTE: Some older kernel versions are supported (the sources are maintained), but are not tested.

NOTE: While only Red Hat Fedora distributions are listed, numerous other distributions are

supported and have been tested on an as needed basis.

NOTE: The driver will have to be built before being used as it is provided in source form only.

NOTE: The driver has not been tested with a non-versioned kernel.

PEX8111, Linux Device Driver, User Manual

11

General Standards Corporation, Phone: (256) 880-8787

NOTE: The driver has not been tested for SMP operation.

2.1.1. 32-bit Support Under 64-bit Environments

This driver supports 32-bit applications under 64-bit environments. The availability of this feature in the kernel

depends on a 64-bit kernel being configured to support 32-bit application compatibility. Additionally, 2.6 kernels

prior to 2.6.11 implemented 32-bit compatibility in a way that resulted in some drivers not being able to take

advantage of the feature. (In these kernels a driver’s IOCTL command codes must be globally unique. Beginning

with 2.6.11 this requirement has been lifted.) If the driver is not able to provide 32-bit support under a 64-bit kernel,

the “32-bit support” field in the /proc/pex8111 file will be “no”.

2.2. The /proc/ File System

While the driver is running, the text file /proc/pex8111 can be read to obtain information about the driver. Each

file entry includes an entry name followed immediately by a colon, a space character, and the entry value. Below is

an example of what appears in the file, followed by descriptions of each entry.

version: 2.2.101.43

32-bit support: yes

boards: 1

models: PEX8111

Entry Description
version The driver version number in the form X.X.X.X.

32-bit support
This reports the driver’s support for 32-bit applications. This will be either “yes” or “no”

for 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.

models

This gives a comma separated list of the board models identified by the driver. One model

will be listed for each board identified in the system. For this driver the only model

numbers listed will be “PEX8111.”

2.3. File List

This release consists of the below listed primary files. The archive content is described in following subsections.

File Description
pex8111.linux.tar.gz This archive contains the driver, the API Library and all related files.
pex8111_linux_um.pdf This is a PDF version of this user manual, which is included in the archive.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory

structure is created and populated with the respective files.

Directory Content

pex8111/
This is the driver root directory. It contains the documentation, the Overall Make Script (section

2.7, page 12) and the below listed subdirectories.
…/api/ This directory contains the PEX8111 API Library (section 4, page 17).
…/docsrc/ This directory contains the code samples from this document (section 6, page 32).
…/driver/ This directory contains the driver and its sources (section 5, page 28).
…/include/ This directory contains the include files for the various libraries.
…/lib/ This directory contains all of the libraries built from the driver archive.
…/samples/ This directory contains the sample applications (section 9, page 35).

PEX8111, Linux Device Driver, User Manual

12

General Standards Corporation, Phone: (256) 880-8787

…/utils/ This directory contains utility sources used by the sample applications (section 7, page 33).

2.5. Installation

Perform installation following the below listed steps. This installs the device driver, the API Library and all related

sources and documentation.

1. Create and change to the directory where the files are to be installed, such as /usr/src/linux/drivers/.

(The path name may vary among distributions and kernel versions.)

2. Copy the archive file pex8111.linux.tar.gz into the current directory.

3. Issue the following command to decompress and extract the files from the provided archive. This creates the

directory pex8111 in the current directory, and then copies all of the archive’s files into this new directory.

tar –xzvf pex8111.linux.tar.gz

2.6. Removal

Perform removal following the below listed steps. This removes the device driver, the API Library and all related

sources and documentation.

1. Shutdown the driver as described in section 5.6 on page 31.

2. Change to the directory where the driver archive was installed, which may have been

/usr/src/linux/drivers/. (The path name may vary among distributions and kernel versions.)

3. Issue the below command to remove the driver archive and all of the installed driver files.

rm –rf pex8111.linux.tar.gz pex8111

4. Issue the below command to remove all of the installed device nodes.

rm –f /dev/pex8111.*

5. If the automated startup procedure was adopted (section 5.3.2, page 29), then edit the system startup script

rc.local and remove the line that invokes the PEX8111’s start script. The file rc.local should be

located in the /etc/rc.d/ directory.

2.7. Overall Make Script

An Overall Make Script is included in the root installation directory. Executing this script will perform a make for

all build targets included in the release. The script also loads the driver and copies the API Library to /usr/lib/.

The script is named make_all. Follow the below steps to perform an overall make and to load the driver.

NOTE: The following steps may require elevated privileges.

1. Change to the root installation directory (…/pex8111/).

2. Remove existing build targets using the below command line. This does not unload the driver.

./make_all clean

3. Issue the following command to make all archive targets and to load the driver.

PEX8111, Linux Device Driver, User Manual

13

General Standards Corporation, Phone: (256) 880-8787

./make_all

NOTE: After the device driver is built the script starts the driver. After building the API Library it

is copied by the script to /usr/lib/. The script can also perform a clean operation by adding

the term “clean” as a command line argument. A clean operation does not unload the driver.

However, a clean does delete the API Library file copied to /usr/lib/.

2.8. Environment Variables

Some build environments may require compiler or linker options not present in the provided make files. To

accommodate local environment specific requirements, the provided make files incorporate support for the

following set of GSC specific environment variables.

2.8.1. GSC_API_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the API Library. The compiler used by the API Library make file is “gcc”. The content of this environment variable

is noted in the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in

the table refers to the contents of the environment variable. This environment variable has no effect on compiling

any other distributed source files or linking of any object files.

Undefined

or Empty

== Compiling: init.c

== Compiling: ioctl.c

== Compiling: open.c

Defined and

Not Empty

== Compiling: init.c (added 'xxx')

== Compiling: ioctl.c (added 'xxx')

== Compiling: open.c (added 'xxx')

2.8.2. GSC_API_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the API

Library. The linker used by the API Library make file is “ld”. The content of this environment variable is noted in

the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in the table

refers to the contents of the environment variable. This environment variable has no effect on compiling of any

source files or linking of any other object files.

