

HPDI32-COS
High Performance 32-bit Digital I/O

All Form Factors
…-HPDI32B-COS

API Library

Reference Manual

Manual Revision: October 3, 2024

Driver Release Version 1.0.111.x.x

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

HPDI32-COS, API Library Reference Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2024, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or

software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Although extensive editing and reviews are performed before release, General Standards Corporation assumes no

responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are

made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this

documentation.

General Standards Corporation does not assume any liability arising out of the application or use of

documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or

any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,

software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

HPDI32-COS, API Library Reference Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 7

1.1. Purpose.. 7

1.2. Acronyms .. 7

1.3. Definitions .. 7

1.4. Software Overview ... 7
1.4.1. Basic Software Architecture ... 7
1.4.2. API Library ... 8
1.4.3. Device Driver ... 8

1.5. Hardware Overview .. 8

1.6. Reference Material .. 9

1.7. Licensing ... 9

2. Installation ... 10

2.1. Host and Environment Support ... 10

2.2. Driver and Device Information ... 10

2.3. File List ... 10

2.4. Directory Structure .. 10

2.5. Installation .. 11

2.6. Removal .. 11

2.7. Overall Make Script .. 11

2.8. Environment Variables ... 11

3. Main Interface Files .. 12

3.1. Main Header File .. 12

3.2. Main Library File .. 12
3.2.1. Build ... 12
3.2.2. Additional Libraries .. 12

4. API Library ... 13

4.1. Files ... 13

4.2. Build ... 13

4.3. Library Use ... 13

4.4. Macros .. 13
4.4.1. IOCTL Services .. 13
4.4.2. Registers ... 13

4.5. Data Types .. 14

4.6. Functions ... 14
4.6.1. hpdi32cos_close() ... 14
4.6.2. hpdi32cos_init() .. 15
4.6.3. hpdi32cos_ioctl() .. 16

HPDI32-COS, API Library Reference Manual

4

General Standards Corporation, Phone: (256) 880-8787

4.6.4. hpdi32cos_open() ... 17
4.6.5. hpdi32cos_read() .. 18

4.7. IOCTL Services .. 19
4.7.1. HPDI32COS_IOCTL_BYTE_ENABLE ... 19
4.7.2. HPDI32COS_IOCTL_CC_D0_D6_STATE .. 19
4.7.3. HPDI32COS_IOCTL_CC_D5_D6 .. 20
4.7.4. HPDI32COS_IOCTL_CLOCK_DIVIDER.. 20
4.7.5. HPDI32COS_IOCTL_COS_DETECTED ... 20
4.7.6. HPDI32COS_IOCTL_COUNTER_ZERO .. 21
4.7.7. HPDI32COS_IOCTL_EVENT_COUNT ... 21
4.7.8. HPDI32COS_IOCTL_EVNT_CNT_INI_GET .. 21
4.7.9. HPDI32COS_IOCTL_EVNT_CNT_INI_SET .. 21
4.7.10. HPDI32COS_IOCTL_FIFO_WORD_COUNT ... 22
4.7.11. HPDI32COS_IOCTL_INITIALIZE ... 22
4.7.12. HPDI32COS_IOCTL_IRQ_CONFIG_EDGE ... 22
4.7.13. HPDI32COS_IOCTL_IRQ_CONFIG_HIGH .. 22
4.7.14. HPDI32COS_IOCTL_IRQ_ENABLE ... 23
4.7.15. HPDI32COS_IOCTL_LA_TRIG_WORD_GET ... 24
4.7.16. HPDI32COS_IOCTL_LA_TRIG_WORD_SET .. 24
4.7.17. HPDI32COS_IOCTL_LA_TRIGGERED.. 24
4.7.18. HPDI32COS_IOCTL_LOOPBACK .. 25
4.7.19. HPDI32COS_IOCTL_MODE .. 25
4.7.20. HPDI32COS_IOCTL_QUERY .. 25
4.7.21. HPDI32COS_IOCTL_REG_MOD .. 26
4.7.22. HPDI32COS_IOCTL_REG_READ ... 27
4.7.23. HPDI32COS_IOCTL_REG_WRITE ... 27
4.7.24. HPDI32COS_IOCTL_RX_DATA ... 28
4.7.25. HPDI32COS_IOCTL_RX_DATA_MASK_GET .. 28
4.7.26. HPDI32COS_IOCTL_RX_DATA_MASK_SET .. 28
4.7.27. HPDI32COS_IOCTL_RX_FIFO_AE .. 29
4.7.28. HPDI32COS_IOCTL_RX_FIFO_AF .. 29
4.7.29. HPDI32COS_IOCTL_RX_FIFO_OVER .. 29
4.7.30. HPDI32COS_IOCTL_RX_FIFO_RESET ... 30
4.7.31. HPDI32COS_IOCTL_RX_FIFO_STATUS .. 30
4.7.32. HPDI32COS_IOCTL_RX_FIFO_UNDER.. 30
4.7.33. HPDI32COS_IOCTL_RX_IO_ABORT .. 31
4.7.34. HPDI32COS_IOCTL_RX_IO_BMDMA_TRSH .. 31
4.7.35. HPDI32COS_IOCTL_RX_IO_MODE .. 31
4.7.36. HPDI32COS_IOCTL_RX_IO_OVER ... 32
4.7.37. HPDI32COS_IOCTL_RX_IO_PIO_TRSH ... 32
4.7.38. HPDI32COS_IOCTL_RX_IO_TIMEOUT .. 32
4.7.39. HPDI32COS_IOCTL_RX_IO_UNDER .. 33
4.7.40. HPDI32COS_IOCTL_RX_START ... 33
4.7.41. HPDI32COS_IOCTL_RX_STATE ... 33
4.7.42. HPDI32COS_IOCTL_RX_WORD_COUNT .. 34
4.7.43. HPDI32COS_IOCTL_TX_DATA_GET ... 34
4.7.44. HPDI32COS_IOCTL_TX_DATA_SET .. 34
4.7.45. HPDI32COS_IOCTL_TX_ENABLE .. 35
4.7.46. HPDI32COS_IOCTL_WAIT_CANCEL ... 35
4.7.47. HPDI32COS_IOCTL_WAIT_EVENT .. 36
4.7.48. HPDI32COS_IOCTL_WAIT_STATUS .. 38

5. The Driver.. 40

5.1. Files ... 40

HPDI32-COS, API Library Reference Manual

5

General Standards Corporation, Phone: (256) 880-8787

5.2. Build ... 40

5.3. Startup ... 40

5.4. Verification ... 40

5.5. Version .. 40

5.6. Shutdown .. 40

6. Document Source Code Examples ... 41

6.1. Files ... 41

6.2. Build ... 41

6.3. Library Use ... 41

7. Utilities Source Code... 42

7.1. Files ... 42

7.2. Build ... 42

7.3. Library Use ... 42

8. Operating Information ... 43

8.1. Debugging Aids .. 43
8.1.1. Device Identification .. 43
8.1.2. API Listing ... 43
8.1.3. Detailed Register Dump ... 43

8.2. COS Input Configuration .. 44

8.3. Logic Analyzer Input Configuration ... 44

8.4. Data Transfer Modes ... 44
8.4.1. PIO - Programmed I/O ... 44
8.4.2. BMDMA - Block Mode DMA ... 44
8.4.3. DMDMA - Demand Mode DMA ... 45

9. Sample Applications ... 46

Document History ... 47

HPDI32-COS, API Library Reference Manual

6

General Standards Corporation, Phone: (256) 880-8787

Table of Figures

Figure 1 Basic architectural representation.. 8

HPDI32-COS, API Library Reference Manual

7

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

1.1. Purpose

The purpose of this document is to describe the interface to the HPDI32-COS API Library and to the underlying

Linux device driver. The API Library software provides the interface between "Application Software" and the

device driver. The driver software provides the interface between the API Library and the actual HPDI32-COS

hardware. The API Library and driver interfaces are based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms Description

API Application Programming Interface

BMDMA Block Mode DMA

COS Change of State

DMA Direct Memory Access

DMDMA Demand Mode DMA

GSC General Standards Corporation

LA Logic Analyzer

PCI Peripheral Component Interconnect

PIO Programmed I/O

PMC PCI Mezzanine Card

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

…
This is a shortcut representation of the HPDI32-COS installation directory or any of its

subdirectories.

API Library This is a library that provides application-level access to HPDI32-COS hardware.

Application This is a user mode process, which runs in user space with user mode privileges.

Driver This is the HPDI32-COS device driver, which runs in kernel space with kernel mode privileges.

HPDI32-COS This is used as a general reference to any device supported by this driver.

Library This is usually a general reference to the API Library.

Linux This refers to the Linux operating system. Refer to the HPDI32-COS Linux Driver User Manual.

1.4. Software Overview

1.4.1. Basic Software Architecture

This section describes the general architecture for the basic components that comprise HPDI32-COS applications.

The overall architecture is illustrated in Figure 1 below.