Undefined

or Empty
==== Linking: ../lib/libpex8111_api.so

Defined and

Not Empty
==== Linking: ../lib/libpex8111_api.so (added 'xxx')

2.8.3. GSC_LIB_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the utility libraries. The compiler used by the utility library make files is “gcc”. The content of this environment

variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The

“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on

compiling any other distributed source files or linking of any object files.

Undefined

or Empty

== Compiling: close.c

== Compiling: init.c

== Compiling: ioctl.c

Defined and == Compiling: close.c (added 'xxx')

PEX8111, Linux Device Driver, User Manual

14

General Standards Corporation, Phone: (256) 880-8787

Not Empty == Compiling: init.c (added 'xxx')

== Compiling: ioctl.c (added 'xxx')

2.8.4. GSC_LIB_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the

utility libraries. The linker used by the utility library make files is “ld”. The content of this environment variable is

noted in the make files’ output to the screen. The table below shows a portion of the screen output. The “xxx” in the

table refers to the contents of the environment variable. This environment variable has no effect on compiling of any

source files or linking of any other object files.

Undefined

or Empty
==== Linking: ../lib/pex8111_utils.a

Defined and

Not Empty
==== Linking: ../lib/pex8111_utils.a (added 'xxx')

2.8.5. GSC_APP_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the sample applications. The compiler used by the sample application make files is “gcc”. The content of this

environment variable is noted in the make files’ output to the screen. The table below shows a portion of the screen

output. The “xxx” in the table refers to the contents of the environment variable. This environment variable has no

effect on compiling any other distributed source files or linking of any object files.

Undefined

or Empty

== Compiling: main.c

== Compiling: perform.c

Defined and

Not Empty

== Compiling: main.c (added 'xxx')

== Compiling: perform.c (added 'xxx')

2.8.6. GSC_APP_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the

sample applications. The linker used by the sample application make files is “gcc”. The content of this environment

variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The

“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on

compiling of any source files or linking of any other object files.

Undefined

or Empty
==== Linking: id

Defined and

Not Empty
==== Linking: id (added 'xxx')

PEX8111, Linux Device Driver, User Manual

15

General Standards Corporation, Phone: (256) 880-8787

3. Main Interface Files

This section gives general information on the suggested device interface files to use when developing PEX8111

based applications.

3.1. Main Header File

Throughout the remainder of this document references are made to various header files included as part of the

PEX8111 driver archive. For ease of use it is suggested that applications include only the single header file shown

below rather than individually including those headers identified separately later in this document. Including this

header file pulls in all other pertinent PEX8111 specific header files. Therefore, sources may include only this one

PEX8111 header and make files may reference only this one PEX8111 include directory.

Description File Location

Header File pex8111_main.h …/include/

3.2. Main Library File

Throughout the remainder of this document references are made to various statically linkable libraries included as

part of the PEX8111 driver archive. For ease of use it is suggested that applications link only the single library file

shown below rather than individually linking those libraries identified separately later in this document. Linking this

library file pulls in all other pertinent PEX8111 specific static libraries. Therefore, make files may reference only

this one PEX8111 static library and only this one PEX8111 library directory.

Description File Location

Static Library pex8111_main.a …/lib/

NOTE: The PEX8111 API Library is implemented as a shared library and is thus not linked with

the PEX8111 Main Library. The API Library must be linked with applications either explicitly or

by adding the argument –lpex8111_api to the linker command line.

3.2.1. Build

The main library is built via the Overall Make Script (section 2.7, page 12). However, the main library can be rebuilt

separately following the below steps.

1. Change to the directory where the main library resides (…/lib/).

2. Remove existing build targets using the below command line.

make clean

3. Rebuild the main library by issuing the below command.

make

3.2.2. System Libraries

In addition to linking the static library named above, applications may need to also link in additional system libraries

as noted below.

Library gcc Link Flag

Math -lm

POSIX Thread -lpthread

PEX8111, Linux Device Driver, User Manual

16

General Standards Corporation, Phone: (256) 880-8787

Real Time -lrt

PEX8111, Linux Device Driver, User Manual

17

General Standards Corporation, Phone: (256) 880-8787

4. API Library

The PEX8111 API Library is the software interface between user applications and the PEX8111 device driver. The

interface is accessed by including the header file pex8111_api.h.

NOTE: Contact General Standards Corporation if additional library functionality is required.

4.1. Files

The library source files are summarized in the table below.

File Description
api/*.c These are library source files.
api/*.h These are library header files.
api/makefile This is the library make file.
api/makefile.dep This is an automatically generated make dependency file.
include/pex8111_api.h This is the library interface header file.

lib/libpex8111_api.so This is the API Library shared library file. *

* The shared library is automatically copied to /usr/lib/ when it is built.

4.2. Build

The API Library is built via the Overall Make Script (section 2.7, page 12), but can be built separately following the

below steps.

NOTE: The API’s shared library is copied to /usr/lib/ when it is built. Therefore, these steps

may require elevated privileges.

1. Change to the directory where the library sources reside (…/api/).

2. Remove existing build targets by issuing the below command.

make clean

3. Compile the source files and build the library by issuing the below command.

make

4.3. Library Use

The library is used at application compile time, at application link time and at application run time. At compile time

include the below listed header file in each source file using a component of the library interface. At link time

include the below listed linker argument on the linker command line. At link time and at run time the library is

found in the directory /usr/lib/. (The shared library file is automatically copied to /usr/lib/ when the

library is built.)

Description File Location Linker Argument

Header File pex8111_api.h …/include/

Shared Library libpex8111_api.so
…/lib/

/usr/lib/ -lpex8111_api

PEX8111, Linux Device Driver, User Manual

18

General Standards Corporation, Phone: (256) 880-8787

4.4. Macros

The interface includes the following macros.

4.4.1. IOCTL

The IOCTL macros are documented in section 4.7 beginning on page 23.

4.4.2. Registers

The following gives the complete set of PEX8111 registers.

4.4.2.1. GSC Registers

The PEX8111 contains no GSC specific registers. Any GSC specific registers will be associated with the device

using the PEX8111 to interface to a PCI Express bus.

4.4.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of the PCI

register identifiers refer to the driver header file gsc_pex8111.h, which is automatically included via

pex8111.h.

4.4.2.3. PLX Feature Set Registers

Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX

register identifiers refer to the driver header file gsc_pex8111.h, which is automatically included via

pex8111.h.

4.5. Data Types

The data types used by the API Library are described with the IOCTL services with which they are used.

4.6. Functions

The interface includes the following functions. The return values reflect the completion status of the requested

operation. A value of zero indicates success. A negative value indicates that the request could not be completed

successfully. The specific value returned is the negative of the corresponding error status value taken from

errno.h. I/O services return positive values to indicate the number of bytes successfully transferred.

4.6.1. pex8111_close()

This function is the entry point to close a connection to an open PEX8111 board. The board is put in an initialized

state before this call returns.

Prototype

int pex8111_close(int fd);

Argument Description
fd This is the file descriptor of the device to be closed.

Return Value Description
0 The operation succeeded.

PEX8111, Linux Device Driver, User Manual

19

General Standards Corporation, Phone: (256) 880-8787

< 0 An error occurred. This is the negative of errno from errno.h.

Example

#include <stdio.h>

#include "pex8111_dsl.h"

int pex8111_close_dsl(int fd)

{

 int errs;

 int ret;

 ret = pex8111_close(fd);

 if (ret)

 printf("ERROR: pex8111_close() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.2. pex8111_init()

This function is the entry point to initializing the PEX8111 API Library and must be the first call into the Library.

This function may be called more than once, but only the first successful call actually initializes the library.

Subsequent calls perform no operation at all. All other API calls return a failure status when the API Library is not

initialized.

Prototype

int pex8111_init(void);

Return Value Description
0 The operation succeeded.
< 0 An error occurred. This is the negative of errno from errno.h.

Example

#include <stdio.h>

#include "pex8111_dsl.h"

int pex8111_init_dsl(void)

{

 int errs;

 int ret;

 ret = pex8111_init();

 if (ret)

 printf("ERROR: pex8111_init() returned %d\n", ret);

 errs = ret ? 1 : 0;

PEX8111, Linux Device Driver, User Manual

20

General Standards Corporation, Phone: (256) 880-8787

 return(errs);

}

4.6.3. pex8111_ioctl()

This function is the entry point to performing setup and control operations on a PEX8111 board. This function

should only be called after a successful open of the respective device. The specific operation performed varies

according to the request argument. The request argument also governs the use and interpretation of the arg

argument. The set of supported options for the request argument consists of the IOCTL services supported by the

driver, which are defined in section 4.7 beginning on page 23.

Prototype

int pex8111_ioctl(int fd, int request, void* arg);

Argument Description
fd This is the file descriptor of the device to access.
request This specifies the desired operation to be performed.

arg
This is a request specific argument. Refer to the IOCTL services for additional

information (section 4.7, page 23).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. This is the negative of errno from errno.h.

Example

#include <stdio.h>

#include "pex8111_dsl.h"

int pex8111_ioctl_dsl(int fd, int request, void *arg)

{

 int errs;

 int ret;

 ret = pex8111_ioctl(fd, request, arg);

 if (ret)

 printf("ERROR: pex8111_ioctl() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.4. pex8111_open()

This function is the entry point to open a connection to a PEX8111 board. The device is initialized before the

function returns.

Prototype

int pex8111_open(int device, int share, int* fd);

PEX8111, Linux Device Driver, User Manual

21

General Standards Corporation, Phone: (256) 880-8787

Argument Description
device This is the zero based index of the PEX8111 to access. *

share
Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).

fd

The device handle is returned here. The pointer cannot be NULL. Values returned are as

follows.

Value Description
>= 0 This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

* If the index value is -1, then the API Library accesses /proc/pex8111.

Return Value Description
0 The operation succeeded.
< 0 An error occurred. This is the negative of errno from errno.h.

Example

#include <stdio.h>

#include "pex8111_dsl.h"

int pex8111_open_dsl(int device, int share, int* fd)

{

 int errs;

 int ret;

 ret = pex8111_open(device, share, fd);

 if (ret)

 printf("ERROR: pex8111_open() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.4.1. Access Modes

Shared Access Mode:

Shared Access Mode allows multiple applications to access the same device simultaneously. In this mode, the first

successful open request returns with the device in an initialized state. Subsequent successful Shared Access Mode

open requests do not affect the state of the device. Once opened in Shared Access Mode, the device access remains

in this mode until all Shared Access Mode accesses release the device with a close request.

Exclusive Access Mode:

Exclusive Access Mode allows a single application to acquire exclusive access to a device. In this mode, a

successful open request returns with the device in an initialized state. While open in this mode all subsequent open

requests will fail regardless of the access mode requested. Once opened in Exclusive Access Mode, the device

access remains in this mode until released by the application with a close request.

PEX8111, Linux Device Driver, User Manual

22

General Standards Corporation, Phone: (256) 880-8787

4.6.5. pex8111_read()

This function is the entry point to reading data from an open performed on device index -1. This function should

only be called after a successful open. The function reads up to bytes bytes. The return value is the number of

bytes actually read.

NOTE: When performing an open on device index -1, the API Library accesses the

/proc/pex8111 text file. This read service then reads from that file. Refer to section 4.6.4,

page 20.

NOTE: The read service has no functionality for reading from PEX8111 devices. Attempts to

read from PEX8111 devices will return an error.

Prototype

int pex8111_read(int fd, void *dst, size_t bytes);

Argument Description
fd This is the file descriptor of use for access.
dst The data read will be put here.
bytes This is the desired number of bytes to read.