HPDI32-COS, API Library Reference Manual

8

General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS

Device Driver

HPDI32-COS

API Library

hpdi32cos_init()

hpdi32cos_open()

hpdi32cos_close()

hpdi32cos_ioctl()

hpdi32cos_read()

Informational

Device 0

Device 1

Device X

...
HPDI32-COS

Boards

HPDI32-COS

Application

Hardware Level

OS Specific Level

Application Level

Figure 1 Basic architectural representation.

1.4.2. API Library

The primary means of accessing HPDI32-COS boards is via the HPDI32-COS API Library. This library forms a

layer between the application and the driver. Additional information is given in section 4 (page 13). With the library,

applications are able to open and close a device and, while open, perform I/O control and read operations.

1.4.3. Device Driver

The device driver is the host software that provides a means of communicating directly with HPDI32-COS

hardware. The driver executes under control of the operating system and runs in Kernel Mode as a Kernel Mode

device driver. The driver is implemented as a standard dynamically loadable Linux device driver written in the C

programming language. While applications can access the driver directly without use of the API Library, it is

recommended that all access is made through the library.

1.5. Hardware Overview

The HPDI32-COS is a high-performance 32-bit parallel digital I/O interface board. The host side connection is PCI

based. The board supports Change of State detection and simple Logic Analyzer input operations and can

accumulate data at a rate of up to 32M 32-bit words per second at the cable interface. An onboard receive FIFO of

8k data values buffers transfer data between the PCI bus and the cable interface. This allows the HPDI32-COS to

maintain maximum bursts on the cable interface (at least up to the depth of the Rx FIFO) independent of the PCI bus

interface. The onboard FIFO can also be used to buffer data between the cable interface and the PCI bus to maintain

sustained data throughput for real-time applications. The board accommodates a wide range of applications. The

board has an advanced PCI interface engine, which provides for increased data throughput via DMA.

The 32 cable data signals can also be used as general-purpose inputs or outputs. The general-purpose outputs are

configurable on a per byte basis. In addition to these 32 primary data lines, the external interface includes a set of

seven general-purpose inputs. Two of these can be configured as discrete outputs reflecting on-board status.

HPDI32-COS, API Library Reference Manual

9

General Standards Corporation, Phone: (256) 880-8787

1.6. Reference Material

The following reference material may be of particular benefit in using the HPDI32-COS, the API Library and the

device driver. The specifications provide the information necessary for an in depth understanding of the specialized

features implemented on this device.

• The applicable HPDI32-COS Device Driver User Manual for your operating system from General

Standards Corporation.

• The applicable HPDI32-COS User Manual from General Standards Corporation.

• The PCI9080 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc. †

† PLX data books are available from PLX at the following location.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE.txt in the root installation directory.

http://www.plxtech.com/

HPDI32-COS, API Library Reference Manual

10

General Standards Corporation, Phone: (256) 880-8787

2. Installation

For additional information on driver installation refer to this same section number in the OS specific HPDI32-COS

driver user manual.

2.1. Host and Environment Support

For information on host and environment support refer to this same section number in the OS specific HPDI32-COS

driver user manual.

2.2. Driver and Device Information

Each driver implements an OS specific means of obtaining generic, high-level information about the driver and the

installed devices. The information is given in textual format. Each line of text begins with an entry name, which is

followed immediately by a colon, a space character, and an entry value. Below is an example of what is provided,

followed by descriptions of each entry. This information is accessed by passing a device index value of -1 to the

API open service (section 4.6.4, page 17).

version: 1.0.111.50

32-bit support: yes

boards: 1

models: HPDI32B-COS

ids: 0x3

Entry Description

version This gives the driver version number in the form x.x.x.x.

32-bit support
This reports the driver’s support for 32-bit applications. This will be either “yes” or “no”

for 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.

models

This gives a comma separated list of the basic model number for each board the driver

detected. The model numbers are listed in the same order that the boards are accessed via

the API Library’s open function.

ids

This is a list identifying the values read from each board’s user jumpers. The id numbers

are listed in the same order that the boards are accessed via the API Library’s open

function.

The API’s source for the text provided is as follows.

Source

The file “/proc/hpdi32cos”.

2.3. File List

For the list of primary files included with each release refer to this same section number in the OS specific HPDI32-

COS driver user manual.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory

structure is created and populated with the respective files.

NOTE: Additional or alternate directories may be installed, depending on the OS. For additional

information refer to this same section number in the OS specific HPDI32-COS driver user manual.

HPDI32-COS, API Library Reference Manual

11

General Standards Corporation, Phone: (256) 880-8787

Directory Description

hpdi32cos/
This is the driver root directory. It contains the documentation, the Overall Make Script (section

2.7, page 11) and the below listed subdirectories.
…/api/ This directory contains the API Library source files (section 4, page 13).

…/docsrc/
This directory contains the source files for the code samples given in this document (section 6,

page 41).
…/driver/ This directory contains the driver and any related files (section 5, page 40).
…/include/ This directory contains the header files for the various libraries.
…/lib/ This directory contains all of the libraries built from the installed sources.

…/samples/
This directory contains the sample application subdirectories and all of their corresponding

source files (section 9, page 46).

…/utils/
This directory contains the source files for the utility libraries used by the sample applications

(section 7, page 42).

2.5. Installation

For installation instructions refer to this same section number in the OS specific HPDI32-COS driver user manual.

2.6. Removal

For removal instructions refer to this same section number in the OS specific HPDI32-COS driver user manual.

2.7. Overall Make Script

Each HPDI32-COS installation includes an OS specific means of building all of the build targets included in the

installation. For additional information refer to this same section number in the OS specific HPDI32-COS driver

user manual.

2.8. Environment Variables

For environment variable information refer to this same section number in the OS specific HPDI32-COS driver user

manual.

HPDI32-COS, API Library Reference Manual

12

General Standards Corporation, Phone: (256) 880-8787

3. Main Interface Files

This section gives general information on the suggested device interface files to use when developing HPDI32-COS

based applications.

3.1. Main Header File

Throughout the remainder of this document references are made to various header files included as part of the

HPDI32-COS driver installation. For ease of use it is suggested that applications include only the single header file

shown below rather than individually including those headers identified separately later in this document. Including

this header file pulls in all other pertinent HPDI32-COS specific header files. Therefore, sources may include only

this one HPDI32-COS header and make files may reference only this one HPDI32-COS include directory.

Description File Location

Header File hpdi32cos_main.h …/include/

3.2. Main Library File

Throughout the remainder of this document references are made to various statically linkable libraries included as

part of the HPDI32-COS driver installation. For ease of use it is suggested that applications link only the single

library file shown below rather than individually linking those libraries identified separately later in this document.

Linking this library file pulls in all other static libraries included with the driver. Therefore, make files may

reference only this one HPDI32-COS static library and only this one HPDI32-COS library directory.

Description File Location

Library File
hpdi32cos_main.a

hpdi32cos_multi.a
…/lib/

NOTE: For applications using the HPDI32-COS and no other GSC devices, link the

hpdi32cos_main.a library. For applications using multiple GSC device types, link the

xxxx_main.a library for one of the devices and the xxxx_multi.a library for the others.

Linking multiple xxxx_main.a libraries may likely produce link errors due to duplicate

symbols being defined. While it may make little or no difference, it is recommended that one

choose the xxxx_main.a library from the driver with the largest number in positions three

(x.x.X.x.x) and/or four (x.x.x.X.x) in the driver release version number.

NOTE: The HPDI32-COS API Library is implemented as a shared library and is thus not linked

with the HPDI32-COS Main Library. The API Library must be linked with applications by adding

the argument –lhpdi32cos_api to the linker command line.

3.2.1. Build

For information on building the Main Library refer to this same section number in the OS specific HPDI32-COS

driver user manual.

3.2.2. Additional Libraries

For information on any additional required libraries refer to this same section number in the OS specific HPDI32-

COS driver user manual.

HPDI32-COS, API Library Reference Manual

13

General Standards Corporation, Phone: (256) 880-8787

4. API Library

The HPDI32-COS API Library is the software interface between user applications and the HPDI32-COS device

driver. The interface is accessed by including the header file hpdi32cos_api.h.

NOTE: Contact General Standards Corporation if additional library functionality is required.

4.1. Files

The library files are summarized in the table below.

Description File Location

Source Files *.c, *.h … …/api/

Header File hpdi32cos_api.h …/include/

Library File libhpdi32cos_api.so
…/lib/

/usr/lib/ †

† The shared object library is automatically copied to /usr/lib/ when it is built.

4.2. Build

For build instructions refer to this same section number in the OS specific HPDI32-COS driver user manual.

4.3. Library Use

For Library usage information refer to this same section number in the OS specific HPDI32-COS driver user

manual.

4.4. Macros

The API Library and driver interfaces include the following macros, which are defined in hpdi32cos.h.

4.4.1. IOCTL Services

The IOCTL macros are documented in section 4.7 (page 19).

4.4.2. Registers

The following gives the complete set of HPDI32-COS registers.