Return Value Description

0 to bytes The operation succeeded. A value less than bytes indicates that the request timed out.

< 0 An error occurred. This is the negative of errno from errno.h.

Example

#include <stdio.h>

#include "pex8111_dsl.h"

int pex8111_read_dsl(int fd, void* dst, size_t bytes, size_t* qty)

{

 int errs;

 int ret;

 ret = pex8111_read(fd, dst, bytes);

 if (ret < 0)

 printf("ERROR: pex8111_read() returned %d\n", ret);

 if (qty)

 qty[0] = (ret < 0) ? 0 : (size_t) ret;

 errs = (ret < 0) ? 1 : 0;

 return(errs);

}

PEX8111, Linux Device Driver, User Manual

23

General Standards Corporation, Phone: (256) 880-8787

4.7. IOCTL Services

The PEX8111 API Library and device driver implement the following IOCTL services. Each service is described

along with the applicable pex8111_ioctl() function arguments.

4.7.1. PEX8111_IOCTL_BLIND_PREFETCH

This service configures the board’s Blind Prefetch setting.

Usage

Argument Description
request PEX8111_IOCTL_PREFETCH_ENABLE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
PEX8111_BLIND_PREFETCH_DISABLE This disables the Blind Prefetch feature.
PEX8111_BLIND_PREFETCH_ENABLE This enables the Blind Prefetch feature.

4.7.2. PEX8111_IOCTL_CACHE_LINE_SIZE

This service is provide for debug purposes only and should generally not be used to adjust the Cache Line Size

setting made during Plug-N-Play initialization.

Usage

Argument Description
request PEX8111_IOCTL_CACHE_LINE_SIZE

arg s32*

Valid argument values are as follows. (Other Cache Line Size values are known, but the values listed here are those

supported by the PEX8111. If the Cache Line Size is set to an unsupported value, the PEX8111 will operate with the

zero setting.)

Value Description
-1 Retrieve the current setting.
PEX8111_CACHE_LINE_SIZE_0 The Cache Line Size is zero bytes.
PEX8111_CACHE_LINE_SIZE_8 The Cache Line Size is eight bytes.
PEX8111_CACHE_LINE_SIZE_16 The Cache Line Size is 16 bytes.
PEX8111_CACHE_LINE_SIZE_32 The Cache Line Size is 32 bytes.
PEX8111_CACHE_LINE_SIZE_64 The Cache Line Size is 64 bytes.
PEX8111_CACHE_LINE_SIZE_128 The Cache Line Size is 128 bytes.

4.7.3. PEX8111_IOCTL_COMP_FLOW_CTL_CRDT

This service configures the board’s Completion Flow Control Credit setting.

Usage

Argument Description
request PEX8111_IOCTL_COMP_FLOW_CTL_CRDT

PEX8111, Linux Device Driver, User Manual

24

General Standards Corporation, Phone: (256) 880-8787

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
PEX8111_COMP_FLOW_CTL_CRDT_NO This disables the option.
PEX8111_COMP_FLOW_CTL_CRDT_YES This enables the option.

4.7.4. PEX8111_IOCTL_PAYLOAD_SIZE_MAX

This service configures the board’s Maximum Payload Size setting.

Usage

Argument Description
request PEX8111_IOCTL_PAYLOAD_SIZE_MAX

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
PEX8111_PAYLOAD_SIZE_MAX_128 This sets the Maximum Payload Size to 128 bytes.
PEX8111_PAYLOAD_SIZE_MAX_256 This sets the Maximum Payload Size to 256 bytes.
PEX8111_PAYLOAD_SIZE_MAX_512 This sets the Maximum Payload Size to 512 bytes.
PEX8111_PAYLOAD_SIZE_MAX_1024 This sets the Maximum Payload Size to 1024 bytes.
PEX8111_PAYLOAD_SIZE_MAX_2048 This sets the Maximum Payload Size to 2048 bytes.
PEX8111_PAYLOAD_SIZE_MAX_4096 This sets the Maximum Payload Size to 4096 bytes.

4.7.5. PEX8111_IOCTL_MAX_READ_REQ_SIZE

This service configures the board’s Maximum Read Request Size setting.

Usage

Argument Description
request PEX8111_IOCTL_MAX_READ_REQ_SIZE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
PEX8111_MAX_READ_REQ_SIZE_128 This sets the Maximum Read Request Size to 128 bytes.
PEX8111_MAX_READ_REQ_SIZE_256 This sets the Maximum Read Request Size to 256 bytes.
PEX8111_MAX_READ_REQ_SIZE_512 This sets the Maximum Read Request Size to 512 bytes.
PEX8111_MAX_READ_REQ_SIZE_1024 This sets the Maximum Read Request Size to 1024 bytes.
PEX8111_MAX_READ_REQ_SIZE_2048 This sets the Maximum Read Request Size to 2048 bytes.
PEX8111_MAX_READ_REQ_SIZE_4096 This sets the Maximum Read Request Size to 4096 bytes.

4.7.6. PEX8111_IOCTL_PREFETCH_SIZE

This service configures the board’s Prefetch Size setting.

PEX8111, Linux Device Driver, User Manual

25

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request PEX8111_IOCTL_PREFETCH_SIZE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
PEX8111_PREFETCH_SIZE_CL This selects the Cache Line option, which is the setting in the

Cache Line Size register.
PEX8111_PREFETCH_SIZE_64 This selects the 64 byte option.
PEX8111_PREFETCH_SIZE_128 This selects the 128 byte option.
PEX8111_PREFETCH_SIZE_256 This selects the 256 byte option.
PEX8111_PREFETCH_SIZE_512 This selects the 512 byte option.
PEX8111_PREFETCH_SIZE_1024 This selects the 1024 byte option.
PEX8111_PREFETCH_SIZE_2048 This selects the 2048 byte option.
PEX8111_PREFETCH_SIZE_4096 This selects the 4096 byte option.

4.7.7. PEX8111_IOCTL_QUERY

This service queries the driver for various pieces of information about the board and the driver.

Usage

Argument Description
request PEX8111_IOCTL_QUERY

arg s32*

Valid argument values are as follows.

Value Description

PEX8111_QUERY_COUNT
This returns the number of query options supported by the

IOCTL service.

PEX8111_QUERY_DEVICE_TYPE
This returns the identifier value for the board’s type. This

should be GSC_DEV_TYPE_PEX8111.

PEX8111_QUERY_PAYLOAD_SIZE_CAP This returns the device’s Payload Size Capacity in bytes.

Valid return values are as indicated in the above table and as given in the below table.

Value Description

PEX8111_IOCTL_QUERY_ERROR
Either there was a processing error or the query option is

unrecognized.

4.7.8. PEX8111_IOCTL_REG_MOD

This service performs a read-modify-write of a PEX8111 register. At present there are registers that an application

may modify. The PCI and PLX Feature Set Registers are read-only. Refer to gsc_pex8111.h for the complete

list of accessible registers.

PEX8111, Linux Device Driver, User Manual

26

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request PEX8111_IOCTL_REG_MOD

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This contains the value for the register bits to modify.

mask
This specifies the set of bits to modify. If a bit here is set, then the respective register bits is

modified. If a bit here is zero, then the respective register bit is unmodified.

4.7.9. PEX8111_IOCTL_REG_READ

This service reads the value of a PEX8111 register. This includes the PCI registers and the PLX Feature Set

Registers. Refer to gsc_pex8111.h for the complete list of accessible registers.

Usage

Argument Description
request PEX8111_IOCTL_REG_READ

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This is the value read from the specified register.
mask This is ignored for read request.

4.7.10. PEX8111_IOCTL_REG_WRITE

This service writes a value to a PEX8111 register. At present there are registers that an application may modify. The

PCI and PLX Feature Set Registers are read-only. Refer to gsc_pex8111.h for a complete list of the accessible

registers.

PEX8111, Linux Device Driver, User Manual

27

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request PEX8111_IOCTL_REG_WRITE

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This is the value to write to the specified register.
mask This is ignored for write request.

PEX8111, Linux Device Driver, User Manual

28

General Standards Corporation, Phone: (256) 880-8787

5. The Driver

NOTE: Contact General Standards Corporation if additional driver functionality is required.

5.1. Files

The device driver source files are summarized in the table below.

File Description
driver/*.c The driver source files.
driver/*.h The driver header files.
driver/pex8111.h This is the driver interface header file.
driver/Makefile This is the driver make file.
driver/start Shell script to install the driver executable and device nodes.

5.2. Build

NOTE: Building the driver requires installation of the kernel sources.

The device driver is built via the Overall Make Script (section 2.7, page 12), but can be built separately following

the below steps.

1. Change to the directory where the driver sources reside (…/driver/).

2. Remove existing build targets by issuing the below command.

make clean

3. Build the driver by issuing the below command.

make

NOTE: Due to the differences between the many Linux distributions some build errors may

occur. These errors may include system header location differences, which should be easily

corrected.

5.3. Startup

NOTE: The driver will have to be built before being used as it is provided in source form only.

The startup script used in this procedure is designed to insure that the driver module in the install directory is the

module that is loaded. This is accomplished by making sure that an already loaded module is first unloaded before

attempting to load the module from the disk drive. In addition, the script also deletes and recreates the device nodes.

This is done to insure that the device nodes in use have the same major number as assigned dynamically to the driver

by the kernel, and so that the number of device nodes correspond to the number of boards identified by the driver.

5.3.1. Manual Driver Startup Procedures

Start the driver manually by following the below listed steps.

NOTE: The following steps may require elevated privileges.

1. Change to the directory where the driver sources reside (…/driver/).

PEX8111, Linux Device Driver, User Manual

29

General Standards Corporation, Phone: (256) 880-8787

2. Install the driver module and create the device nodes by executing the below command. If any errors are

encountered then an appropriate error message will be displayed.

./start

NOTE: This script must be executed each time the host is rebooted.

NOTE: The PEX8111 device node major number is assigned dynamically by the kernel. The minor

numbers and the device node suffix numbers are index numbers beginning with zero, and increase by

one for each additional board installed.

3. Verify that the device driver module has been loaded by issuing the below command and examining the output.

The module name pex8111 should be included in the output.

lsmod

4. Verify that the device nodes have been created by issuing the below command and examining the output. The

output should include one node for each installed board.

ls –l /dev/pex8111.*

5.3.2. Automatic Driver Startup Procedures

Start the driver automatically with each system reboot by following the below listed steps.

1. Locate and edit the system startup script rc.local, which should be in the /etc/rc.d/ directory. Modify

the file by adding the below line so that it is executed with every reboot. The example is based on the driver

being installed in /usr/src/linux/drivers/, though it may have been installed elsewhere.

/usr/src/linux/drivers/pex8111/driver/start

NOTE: For systemd installations the file rc.local may be located under the /etc/

directory rather than under /etc/rc.d/.

2. Load the driver and create the required device nodes by rebooting the system.

3. Verify that the driver is loaded and that the device nodes have been created. Do this by following the

verification steps given in the manual startup procedures.

5.3.2.1. File rc.local Not Present

Some distributions may not install a default version of rc.local. Some may not even create the directory

/etc/rc.d/. If the directory is not present, then it may be created. The directory must be created with the owner

and group set to root. The directory permissions must be set to rwxr-xr-x. If the file /etc/rc.d/rc.local

is not present, then it too may be created. The file must also be created with the owner and group set to root.

Additionally, the file permissions must also be set to rwxr-xr-x. After the directory and file are created as

described, reboot to verify boot time loading of the driver. Here is an example of a default version of rc.local.

#!/bin/bash

Add you local content here.