4.4.2.1. GSC Registers

The following table gives the complete set of GSC specific HPDI32-COS registers. Please note that the set of

registers supported by any given device may vary according to model and firmware version. For the set of supported

registers and their detailed definitions refer to the appropriate HPDI32-COS User Manual.

NOTE: Refer to the output of the “id” sample application (…/id/) for a complete list of the

registers supported by the device being accessed.

Macros Description
HPDI32COS_GSC_BCR Board Control Register (BCR)
HPDI32COS_GSC_BSR Board Status Register (BSR)
HPDI32COS_GSC_DMR Data Mask Register (DMR)
HPDI32COS_GSC_ECIVR Event Counter Initial Value Register (ECIVR)

HPDI32-COS, API Library Reference Manual

14

General Standards Corporation, Phone: (256) 880-8787

HPDI32COS_GSC_ECR Event Counter Register (ECR)
HPDI32COS_GSC_FRR Firmware Revision Register (FRR)
HPDI32COS_GSC_ICR Interrupt Control Register (ICR)
HPDI32COS_GSC_IELR Interrupt Edge/Level Register (IELR)
HPDI32COS_GSC_IHLR Interrupt High/Low Register (IHLR)
HPDI32COS_GSC_ISR Interrupt Status Register (ISR)
HPDI32COS_GSC_LATR Logic Analyzer Trigger Register (LATR)
HPDI32COS_GSC_RAR Rx Almost Register (RAR)
HPDI32COS_GSC_RDFR Rx Data FIFO Register (RDFR)
HPDI32COS_GSC_RDIR Rx Data Input Register (RDIR)
HPDI32COS_GSC_RFSR Rx FIFO Size Register (RFSR)
HPDI32COS_GSC_RFWCR Rx FIFO Word Count Register (RFWCR)
HPDI32COS_GSC_RWCR Rx Word Count Register (RWCR)
HPDI32COS_GSC_SCDR Sample Clock Divider Register (SCDR)
HPDI32COS_GSC_TDOR Tx Data Output Register (TDOR)

4.4.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of the PCI

register identifiers refer to the driver header file gsc_pci9080.h, which is automatically included via

hpdi32cos_api.h.

4.4.2.3. PLX Feature Set Registers

Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX

register identifiers refer to the driver header file gsc_pci9080.h, which is automatically included via

hpdi32cos_api.h.

4.5. Data Types

The data types used by the API Library are described with the IOCTL services with which they are used. For

additional information refer to section 4.7 (page 19).

4.6. Functions

The interface includes the following functions. The return values reflect the completion status of the requested

operation. A return value less than zero always reflects an error condition. The table below summarizes the error

status values. For the I/O function, read, non-negative return values reflect the number of bytes transferred between

the application and the interface. A value equal to the requested transfer size indicates complete success. Return

values less than the requested transfer size indicate that the I/O timeout expired. For the other API function calls a

return value of zero indicates success.

Return Value Description

-1 to -499 This is the value “(-errno)” (see errno.h).

4.6.1. hpdi32cos_close()

This function is the entry point to close a connection made via the API’s open call (section 4.6.4, page 17). The

device is put in an initialized state before this call returns.

Prototype

int hpdi32cos_close(int fd);

HPDI32-COS, API Library Reference Manual

15

General Standards Corporation, Phone: (256) 880-8787

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 17).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "hpdi32cos_dsl.h"

int hpdi32cos_close_dsl(int fd)

{

 int errs;

 int ret;

 ret = hpdi32cos_close(fd);

 if (ret)

 printf("ERROR: hpdi32cos_close() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.2. hpdi32cos_init()

This function is the entry point to initializing the HPDI32-COS API Library and must be the first call into the

Library. This function may be called more than once, but only the first successful call actually initializes the library.

Subsequent calls perform no operation at all. All other API calls return a failure status when the API Library is not

initialized.

Prototype

int hpdi32cos_init(void);

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "hpdi32cos_dsl.h"

int hpdi32cos_init_dsl(void)

{

 int errs;

 int ret;

 ret = hpdi32cos_init();

HPDI32-COS, API Library Reference Manual

16

General Standards Corporation, Phone: (256) 880-8787

 if (ret)

 printf("ERROR: hpdi32cos_init() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.3. hpdi32cos_ioctl()

This function is the entry point to performing setup and control operations on a HPDI32-COS. This function should

only be called after a successful open of the respective device. The specific operation performed varies according to

the request argument. The request argument also governs the use and interpretation of the arg argument. The

set of supported options for the request argument consists of the IOCTL services supported by the driver, which

are defined in section 4.7 (page 19).

NOTE: IOCTL operations are not supported for an open on device index -1.

Prototype

int hpdi32cos_ioctl(int fd, int request, void* arg);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 17).
request This specifies the desired operation to be performed (section 4.7, page 19).
arg This is specific to the IOCTL operation specified by the request argument.

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "hpdi32cos_dsl.h"

int hpdi32cos_ioctl_dsl(int fd, int request, void* arg)

{

 int errs;

 int ret;

 ret = hpdi32cos_ioctl(fd, request, arg);

 if (ret)

 printf("ERROR: hpdi32cos_ioctl() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

HPDI32-COS, API Library Reference Manual

17

General Standards Corporation, Phone: (256) 880-8787

4.6.4. hpdi32cos_open()

This function is the entry point to open a connection to an HPDI32-COS board. Before returning, the initialize

IOCTL service is called to reset all hardware and software settings to their defaults.

Prototype

int hpdi32cos_open(int device, int share, int* fd);

Argument Description
device This is the zero-based index of the HPDI32-COS to access. †

share
Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).

fd

The device handle is returned here. The pointer cannot be NULL. Values returned are as

follows.

Value Description
>= 0 This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

† The index value -1 can also be given to acquire driver information (section 2.2, page 10).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "hpdi32cos_dsl.h"

int hpdi32cos_open_dsl(int device, int share, int* fd)

{

 int errs;

 int ret;

 ret = hpdi32cos_open(device, share, fd);

 if (ret)

 printf("ERROR: hpdi32cos_open() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.4.1. Access Modes

The value of the share argument determines the device access mode, as follows.

Shared Access Mode:

Shared Access Mode allows multiple applications to access the same device simultaneously. In this mode, the first

successful open request returns with the device in an initialized state. Subsequent successful Shared Access Mode

HPDI32-COS, API Library Reference Manual

18

General Standards Corporation, Phone: (256) 880-8787

open requests do not affect the state of the device. Once opened in Shared Access Mode, the device access remains

in this mode until all Shared Access Mode accesses release the device with a close request.

Exclusive Access Mode:

Exclusive Access Mode allows a single application to acquire exclusive access to a device. In this mode, a

successful open request returns with the device in an initialized state. While open in this mode all subsequent open

requests will fail regardless of the access mode requested. Once opened in Exclusive Access Mode, the device

access remains in this mode until released by the application with a close request.

4.6.5. hpdi32cos_read()

This function is the entry point to reading data from an open connection. The function reads up to bytes bytes.

NOTE: If an open was performed using an index of -1, then read requests will acquire

information from the driver (section 2.2, page 10) rather than data from a device.

NOTE: For additional information refer to the Data Transfer Modes section (section 8.2, page

44).

NOTE: The check for an overflow or an underflow is performed upon entry to the read service.

The read service does not check for these conditions that occur while the read is in progress. For

in-progress overflows or underflows an application must perform the check manually or wait for

the check performed by a subsequent read request.

Prototype

int hpdi32cos_read(int fd, void* dst, size_t bytes);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 17).
dst The data read is put here.

bytes
This is the desired number of bytes to read. When reading from a device, this must be a

multiple of four (4).

Return Value Description

0 to bytes

The operation succeeded. When reading from a device, a value less than bytes

indicates that the I/O timeout period lapsed (section 4.7.38, page 32) before the entire

request could be satisfied.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "hpdi32cos_dsl.h"

int hpdi32cos_read_dsl(int fd, void* dst, size_t bytes, size_t* qty)

{

 int errs;

 int ret;

 ret = hpdi32cos_read(fd, dst, bytes);

HPDI32-COS, API Library Reference Manual

19

General Standards Corporation, Phone: (256) 880-8787

 if (ret < 0)

 printf("ERROR: hpdi32cos_read() returned %d\n", ret);

 if (qty)

 qty[0] = (ret < 0) ? 0 : (size_t) ret;

 errs = (ret < 0) ? 1 : 0;

 return(errs);

}

4.7. IOCTL Services

The HPDI32-COS API Library and device driver implement the following IOCTL services. Each service is

described along with the applicable hpdi32cos_ioctl() function arguments.

4.7.1. HPDI32COS_IOCTL_BYTE_ENABLE

This service configures the use of the 32 digital cable data signals as GPIO.

NOTE: The Tx Enable service (section 4.7.45, page 35) configures all fours bytes to outputs, but

it does not affect the Byte Enable bits.

Usage

Argument Description
request HPDI32COS_IOCTL_BYTE_ENABLE

arg s32*

Valid argument values are as follows. These options can be OR’d together to select multiple bytes at a time. Any

byte referenced is enabled as an output. Any byte not referenced is an input only.

Value Description
-1 Retrieve the current setting.
HPDI32COS_BYTE_ENABLE_ALL This enables all four bytes as outputs.
HPDI32COS_BYTE_ENABLE_D7_D0 This enables bits D0 through D7 as outputs.
HPDI32COS_BYTE_ENABLE_D15_D8 This enables bits D0 through D7 as outputs.
HPDI32COS_BYTE_ENABLE_D23_D16 This enables bits D0 through D7 as outputs.
HPDI32COS_BYTE_ENABLE_D31_D24 This enables bits D0 through D7 as outputs.
HPDI32COS_BYTE_ENABLE_NONE This sets all 32 bits as inputs only.

4.7.2. HPDI32COS_IOCTL_CC_D0_D6_STATE

This service retrieves the current signal state for Cable Command signals D0 through D6, irrespective of their

current configuration.

Usage

Argument Description
request HPDI32COS_IOCTL_CC_D0_D6_STATE

arg s32*

Valid values returned are from 0x0 through 0x7F. Cable Command signal D0 is represented by value bit D0, and so

on.

HPDI32-COS, API Library Reference Manual

20

General Standards Corporation, Phone: (256) 880-8787

4.7.3. HPDI32COS_IOCTL_CC_D5_D6

This service configures the use of Cable Command signals D5 and D6 as GPIO.

Usage

Argument Description
request HPDI32COS_IOCTL_CC_D5_D6

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
HPDI32COS_CC_D5_D6_INPUT This sets both signals as inputs only.
HPDI32COS_CC_D5_D6_OUTPUT This sets both signals as outputs.

4.7.4. HPDI32COS_IOCTL_CLOCK_DIVIDER

This service configures the firmware clock divider to reduce the effective COS and LA sampling frequency. The

value specified is the number of inactive clock cycles inserted between active clocking cycles.

Usage

Argument Description
request HPDI32COS_IOCTL_CLOCK_DIVIDER

arg s32*

Valid argument values are in the range from zero through 0xFFFF, or -1 to retrieve the current setting.

4.7.5. HPDI32COS_IOCTL_COS_DETECTED

This service operates on the COS Detected status and always returns the current status.

NOTE: In early firmware versions (0x02 and prior) the COS Detected status is cleared with any

write to the Interrupt Status Register. Thus, if any interrupt is enabled and triggered, then the

status is cleared when the interrupt is serviced.

Usage

Argument Description
request HPDI32COS_IOCTL_COS_DETECTED

arg s32*

The following are the valid options that can be passed to the service.

Value Description

HPDI32COS_COS_DETECTED_CHECK This option requests the current status.

HPDI32COS_COS_DETECTED_CLEAR This option clears the status.

Argument values returned are one of the following.

HPDI32-COS, API Library Reference Manual

21

General Standards Corporation, Phone: (256) 880-8787

Value Description
HPDI32COS_COS_DETECTED_NO A COS event has not been detected.
HPDI32COS_COS_DETECTED_YES A COS event has been detected.

4.7.6. HPDI32COS_IOCTL_COUNTER_ZERO

This service retrieves an indication of the Event Counter equaling zero.

Usage

Argument Description
request HPDI32COS_IOCTL_COUNTER_ZERO

arg s32*

Valid argument values are as follows.

Value Description
HPDI32COS_COUNTER_ZERO_NO The Event Counter is not zero.
HPDI32COS_COUNTER_ZERO_YES The Event Counter is zero.

4.7.7. HPDI32COS_IOCTL_EVENT_COUNT

This service retrieves the current event counter value.

Usage

Argument Description
request HPDI32COS_IOCTL_EVENT_COUNT

arg u32*

Valid argument values are in the range from zero through 0xFFFFFFFF.

4.7.8. HPDI32COS_IOCTL_EVNT_CNT_INI_GET

This service retrieves the Event Counter Initial value, which is copied to the Event Counter each time the receiver is

started.

Usage

Argument Description
request HPDI32COS_IOCTL_EVNT_CNT_INI_GET

arg u32*

Argument values returned are in the range from zero through 0xFFFFFFFF.

4.7.9. HPDI32COS_IOCTL_EVNT_CNT_INI_SET

This service updated the Event Counter Initial value, which is copied to the Event Counter each time the receiver is

started.

Usage

Argument Description
request HPDI32COS_IOCTL_EVNT_CNT_INI_SET

HPDI32-COS, API Library Reference Manual

22

General Standards Corporation, Phone: (256) 880-8787

arg u32*

Valid argument values are in the range from zero through 0xFFFFFFFF.

4.7.10. HPDI32COS_IOCTL_FIFO_WORD_COUNT

This service retrieves the Event Counter Initial value, which is copied to the Event Counter each time the receiver is

started.

Usage

Argument Description
request HPDI32COS_IOCTL_FIFO_WORD_COUNT

arg u32*

Argument values returned are in the range from zero up through 0xFFFFFFFF.

4.7.11. HPDI32COS_IOCTL_INITIALIZE

This service returns all driver interface settings for the device to the state they were in when the device was first

opened. This includes both hardware-based settings and software-based settings.

Usage

Argument Description
request HPDI32COS_IOCTL_INITIALIZE

arg Not used.

4.7.12. HPDI32COS_IOCTL_IRQ_CONFIG_EDGE

This service configures firmware interrupts to be either edge triggered or level triggered. If a bit is set, then the

interrupt is edge triggered. If a bit is clear, then the interrupt is level triggered.

Usage

Argument Description
request HPDI32COS_IOCTL_IRQ_CONFIG_EDGE

arg s32*

Valid argument values include any bitwise combination of the bits defined for the

HPDI32COS_IOCTL_IRQ_ENABLE service (section 4.7.14, page 23), or -1 to retrieve the current

configurations.

4.7.13. HPDI32COS_IOCTL_IRQ_CONFIG_HIGH

This service configures firmware interrupts to be either high or low triggered. High refers to either a high level or a

rising edge, depending on the interrupt’s edge/level configuration. Low refers to either a low level or a falling edge,

depending on the interrupt’s edge/level configuration. If a bit is set, then the interrupt is high triggered. If a bit is

clear, then the interrupt is low triggered.

Usage

Argument Description
request HPDI32COS_IOCTL_IRQ_CONFIG_HIGH

HPDI32-COS, API Library Reference Manual

23

General Standards Corporation, Phone: (256) 880-8787

arg s32*

Valid argument values include any bitwise combination of the bits defined for the

HPDI32COS_IOCTL_IRQ_ENABLE service (section 4.7.14, page 23), or -1 to retrieve the current

configurations.

4.7.14. HPDI32COS_IOCTL_IRQ_ENABLE

This service enables a specified set of firmware interrupts. If a bit is set, then the interrupt is enabled. If a bit is clear,

then the interrupt is disabled. When an interrupt is generated, it is serviced and disabled by the driver.

Usage

Argument Description
request HPDI32COS_IOCTL_IRQ_ENABLE

arg s32*

Valid argument values include any bitwise combination of the following bits, or -1 to retrieve the current

configuration.

Value Description
HPDI32COS_IRQ_ALL This refers to all interrupt options.

HPDI32COS_IRQ_CC1_FALL
This refers to the Cable Command 1 signal, an input only

signal, being negated.

HPDI32COS_IRQ_CC1_RISE
This refers to the Cable Command 1 signal, an input only

signal, being asserted.

HPDI32COS_IRQ_CC2

This refers to the Cable Command 2 signal, an input only

signal, being asserted or negated, which depends on how

the interrupt is configured.

HPDI32COS_IRQ_CC3

This refers to the Cable Command 3 signal, an input only

signal, being asserted or negated, which depends on how

the interrupt is configured.

HPDI32COS_IRQ_CC4

This refers to the Cable Command 4 signal, an input only

signal, being asserted or negated, which depends on how

the interrupt is configured.

HPDI32COS_IRQ_CC5

This refers to the Cable Command 5 signal being asserted

or negated, which depends on how the interrupt is

configured. This signal may be an input or an output,

depending on the HPDI32COS_IOCTL_CC_D5_D6

setting (section 4.7.3, page 20).

HPDI32COS_IRQ_CC6

This refers to the Cable Command 6 signal being asserted

or negated, which depends on how the interrupt is

configured. This signal may be an input or an output,

depending on the HPDI32COS_IOCTL_CC_D5_D6

setting (section 4.7.3, page 20).
HPDI32COS_IRQ_COS_DETECTED This refers to the detection of a COS event.

HPDI32COS_IRQ_EVENT_COUNT_ZERO

This refers to the Event Counter Zero status. This status is

asserted when the count becomes zero or equals zero,

depending on the interrupt configuration.
HPDI32COS_IRQ_LA_TRIGGERED This refers to the Logic Analyzer being triggered.
HPDI32COS_IRQ_RX_FIFO_AE This refers to the Rx FIFO’s Almost Empty status.
HPDI32COS_IRQ_RX_FIFO_AF This refers to the Rx FIFO’s Almost Full status.
HPDI32COS_IRQ_RX_FIFO_EMPTY This refers to the Rx FIFO’s empty status.
HPDI32COS_IRQ_RX_FIFO_FULL This refers to the Rx FIFO’s full status.