PEX8111, Linux Device Driver, User Manual

30

General Standards Corporation, Phone: (256) 880-8787

5.3.2.2. Default rc.local File Permissions

The rc.local script may fail to run at boot time because some distributions install a default version of the file

without execute permissions. Without execute permissions, boot time invocation of the script fails, which inhibits

boot time loading of the driver. If this is the case, then change the file permissions to rwxr-xr-x. After the file

permissions are adjusted as described, reboot to verify boot time loading of the driver.

5.3.2.3. systemd Installations

With the advent of the systemd startup implementation, rc.local may be accessed via a systemd startup

service. The service name may be rc-local, rc-local.service or something similar. This service may or

may not be enabled by default. If the service is disabled, then the script will not execute, which prevents boot time

loading of the driver. The service can be enabled with the below command line. After the service is enabled, reboot

to verify boot time loading of the driver.

systemctl enable rc-local

NOTE: For systemd installations the file rc.local may be located under the /etc/

directory rather than under /etc/rc.d/.

5.3.2.4. systemd and rc.local Timing

If the above steps have been performed but the driver still does not start then examine the dmesg output for driver

messages. If the output shows that the driver starts and immediately stops, then the problem may be timing. That is,

since systemd doesn’t serialize startup initialization as done in the past, driver loading may fail if required services

have not completed their own initialization. If this is the problem, then it may be corrected simply by inserting a

delay in rc.local prior to it calling the driver’s start script (i.e. sleep for one or more seconds).

5.3.2.5. SElinux Implications

If not disabled, then SElinux may prevent boot time loading of the driver. If this is the case, then it can be verified

and corrected using SElinux related tools and utilities. First, install the necessary software using the below

command. (As necessary, replace the yum command line with that which is available for your distribution.)

yum install setroubleshoot setools

Next, run the below command to determine if SElinux is preventing the driver from loading at boot time.

sealert –a /var/log/audit/audit.log

If SElinux is preventing the driver from loading, then the output from the above command should include a

reference to the driver’s start script, the insmod command that loads the driver or the name of the driver

executable. If so, then the output should also indicate the commands necessary to resolve the issue. The following is

an example of the instructions given when the culprit is insmod, which is the start script command that loads the

driver. After running these commands reboot the system to verify boot time loading of the driver.

ausearch -c 'insmod' --raw | audit2allow -M my-insmod

semodule -X 300 -i my-insmod.pp

5.4. Verification

Follow the below steps to verify that the driver has been properly installed and started.

PEX8111, Linux Device Driver, User Manual

31

General Standards Corporation, Phone: (256) 880-8787

1. Verify that the file /proc/pex8111 is present. If the file is present then the driver is loaded and running.

Verify the file’s presence by viewing its content with the below command.

cat /proc/pex8111

5.5. Version

The driver version number can be obtained in a variety of ways. It is reported by the driver both when the driver is

loaded and when it is unloaded (depending on kernel configuration options, this may be visible only in places such

as /var/log/messages). It is reported in the text file /proc/pex8111 while the driver is loaded and

running.

5.6. Shutdown

Shutdown the driver following the below listed steps.

NOTE: The following steps may require elevated privileges.

1. If the driver is currently loaded then issue the below command to unload the driver.

rmmod pex8111

2. Verify that the driver module has been unloaded by issuing the below command. The module name pex8111

should not be in the listed output.

lsmod

PEX8111, Linux Device Driver, User Manual

32

General Standards Corporation, Phone: (256) 880-8787

6. Document Source Code Examples

The source code examples included in this document are built into a statically linkable library usable with console

applications. The purpose of these files is to verify that the documentation samples compile and to provide a library

of working sample code to assist in a user’s learning curve and application development effort.

6.1. Files

The library files are summarized in the table below.

File Description
docsrc/*.c These are the C source files.
docsrc/makefile This is the library make file.
docsrc/makefile.dep This is an automatically generated make dependency file.
include/pex8111_dsl.h This is the primary utility header file.
lib/pex8111_dsl.a This is the statically linkable library file.

6.2. Build

The library is built via the Overall Make Script (section 2.7, page 12), but can be built separately following the

below steps.

1. Change to the directory where the documentation sources reside (…/docsrc/).

2. Remove existing build targets by issuing the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make

6.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the below

listed header file in each source file using a component of the library interface. At link time include the below listed

library file with the objects being linked with the application.

Description File Location

Header File pex8111_dsl.h …/include/

Static Link Library pex8111_dsl.a …/lib/

PEX8111, Linux Device Driver, User Manual

33

General Standards Corporation, Phone: (256) 880-8787

7. Utility Source Code

The driver archive includes a body of utility services built into a statically linkable library that is usable with console

applications. The primary purpose of the services is both for code reuse in the sample applications and to provide

wrappers, mostly visual, around the driver’s IOCTL services. The aim of the visual wrappers is to facilitate

structured console output for the sample applications. An additional purpose of these utility services is to provide a

library of working sample code to assist in a user’s learning curve and application development effort.

7.1. Files

The library files are summarized in the table below.

File Description
utils/util_*.c These are device specific utility source files.
utils/gsc_*.c These are device and OS independent utility source files.
utils/os_*.c These are OS specific utility source files.
utils/makefile This is the library make file.
utils/makefile.dep This is an automatically generated make dependency file.
include/pex8111_utils.h This is the primary utility header file.
lib/pex8111_utils.a This is the statically linkable library file.

7.2. Build

The library is built via the Overall Make Script (section 2.7, page 12), but can be built separately following the

below steps.

1. Change to the directory where the utility sources reside (…/utils/).

2. Remove existing build targets by issuing the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make

7.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the below

listed header file in each source file using a component of the library interface. At link time include the below listed

library file with the objects being linked with the application.

Description File Location

Header File pex8111_utils.h …/include/

Static Link Library pex8111_utils.a …/lib/

PEX8111, Linux Device Driver, User Manual

34

General Standards Corporation, Phone: (256) 880-8787

8. Operating Information

This section explains some basic operational procedures for using the PEX8111. This is in no way intended to be a

comprehensive guide. This is simply to address a very few issues relating to their use.