HPDI32-COS, API Library Reference Manual

24

General Standards Corporation, Phone: (256) 880-8787

HPDI32COS_IRQ_RX_FIFO_OVER This refers to the Tx FIFO Overflow status.
HPDI32COS_IRQ_RX_FIFO_UNDER This refers to the Tx FIFO Underflow status.

HPDI32COS_IRQ_RX_RUNNING

This refers to the receiver running status. The status is

asserted when the receiver is started and negated when the

receiver is stopped.
HPDI32COS_IRQ_RX_STOPPED This refers to the Rx Stopped status.

4.7.15. HPDI32COS_IOCTL_LA_TRIG_WORD_GET

This service retrieves the current Logic Analyzer Trigger Word.

Usage

Argument Description
request HPDI32COS_IOCTL_LA_TRIG_WORD_GET

arg u32*

Argument values returned are in the range from zero through 0xFFFFFFFF.

4.7.16. HPDI32COS_IOCTL_LA_TRIG_WORD_SET

This service updates the current Logic Analyzer Trigger Word.

Usage

Argument Description
request HPDI32COS_IOCTL_LA_TRIG_WORD_SET

arg u32*

Valid argument values are in the range from zero through 0xFFFFFFFF.

4.7.17. HPDI32COS_IOCTL_LA_TRIGGERED

This service reports whether or not the Logic Analyzer has been triggered.

NOTE: The LA Triggered status is cleared when Rx Start (section 4.7.40, page 33) is set to its NO

option.

Usage

Argument Description
request HPDI32COS_IOCTL_LA_TRIGGERED

arg s32*

The following are the valid options that can be passed to the service.

Value Description

HPDI32COS_LA_TRIGGERED_CHECK This option requests the current status.

Argument values returned are as follows.

Value Description
HPDI32COS_LA_TRIGGERED_NO The Logic Analyzer has not been triggered.
HPDI32COS_LA_TRIGGERED_YES The Logic Analyzer has been triggered.

HPDI32-COS, API Library Reference Manual

25

General Standards Corporation, Phone: (256) 880-8787

4.7.18. HPDI32COS_IOCTL_LOOPBACK

This service enables or disables the Loopback feature. When enabled, it allows simultaneous Rx Start (section

4.7.40, page 33) and Tx Enable (section 4.7.45, page 35) operation.

NOTE: If Loopback is disabled, then Tx Enable (section 4.7.45, page 35) inhibits Rx Start

(section 4.7.40, page 33). It doesn’t affect the Rx Start setting, but it does prevent Rx Start from

taking place.

Usage

Argument Description
request HPDI32COS_IOCTL_LOOPBACK

arg s32*

Valid argument values include the following options.

Value Description
HPDI32COS_LOOPBACK_DISABLE This refers to the loopback feature being disabled.
HPDI32COS_LOOPBACK_ENABLE This refers to the loopback feature being enabled.

4.7.19. HPDI32COS_IOCTL_MODE

This service selects the firmware’s basic operating mode as either Change of State detection of Logic Analyzer.

Usage

Argument Description
request HPDI32COS_IOCTL_MODE

arg s32*

Valid argument values include the following options.

Value Description
-1 Retrieve the current setting.
HPDI32COS_MODE_COS This refers to Change of State mode.
HPDI32COS_MODE_LA This refers to Logic Analyzer mode.

4.7.20. HPDI32COS_IOCTL_QUERY

This service queries the driver for various pieces of information about the device and the driver. The query option is

passed to the service and the associated information is returned.

Usage

Argument Description
request HPDI32COS_IOCTL_QUERY

arg s32*

Valid argument values are as follows.

Value Description

HPDI32COS_QUERY_CLOCK_DIV_MAX
This refers to the maximum Clock Divider value for the

HPDI32COS_IOCTL_CLOCK_DIVIDER service (section

HPDI32-COS, API Library Reference Manual

26

General Standards Corporation, Phone: (256) 880-8787

4.7.4, page 20).

HPDI32COS_QUERY_COUNT
This refers to the number of query options supported. The

range of options supported is from zero to count – 1.

HPDI32COS_QUERY_DEVICE_TYPE
This refers to the basic device type, which should be

GSC_DEV_TYPE_HPDI32COS.

HPDI32COS_QUERY_FIFO_SIZE_RX This refers to the size of the board’s Rx FIFO.

HPDI32COS_QUERY_FORM_FACTOR
This refers to the board’s formfactor. See the

hpdi32cos_form_factor_t enumeration below.

HPDI32COS_QUERY_FREF_DEFAULT This refers to board’s default reference clock frequency.

HPDI32COS_QUERY_FREF_MAX

This refers to board’s maximum supported reference clock

frequency. The reference oscillator is user replaceable, but

should not be replaced with an oscillator exceeding this

frequency.

HPDI32COS_QUERY_JUMPER_ON
This reports the bit value returned when a user jumper is

installed.
HPDI32COS_QUERY_JUMPER_QTY This refers to the number of supported user jumpers.
HPDI32COS_QUERY_JUMPER_VAL This refers to the value read from the user jumpers.

HPDI32COS_QUERY_MODEL
This refers to the board’s basic model number. See the

hpdi32cos_model_t enumeration below.

Valid return values are as indicated in the above table and as given in the below table.

Value Description

HPDI32COS_IOCTL_QUERY_ERROR
Either there was a processing error or the query option is

unrecognized.

Valid return values for the Form Factor query are as follows per the hpdi32cos_form_factor_t

enumeration.

Value Description
HPDI32COS_FORM_FACTOR_UNKNOWN The form factor is unknown.
HPDI32COS_FORM_FACTOR_PCI The form factor is PCI.
HPDI32COS_FORM_FACTOR_PMC The form factor is PMC.

Valid return values for the Model query are as follows per the hpdi32cos_model_t enumeration.

Value Description
HPDI32COS_MODEL_HPDI32A The device is an HPDI32A-COS model board.
HPDI32COS_MODEL_HPDI32B The device is an HPDI32B-COS model board.

4.7.21. HPDI32COS_IOCTL_REG_MOD

This service performs a read-modify-write of an HPDI32-COS register. This includes only the GSC firmware

registers. The PCI and PLX Feature Set Registers are read-only. Refer to hpdi32cos.h for a complete list of the

GSC firmware registers.

Usage

Argument Description
request HPDI32COS_IOCTL_REG_MOD

arg gsc_reg_t*

HPDI32-COS, API Library Reference Manual

27

General Standards Corporation, Phone: (256) 880-8787

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This contains the value for the register bits to modify.

mask
This specifies the set of bits to modify. If a bit here is set, then the respective register bit is

modified. If a bit here is zero, then the respective register bit is unmodified.

4.7.22. HPDI32COS_IOCTL_REG_READ

This service reads the value of an HPDI32-COS register. This includes the PCI registers, the PLX Feature Set

Registers and the GSC firmware registers. Refer to hpdi32cos.h and gsc_pci9080.h for the complete list of

accessible registers.

Usage

Argument Description
request HPDI32COS_IOCTL_REG_READ

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This is the value read from the specified register.
mask This is ignored for read request.

4.7.23. HPDI32COS_IOCTL_REG_WRITE

This service writes a value to an HPDI32-COS register. This includes only the GSC firmware registers. The PCI and

PLX Feature Set Registers are read-only. Refer to hpdi32cos.h for a complete list of the GSC firmware

registers.

Usage

Argument Description
request HPDI32COS_IOCTL_REG_WRITE

arg gsc_reg_t*

HPDI32-COS, API Library Reference Manual

28

General Standards Corporation, Phone: (256) 880-8787

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This is the value to write to the specified register.
mask This is ignored for write request.

4.7.24. HPDI32COS_IOCTL_RX_DATA

This service retrieves the current state driven on the 32 cable data signals.

Usage

Argument Description
request HPDI32COS_IOCTL_RX_DATA

arg u32*

The value returned are in the range from zero through 0xFFFFFFFF.

4.7.25. HPDI32COS_IOCTL_RX_DATA_MASK_GET

This service retrieves the current data mask applied to the 32 cable data signal states before COS or LA processing.

Usage

Argument Description
request HPDI32COS_IOCTL_RX_DATA_MASK_GET

arg u32*

The value returned are in the range from zero through 0xFFFFFFFF.

4.7.26. HPDI32COS_IOCTL_RX_DATA_MASK_SET

This service updates the current data mask applied to the 32 cable data signal states before COS or LA processing. If

a bit is set, then that bit is used for COS or LA processing. If a bit clear, then that bit is ignored.

Usage

Argument Description
request HPDI32COS_IOCTL_RX_DATA_MASK_SET

arg u32*

The value returned are in the range from zero through 0xFFFFFFFF.

HPDI32-COS, API Library Reference Manual

29

General Standards Corporation, Phone: (256) 880-8787

4.7.27. HPDI32COS_IOCTL_RX_FIFO_AE

This service updates the Rx FIFO Almost Empty threshold level. The Rx FIFO content is discarded during this

service when a setting is being applied.

Usage

Argument Description
request HPDI32COS_IOCTL_RX_FIFO_AE

arg s32*

Valid argument values are in the range from zero through 0xFFFF, or -1 to retrieve the current setting.

4.7.28. HPDI32COS_IOCTL_RX_FIFO_AF

This service updates the Rx FIFO Almost Full threshold level. The Rx FIFO content is discarded during this service

when a setting is being applied.

Usage

Argument Description
request HPDI32COS_IOCTL_RX_FIFO_AF

arg s32*

Valid argument values are in the range from zero through the 0xFFFF, or -1 to retrieve the current setting.

NOTE: If the threshold is set to a value larger than the Rx FIFO, then the Rx FIFO will never

become Almost Full. Consequently, the Rx FIFO Almost Full status cannot stop the receiver. The

result is that Rx FIFO may likely overflow.

4.7.29. HPDI32COS_IOCTL_RX_FIFO_OVER

This service reports the current Rx FIFO overflow status.

NOTE: An overflow occurs when data is clocked into the Rx FIFO while the FIFO is already full.

For the HPDI32-COS, this can only occur when the Rx FIFO Almost Full threshold level is set to

a value larger than the size of Rx FIFO.

NOTE: Rx FIFO overflows are cleared by resetting the Rx FIFO (section 4.7.30, page 30).

Usage

Argument Description
request HPDI32COS_IOCTL_RX_FIFO_OVER

arg s32*

Valid options that can be passed to the service are as follows.

Value Description

HPDI32COS_FIFO_ERROR_CHECK This option requests the current error status.

HPDI32COS_FIFO_ERROR_CLEAR This option clears the error status.

The current state is reported as one of the following values.

HPDI32-COS, API Library Reference Manual

30

General Standards Corporation, Phone: (256) 880-8787

Value Description
HPDI32COS_FIFO_ERROR_NO The FIFO has not experienced an overflow condition.
HPDI32COS_FIFO_ERROR_YES The FIFO has experienced an overflow condition.

4.7.30. HPDI32COS_IOCTL_RX_FIFO_RESET

This service resets the Rx FIFO, which clears the content. It also clears the Rx FIFO overflow and underflow status

bits.

Usage

Argument Description
request HPDI32COS_IOCTL_RX_FIFO_RESET

arg Not used.

4.7.31. HPDI32COS_IOCTL_RX_FIFO_STATUS

This service retrieves the current Rx FIFO fill level status.

Usage

Argument Description
request HPDI32COS_IOCTL_RX_FIFO_STATUS

arg s32*

The current status is reported as one of the following values.

Value Description
HPDI32COS_FIFO_STATUS_AE The FIFO contains Almost Empty values or fewer.

HPDI32COS_FIFO_STATUS_AF
The FIFO has room to accept Almost Full or fewer additional

values before becoming full.
HPDI32COS_FIFO_STATUS_EMPTY The FIFO is empty.
HPDI32COS_FIFO_STATUS_FULL The FIFO is full.

HPDI32COS_FIFO_STATUS_MEDIUM
The FIFO’s fill level is between the Almost Empty mark and

the Almost Full mark.

4.7.32. HPDI32COS_IOCTL_RX_FIFO_UNDER

This service reports the current Rx FIFO underflow status.

NOTE: An Rx FIFO underflow occurs when the FIFO is read while empty. This can typically

only occur when an application reads from the FIFO directly.

NOTE: Rx FIFO underflows are cleared by resetting the Rx FIFO (section 4.7.30, page 30).

Usage

Argument Description
request HPDI32COS_IOCTL_RX_FIFO_UNDER

arg s32*

Valid options that can be passed to the service are as follows.

HPDI32-COS, API Library Reference Manual

31

General Standards Corporation, Phone: (256) 880-8787

Value Description

HPDI32COS_FIFO_ERROR_CHECK This option requests the current error status.

HPDI32COS_FIFO_ERROR_CLEAR This option clears the error status.

The current state is reported as one of the following values.

Value Description
HPDI32COS_FIFO_ERROR_NO The FIFO has not experienced an underflow condition.
HPDI32COS_FIFO_ERROR_YES The FIFO has experienced an underflow condition.

4.7.33. HPDI32COS_IOCTL_RX_IO_ABORT

This service aborts an ongoing hpdi32cos_read() request.

Usage

Argument Description
request HPDI32COS_IOCTL_RX_IO_ABORT

arg s32*

The results are reported as one of the following values.

Value Description

HPDI32COS_IO_ABORT_NO
An hpdi32cos_read() request was not aborted as none were

ongoing.

HPDI32COS_IO_ABORT_YES An ongoing hpdi32cos_read() request was aborted.

4.7.34. HPDI32COS_IOCTL_RX_IO_BMDMA_TRSH

This service sets the minimum DMA transfer size used during Block Mode DMA based read requests. As such read

requests may consist of multiple smaller DMA transfers, this setting limits the smallest size of those individual

transfers. This setting does not apply to the last DMA transfer of the read request. The unit of measure for this

setting is bytes.

Usage

Argument Description
request HPDI32COS_IOCTL_RX_IO_BMDMA_TRSH

arg s32*

Valid argument values are from zero to the depth of the Rx FIFO in 32-bit words, or -1 to retrieve the current

setting. The default is 60 bytes.

4.7.35. HPDI32COS_IOCTL_RX_IO_MODE

This service selects the mechanism used to retrieve data from the Rx FIFO during read requests.

Usage

Argument Description
request HPDI32COS_IOCTL_RX_IO_MODE

arg s32*

Valid argument values supplied to the service are as follows.

HPDI32-COS, API Library Reference Manual

32

General Standards Corporation, Phone: (256) 880-8787

Value Description
-1 Retrieve the current setting.
GSC_IO_MODE_BMDMA Data is retrieved using Block Mode DMA.
GSC_IO_MODE_DMDMA Data is retrieved using Demand Mode DMA.
GSC_IO_MODE_PIO Data is retrieved using repetitive register accesses.

4.7.36. HPDI32COS_IOCTL_RX_IO_OVER

This service configures the read service to check for an Rx FIFO overflow before performing read operations. Data

is lost when there is an overflow. If the check is performed and an overflow is detected, then the read service

immediately returns an error.

NOTE: The check for an overflow is performed upon entry to the read service. The read service

does not check for overflows that occur while the read is in progress. For in-progress overflows an

application must perform the check manually or wait for the check performed by a subsequent

read request.

Usage

Argument Description
request HPDI32COS_IOCTL_RX_IO_OVER

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
HPDI32COS_IO_ERROR_CHECK Perform the check. This is the default.
HPDI32COS_IO_ERROR_IGNORE Do not perform the check.

4.7.37. HPDI32COS_IOCTL_RX_IO_PIO_TRSH

This service sets the threshold at which DMA read requests instead resort to PIO mode. When the number of data

values in a read request is less than or equal to this value, then the operation automatically uses PIO instead of

DMA. This is intended to improve efficiency as small read requests can be performed more efficiently when done

using PIO rather than DMA.

Usage

Argument Description
request HPDI32COS_IOCTL_RX_IO_PIO_TRSH

arg s32*

Valid argument values are any non-negative number, or -1 to retrieve the current setting. The default is 15 values.

4.7.38. HPDI32COS_IOCTL_RX_IO_TIMEOUT

This service sets the timeout limit for read requests. The value is expressed in seconds. The timeout limit is the total

amount of time allowed for a single hpdi32cos_read() request. When this time limit has expired the service

terminates. When this occurs the hpdi32cos_read() return value will be less than the number of bytes

requested, and possibly zero.

HPDI32-COS, API Library Reference Manual

33

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request HPDI32COS_IOCTL_RX_IO_TIMEOUT

arg s32*

Valid argument values are in the range from zero to 3600, -1, and HPDI32COS_IO_TIMEOUT_INFINITE. A

value of zero tells the driver not to sleep in order to wait for more data, and should only be used with PIO mode

reads. A value of -1 is used to retrieve the current setting. If the option HPDI32COS_IO_TIMEOUT_INFINITE

is used, then the driver waits indefinitely rather than timing out. The default is 10 seconds.

4.7.39. HPDI32COS_IOCTL_RX_IO_UNDER

This service operates on the Rx FIFO underflow status.

Usage

Argument Description
request HPDI32COS_IOCTL_RX_IO_UNDER

arg s32*

Valid argument values supplied to the service are as follows.

Value Description
-1 Retrieve the current setting.
HPDI32COS_IO_ERROR_CHECK Check the underflow status. This is the default.
HPDI32COS_IO_ERROR_IGNORE Ignore the current status.

4.7.40. HPDI32COS_IOCTL_RX_START

This service starts or stops the receiver.