8.1. Debugging Aids

The driver package includes the following items useful for development and/or debugging aids.

8.1.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id

example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as

follows.

Description File Location

Application id …/id/

PEX8111, Linux Device Driver, User Manual

35

General Standards Corporation, Phone: (256) 880-8787

9. Sample Applications

The driver archive includes a variety of sample and test applications. While they are provided without support and

without any external documentation, any problems reported will be addressed as time permits. The applications are

command line based and produce text output for display on a console. All of the applications are built via the

Overall Make Script (section 2.7, page 12), but each may be built individually by changing to its respective directory

and issuing the commands “make clean” and “make all”. The initial output from each application includes

information on its supported command line arguments. The following gives a brief overview of each application.

9.1. id - Identify Board - …/id/

This application reports detailed board identification information. This can be used with tech support to help identify

as much technical information about the board as possible from software.

9.2. regs - Register Access - …/regs/

This application provides menu based interactive access to the board’s registers, and reports other pertinent

information to the console.

PEX8111, Linux Device Driver, User Manual

36

General Standards Corporation, Phone: (256) 880-8787

9.3. payload – Payload

This sample console application provides a quick means of configuring a board’s Payload option for host memory

accesses. This is desirable in cases where the default settings may not be producing the best operation for a given

application. Or, it may be necessary on some systems to obtain acceptable I/O performance. The PEX8111 supports

Maximum Payload Size settings of 128, 256, 512, 1024, 2048 and 4096 bytes. In all cases the application

enumerates the detected PEX8111 devices and reports the memory range mapped to each device. The application’s

sources are summarized in the below table.

File Description
payload/*.c These are the application’s source files.
payload/main.h This is the application’s header file.
payload/makefile This is the application make file.
payload/makefile.dep This is an automatically generated make dependency file.
docsrc/* These are utility sources used by the application.
utils/* These are utility sources used by the application.

9.3.1. Build

Follow the below steps to build the sample application.

1. Change to the directory where the sample application sources reside (…/payload/).

2. Remove all existing build targets by issuing the below command.

make clean

3. Build the application by issuing the below command.

make all

9.3.2. Execute

Follow the below steps to execute the sample application.

1. Change to the directory where the sample application sources reside (…/payload/).

2. Start the sample application by issuing the command given below. The command line argument is described in

the table below.

./payload <-c> <-C> <-m#> <-n#> <-ps#> <index>

Argument Description
-c Perform continuous testing until an error occurs.
-C Perform continuous testing even if an error occurs.
-m# Perform continuous testing for at most # minutes.
-n# Perform continuous testing for at most # test iterations.

-ps#

This configures the Maximum Payload Size setting in bytes. Supported options are 64, 128,

256, 512, 1024, 2048 and 4096. If the Maximum Payload Size is not set on the command

line, then the current setting is reported.

index
This specifies the zero based index of the PEX8111 to access. No settings are applied or reported

if a device index is not specified.

PEX8111, Linux Device Driver, User Manual

37

General Standards Corporation, Phone: (256) 880-8787

9.3.3. Determining the Best Maximum Payload Size for Your Application

The Maximum Payload Size suitable for any given application may have to be determined experimentally. Please

review the PCI Express Maximum Payload Size setting before applying any changes.

9.3.4. Using the Application

Making proper and useful use of this application requires that any applied settings be made to the correct PEX8111.

In a system with multiple PEX8111 devices, one must use some mechanism to determine which PEX8111 provides

the interface for the device performing the DMA transfers of interest. One means is by examining the memory

address range used by the device performing the DMA and comparing that to the memory ranges mapped through

by the different PEX8111 devices in the system. If the application is executed without any command line arguments

it will enumerate the PEX8111 devices and list the mapped through memory range for each device. For General

Standards products most PEX8111 devices map through only a single bridged device. Therefore, the memory range

mapped through by each PEX8111 should include the memory range mapped to only a single PCI device, which

will, in most cases, be a PLX PCI9056, a PLX PCI9656 or a PLX PCI9080 device. Other PLX devices are possible,

but these are the most likely.

NOTE: Additional information may be gained from the lspci command or the

/proc/bus/pci/devices file. This information may also be used in establishing which

PEX8111 is associated with which bridged device.

PEX8111, Linux Device Driver, User Manual

38

General Standards Corporation, Phone: (256) 880-8787

9.4. prefetch – Prefetch

This sample console application provides a quick means of configuring a board’s Prefectch options for host memory

reads. This is desirable in cases where the default settings may not be producing the best operation for a given

application. Or, it may be necessary on some systems in which the host’s Cache Line Size is not supported by the

PEX8111. The PEX8111 supports Cache Line Sizes of 0x00, 0x02, 0x04, 0x08, 0x10 and 0x20. The Cache

Line Size is expressed in DWORD increments. In all cases the application enumerates the detected PEX8111

devices and reports the memory range mapped to each device. The application’s sources are summarized in the

below table.

NOTE: The PEX8111’s Cache Line Size is set during Plug-N-Play initialization. If the

PEX8111’s Cache Line Size is set to an unsupported value, then the PEX8111 will function as if

the value were set to zero. The results may be that DMA operations perform significantly slower

than expected. To counter this setback in performance, an application can Enable Prefetch in the

PEX8111 and set the Prefetch Size to one of several sizes. For additional information refer to the

service PEX8111_IOCTL_PREFETCH_ENABLE (section 4.7.1, page 23) and to the service

PEX8111_IOCTL_PREFETCH_SIZE (section 4.7.4, page 24).

File Description
prefetch/*.c These are the application’s source files.
prefetch/main.h This is the application’s header file.
prefetch/makefile This is the application make file.
prefetch/makefile.dep This is an automatically generated make dependency file.
docsrc/* These are utility sources used by the application.
utils/* These are utility sources used by the application.

9.4.1. Build

Follow the below steps to build the sample application.