NOTE: Setting Rx Start to NO (0), clears the LA Triggered (section 4.7.17, page 24) status.

Usage

Argument Description
request HPDI32COS_IOCTL_RX_START

arg s32*

Valid argument values include the following options.

Value Description
-1 Retrieve the current setting.
HPDI32COS_RX_START_NO This option halts receiver operation.
HPDI32COS_RX_START_YES This option activates receiver operation.

4.7.41. HPDI32COS_IOCTL_RX_STATE

This service retrieves the current state of the receiver.

NOTE: If Loopback (section 4.7.18, page 25) is disabled, then Tx Enable (section 4.7.45, page

35) inhibits Rx Start. It doesn’t affect the Rx Start setting, but it does prevent Rx Start from taking

place.

HPDI32-COS, API Library Reference Manual

34

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request HPDI32COS_IOCTL_RX_STATE

arg s32*

Valid argument values supplied to the service are as follows.

Value Description
HPDI32COS_RX_STATE_DISABLED The receiver is disabled.
HPDI32COS_RX_STATE_RUNNING The receiver is enabled and running.

HPDI32COS_RX_STATE_STOPPED
The receiver is stopped due to the Rx FIFO becoming Almost

Full.

4.7.42. HPDI32COS_IOCTL_RX_WORD_COUNT

This service retrieves the number of data values recorded into the Rx FIFO since the receiver was last started.

Usage

Argument Description
request HPDI32COS_IOCTL_RX_WORD_COUNT

arg u32*

Argument values returned are in the range from zero through 0xFFFFFFFF.

4.7.43. HPDI32COS_IOCTL_TX_DATA_GET

This service retrieves the current Tx Data provided for output on the 32 cable interface data signals. Only those

bytes current configured as output are driven onto the cable interface (see HPDI32COS_IOCTL_BYTE_ENABLE,

section 4.7.1, page 19).

Usage

Argument Description
request HPDI32COS_IOCTL_TX_DATA_GET

arg u32*

Argument values returned are in the range from zero through 0xFFFFFFFF.

4.7.44. HPDI32COS_IOCTL_TX_DATA_SET

This service updates the current Tx Data provided for output on the 32 cable interface data signals. Only those bytes

current configured as output are driven onto the cable interface (see HPDI32COS_IOCTL_BYTE_ENABLE,

section 4.7.1, page 19).

Usage

Argument Description
request HPDI32COS_IOCTL_TX_DATA_SET

arg u32*

Valid argument values are in the range from zero through 0xFFFFFFFF.

HPDI32-COS, API Library Reference Manual

35

General Standards Corporation, Phone: (256) 880-8787

4.7.45. HPDI32COS_IOCTL_TX_ENABLE

This service enables or disables the 32 cable interface data signals to be driven as discrete outputs. When enabled,

only those bytes current configured as output are driven onto the cable interface (see

HPDI32COS_IOCTL_BYTE_ENABLE, section 4.7.1, page 19).

NOTE: If Loopback (section 4.7.18, page 25) is disabled, then Tx Enable inhibits Rx Start

(section 4.7.40, page 33). It doesn’t affect the Rx Start setting, but it does prevent Rx Start from

taking place.

NOTE: The Tx Enable service configures all fours Byte Enable (section 4.7.1, page 19) bytes as

outputs, but it does not affect the Byte Enable configuration bits.

Usage

Argument Description
request HPDI32COS_IOCTL_TX_ENABLE

arg s32*

Valid argument values supplied to the service are as follows.

Value Description
-1 Request current setting.
HPDI32COS_TX_ENABLE_NO Disable the transmission functionality.
HPDI32COS_TX_ENABLE_YES Enable the transmission functionality.

4.7.46. HPDI32COS_IOCTL_WAIT_CANCEL

This service resumes all threads blocked via HPDI32COS_IOCTL_WAIT_EVENT IOCTL calls (section 4.7.47,

page 36), according to the provided criteria. When a blocked thread is waiting for any event specified in the

structure, then the thread is resumed.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver

initiated waits are unaffected by application cancel requests.

Usage

Argument Description
request HPDI32COS_IOCTL_WAIT_CANCEL

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

HPDI32-COS, API Library Reference Manual

36

General Standards Corporation, Phone: (256) 880-8787

Fields Description
flags This is unused by wait cancel operations.

main
This specifies the set of GSC_WAIT_MAIN_* events whose wait requests are to be

cancelled. Refer to section 4.7.47.2 (page 37).

gsc
This specifies the set of HPDI32COS_WAIT_GSC_* events whose wait requests are to

be cancelled. Refer to section 4.7.47.3 (page 37).
alt This is unused by the HPDI32-COS driver and should be zero.

io
This specifies the set of HPDI32COS_WAIT_IO_* events whose wait requests are to

be cancelled. Refer to section 4.7.47.4 (page 38).
timeout_ms This is unused by wait cancel operations.
count Upon return this indicates the number of waits that were cancelled.

4.7.47. HPDI32COS_IOCTL_WAIT_EVENT

This service blocks a thread until any one of a specified set of events occurs, or until a timeout lapses, whichever

occurs first. The set of possible events to wait for are specified in the structure’s main, gsc and io fields. All field

values must be valid and at least one event must be specified. If the thread is resumed because one of the referenced

events has occurred, then the bit for the respective event is the only event bit set. All other event bits and fields are

zero. (Multiple event bits are set only if the events occur simultaneously.)

NOTE: The service waits only for the first of the specified events, not for all specified events.

NOTE: A wait timeout is reported via the gsc_wait_t structure’s flags field having the

GSC_WAIT_FLAG_TIMEOUT flag set, rather than via an ETIMEDOUT error.

Usage

Argument Description
request HPDI32COS_IOCTL_WAIT_EVENT

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description

flags
This must initially be zero. Upon return this indicates the reason that the thread was

resumed. Refer to section 4.7.47.1 (page 37).

main
This specifies any number of GSC_WAIT_MAIN_* events that the thread is to wait for.

Refer to section 4.7.47.2 (page 37).

gsc
This specifies any number of HPDI32COS_WAIT_GSC_* events that the thread is to

wait for. Refer to section 4.7.47.3 (page 37).
alt This is unused by the HPDI32-COS driver and must be zero.

io
This specifies any number of HPDI32COS_WAIT_IO_* events that the thread is to

wait for. Refer to section 4.7.47.4 (page 38).

HPDI32-COS, API Library Reference Manual

37

General Standards Corporation, Phone: (256) 880-8787

timeout_ms

This specified the maximum amount of time, in milliseconds, that the thread is to wait

for any of the referenced events. A value of zero means do not timeout at all. If non-

zero, then upon return the value is the approximate amount of time actually waited.
count This is unused by wait event operations and must be zero.

4.7.47.1. gsc_wait_t.flags Options

Upon return from a wait request the wait structure’s flags field indicates the reason that the thread was resumed.

Only one of the below options will be set.

Fields Description
GSC_WAIT_FLAG_CANCEL The wait request was cancelled.
GSC_WAIT_FLAG_DONE One of the referenced events occurred.
GSC_WAIT_FLAG_TIMEOUT The timeout period lapsed before a referenced event occurred.

4.7.47.2. gsc_wait_t.main Options

The wait structure’s main field may specify any of the below primary interrupt options. These interrupt options are

supported by the HPDI32-COS and other General Standards products.

Fields Description
GSC_WAIT_MAIN_DMA0 This refers to the DMA Done interrupt on DMA engine number zero.
GSC_WAIT_MAIN_DMA1 This refers to the DMA Done interrupt on DMA engine number one.
GSC_WAIT_MAIN_GSC This refers to any of the Interrupt Control/Status Register interrupts.

GSC_WAIT_MAIN_OTHER
This generally refers to an interrupt generated by another device sharing the

same interrupt as the accessed HPDI32-COS device.
GSC_WAIT_MAIN_PCI This refers to any interrupt generated by the HPDI32-COS.
GSC_WAIT_MAIN_SPURIOUS This refers to device interrupts which should never be generated.
GSC_WAIT_MAIN_UNKNOWN This refers to device interrupts whose source could not be identified.

4.7.47.3. gsc_wait_t.gsc Options

The wait structure’s gsc field may specify any combination of the below interrupt options. These are the interrupt

options referenced in the Interrupt Control Register. Applications are responsible for enabling the desired interrupt

options. Refer to HPDI32COS_IOCTL_IRQ_ENABLE (section 4.7.14, page 23). If a device supports the Interrupt

Edge/Level Register then interrupts configured for level triggering are disabled by the driver when they occur. If a

device does not support this register, then all firmware interrupts are disabled by the driver when they occur.