1. Change to the directory where the sample application sources reside (…/prefetch/).

2. Remove all existing build targets by issuing the below command.

make clean

3. Build the application by issuing the below command.

make all

9.4.2. Execute

Follow the below steps to execute the sample application.

1. Change to the directory where the sample application sources reside (…/prefetch/).

2. Start the sample application by issuing the command given below. The command line argument is described in

the table below.

./prefetch <-bp+> <-bp-> <-c> <-C> <-cls#> <-fcc+> <-fcc-> <-m#> <-n>

 <-pls#> <-pfs#> <-rrs#> <index>

Argument Description
-bp+ Blind Prefetch Enable.
-bp- Blind Prefetch Disable.

PEX8111, Linux Device Driver, User Manual

39

General Standards Corporation, Phone: (256) 880-8787

-c Perform continuous testing until an error occurs.
-C Perform continuous testing even if an error occurs.
-cls# Cache Line Size: 0, 8, 16, 32, 64, 128
-fcc+ Flow Control Credit Enable. (Use after -ps#.)
-fcc- Flow Control Credit Disable. (Use after -ps#.)
-m# Perform continuous testing for at most # minutes.
-n# Perform continuous testing for at most # test iterations.
-pls# Max Payload Size: 128, 256, 512, 1024, 2048, 4096

-pfs#
Prefetch Size: cl, 64, 128, 256, 512, 1024, 2048, 4096

'cl' refers to the Cache Line size.
-rrs# Max Read Request Size: 128, 256, 512, 1024, 2048, 4096

index
This specifies the zero based index of the PEX8111 to access. No settings are applied or reported

if a device index is not specified.

9.4.3. Determining the Best Prefetch Size for Your Application

The Prefetch Size is the volume of data, in bytes, that the PEX8111 transfers from host memory when a device

makes block reads from host memory. This occurs when Prefetch Enable is enabled, and when the device attached

to the PEX8111 is performing DMA type reads from host memory. For block type reads, the PEX8111 always reads

Prefetch Size bytes from host memory, even though only a portion of that may be transferred by the PEX8111 to the

device performing the DMA. (Example: A DMA request is made for 1000 bytes. The PEX8111 reads 2048 bytes

(the current Prefetch Size setting), but transfers only 1000 bytes to the requesting DMA engine.)

The best Prefetch Size depends on the nature of the traffic that is expected for DMA reads from host memory. If an

application is seeking the highest throughput rate possible and is making large read requests, then the 4K setting

may produce the highest possible throughput. For smaller demands the best setting may be the smallest Prefetch

Size that equals or exceeds the volume of data expected for each request. For intermediate demands the best setting

may be the size that satisfies most requests with the lowest overhead. The overhead is the volume of data read from

host memory that isn’t transferred to the DMA engine.

9.4.4. Using the Application

Making proper and useful use of this application requires that any applied settings be made to the correct PEX8111.

In a system with multiple PEX8111 devices, one must use some mechanism to determine which PEX8111 provides

the interface for the device performing the DMA reads of interest. One means is by examining the memory address

range used by the device performing the DMA reads and comparing that to the memory ranges mapped through by

the different PEX8111 in the system. If the application is executed without any command line arguments it will

enumerate the PEX8111 devices and list the mapped through memory range for each device. For General Standards

products most PEX8111 devices map through only a single bridged device. Therefore, the memory range mapped

through by each PEX8111 should include the memory range mapped to only a single PCI device, which will, in

most cases, be a PLX PCI9056, a PLX PCI9656 or a PLX PCI9080 device. Other PLX devices are possible, but

these are the most likely.

NOTE: Additional information may be gained from the lspci command or the

/proc/bus/pci/devices file. This information may also be used in establishing which

PEX8111 is associated with which bridged device.

PEX8111, Linux Device Driver, User Manual

40

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

October 10, 2022 Updated to version 2.2.101.43.0. Expanded automatic startup information. Updated the

kernel support table. Added section on environment variables. Updated the information for

the open and close calls.

January 11, 2021 Updated to version 2.1.93.35.0. Updated the kernel support table. Updated the inside cover

page. Updated the CPU and kernel support section. Minor editorial changes. Document

reorganization. Added a licensing subsection. Expanded automatic startup information.

December 7, 2016 Updated to version 2.0.69.18.0. Updated the device node name to include a period before

the device index. Removed the built field from the /proc/ file. Updated the kernel

support table. Updated the command line arguments for the prefetch sample

application. Organized the sample applications alphabetically. Updated material on the

open call. Added open access mode descriptions. Added a section for general operating

information. Made various miscellaneous updates. Some document reorganization.

February 28, 2014 Updated to version 1.7.52.0. Updated the kernel support table.

January 9, 2014 Updated to version 1.6.51.0. Updated the kernel support table.

November 13, 2013 Updated to version 1.6.49.0.

July 17, 2013 Updated to version 1.6.45.0. Changed PEX8111_IOCTL_PREFETCH_ENABLE to

PEX8111_IOCTL_BLIND_PREFETCH. Renamed the Cache Line Size options to

indicate the size in bytes. Added PEX8111_IOCTL_MAX_READ_REQ_SIZE. Removed

the query options …_PAYLOAD_SIZE_CFG and …_PREFETCH_SIZE_LIM.

April 8, 2013 Updated to version 1.5.41.0. Added the Payload sample application. Added the IOCTL

service PEX8111_QUERY_PAYLOAD_SIZE_CFG. Added the query options

PEX8111_QUERY_PAYLOAD_SIZE_CAP/MAX.

July 25, 2012 Updated to version 1.4.39.0. Updated the notes for the Prefetch sample application.

July 24, 2012 Updated to version 1.3.39.0. Updated the kernel support table.

December 27, 2011 Updated to version 1.2.34.0.

December 6, 2011 Updated to version 1.1.33.0. Added the devconfig application. Added several query

IOCTL options and several IOCTL services.

November 2, 2011 Initial release, version 1.0.32.0.