Value Description
HPDI32COS_WAIT_GSC_ALL This refers to all firmware interrupts.
HPDI32COS_WAIT_GSC_CC1_FALL This refers to a falling edge on the Cable Command 1 signal.
HPDI32COS_WAIT_GSC_CC1_RISE This refers to a rising edge on the Cable Command 1 signal.
HPDI32COS_WAIT_GSC_CC2 This refers to the Cable Command 2 signal.
HPDI32COS_WAIT_GSC_CC3 This refers to the Cable Command 3 signal.
HPDI32COS_WAIT_GSC_CC4 This refers to the Cable Command 4 signal.
HPDI32COS_WAIT_GSC_CC5 This refers to the Cable Command 5 signal.
HPDI32COS_WAIT_GSC_CC6 This refers to the Cable Command 6 signal.
HPDI32COS_WAIT_GSC_COS_DETECTED This refers to the detection of a Change of State event.
HPDI32COS_WAIT_GSC_EVENT_COUNT_0 This refers to the Event Counter equaling zero.
HPDI32COS_WAIT_GSC_LA_TRIGGERED This refers to Logic Analyzer being triggered.
HPDI32COS_WAIT_GSC_RX_FIFO_AE This refers to the Rx FIFO’s Almost Empty status.
HPDI32COS_WAIT_GSC_RX_FIFO_AF This refers to the Rx FIFO’s Almost Full status.
HPDI32COS_WAIT_GSC_RX_FIFO_EMPTY This refers to the Rx FIFO’s empty status.

HPDI32-COS, API Library Reference Manual

38

General Standards Corporation, Phone: (256) 880-8787

HPDI32COS_WAIT_GSC_RX_FIFO_FULL This refers to the Rx FIFO’s full status.
HPDI32COS_WAIT_GSC_RX_FIFO_OVER This refers to an Rx FIFO overflow event.
HPDI32COS_WAIT_GSC_RX_FIFO_UNDER This refers to an Rx FIFO underflow event.
HPDI32COS_WAIT_GSC_RX_RUNNING This refers to the receiver being enable.
HPDI32COS_WAIT_GSC_RX_STOPPED This refers to the receiver being stopped.

4.7.47.4. gsc_wait_t.io Options

The wait structure’s io field may specify any of the below event options. These events are generated in response to

application device data read requests.

Fields Description
HPDI32COS_WAIT_IO_RX_ABORT This refers to read requests which have been aborted.
HPDI32COS_WAIT_IO_RX_DONE This refers to read requests which have been satisfied.
HPDI32COS_WAIT_IO_RX_ERROR This refers to read requests which end due to an error.
HPDI32COS_WAIT_IO_RX_TIMEOUT This refers to read requests which end due to a timeout period lapse.

4.7.48. HPDI32COS_IOCTL_WAIT_STATUS

This service counts all threads blocked via the HPDI32COS_IOCTL_WAIT_EVENT IOCTL service (section

4.7.47, page 36), according to the provided criteria. A match is made when a waiting thread’s wait criteria matches

any of the criteria specified in the structure passed to this service.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver

initiated waits are ignored by application status requests.

Usage

Argument Description
request HPDI32COS_IOCTL_WAIT_STATUS

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description
flags This is unused by wait status operations.

main
This specifies the set of GSC_WAIT_MAIN_* events whose wait requests are to be

counted. Refer to section 4.7.47.2 (page 37).

gsc
This specifies the set of HPDI32COS_WAIT_GSC_* events whose wait requests are to

be counted. Refer to section 4.7.47.3 (page 37).
alt This is unused by the HPDI32-COS driver and should be zero.

HPDI32-COS, API Library Reference Manual

39

General Standards Corporation, Phone: (256) 880-8787

io
This specifies the set of HPDI32COS_WAIT_IO_* events whose wait requests are to

be counted. Refer to section 4.7.47.4 (page 38).
timeout_ms This is unused by wait status operations.
count Upon return this indicates the number of waits that met any of the specified criteria.

HPDI32-COS, API Library Reference Manual

40

General Standards Corporation, Phone: (256) 880-8787

5. The Driver

NOTE: Contact General Standards Corporation if additional driver functionality is required.

5.1. Files

The device driver files are summarized in the table below.

Description Files Location

Source Files *.c, *.h …

…/driver/
Header File hpdi32cos.h

Driver File
hpdi32cos.ko †

hpdi32cos.o ‡

† This is for kernel versions 2.6 and later.

‡ This is for kernel versions 2.4 are earlier.

5.2. Build

For instructions on building the driver refer to this same section number in the OS specific HPDI32-COS driver user

manual.

5.3. Startup

For instructions on starting the driver executable refer to this same section number in the OS specific HPDI32-COS

driver user manual.

5.4. Verification

For instructions on verifying that the driver has been loaded and is running refer to this same section number in the

OS specific HPDI32-COS driver user manual.

5.5. Version

For instructions on obtaining the driver version number refer to this same section number in the OS specific

HPDI32-COS driver user manual.

5.6. Shutdown

For instructions on terminating the driver executable refer to this same section number in the OS specific HPDI32-

COS driver user manual.

HPDI32-COS, API Library Reference Manual

41

General Standards Corporation, Phone: (256) 880-8787

6. Document Source Code Examples

The source code examples included in this document are built into a statically linkable library usable with console

applications. The purpose of these files is to verify that the documentation samples compile and to provide a library

of working sample code to assist in a user’s learning curve and application development effort.

6.1. Files

The library files are summarized in the table below.

Description Files Location

Source Files *.c, *.h … …/docsrc/

Header File hpdi32cos_dsl.h …/include/

Library File hpdi32cos_dsl.a …/lib/

6.2. Build

For library build instructions refer to this same section number in the OS specific HPDI32-COS driver user manual.

6.3. Library Use

For library usage information refer to this same section number in the OS specific HPDI32-COS driver user manual.

HPDI32-COS, API Library Reference Manual

42

General Standards Corporation, Phone: (256) 880-8787

7. Utilities Source Code

The API Library installation includes a body of utility source code designed to aid in the understanding and use of

the interface calls and IOCTL services. Utility sources are also included for device independent and common,

general-purpose services. Most of the utilities are implemented as visual wrappers around the corresponding services

to facilitate structured console output for the sample applications. The utility sources are compiled and linked into

static libraries to simplify their use. An additional purpose of these utility services is to provide a library of working

sample code to assist in a user’s learning curve and application development effort.

For each API function there is a corresponding utility source file with a corresponding utility service. As an

example, for the API function hpdi32cos_open() there is the utility file open.c containing the utility function

hpdi32cos_open_util(). The naming pattern is as follows: API function hpdi32cos_xxxx(), utility file

name xxxx.c, utility function hpdi32cos_xxxx_util(). Additionally, for each IOCTL code there is a

corresponding utility source file with a corresponding utility service. As an example, for IOCTL code

HPDI32COS_IOCTL_QUERY there is the utility file query.c containing the utility function

hpdi32cos_query(). The naming pattern is as follows: IOCTL code HPDI32COS_IOCTL_XXXX, utility file

name xxxx.c, utility function hpdi32cos_xxxx().

7.1. Files

The utility files are summarized in the table below.

Description Files Location

Source Files *.c, *.h … …/utils/

Header File hpdi32cos_utils.h …/include/

Library Files

hpdi32cos_utils.a

gsc_utils.a

os_utils.a

plx_utils.a

…/lib/

7.2. Build

For library build instruction refer to this same section number in the OS specific HPDI32-COS driver user manual.

7.3. Library Use

For library usage information refer to this same section number in the OS specific HPDI32-COS driver user manual.

HPDI32-COS, API Library Reference Manual

43

General Standards Corporation, Phone: (256) 880-8787

8. Operating Information

This section explains some basic operational procedures for using the HPDI32-COS. This is in no way intended to

be a comprehensive guide. This is simply to address a very few issues relating to their use.

8.1. Debugging Aids

The driver package includes the following items useful for development and/or debugging aids.

8.1.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id

example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as

follows.

Description File Location

Application id …/id/

8.1.2. API Listing

Among the utility services provided is a function to generate a listing to the console of all API settings and all

register contents. When used, the function is typically used to verify the device configuration. In these cases, the

function should be called just prior to the first read or digital I/O operation. The function arguments are as follows.

The utility location is given in the subsequent table.

Argument Description
fd This is the file descriptor used to access the device.

Description File/Name Location

Function hpdi32cos_api_listing() Source File

Source File api_listing.c …/utils/

Header File hpdi32cos_utils.h …/include/

Library File hpdi32cos_utils.a …/lib/

8.1.3. Detailed Register Dump

Among the utility services provided is a function to generate a detailed listing of device registers to the console.

When used, the function is typically used to verify device configuration. In these cases, the function should be called

after complete device configuration and before the first I/O call. When intended for sending to GSC tech support,

please set the detail arguments to 1. The function arguments are as follows. The utility location is given in the

subsequent table.

Argument Description
fd This is the file descriptor used to access the device.
detail If non-zero the register dump will include details of each register field.

Description File/Name Location

Function hpdi32cos_reg_list() Source File

Source File reg.c …/utils/

Header File hpdi32cos_utils.h …/include/

Library File hpdi32cos_utils.a …/lib/

HPDI32-COS, API Library Reference Manual

44

General Standards Corporation, Phone: (256) 880-8787

8.2. COS Input Configuration

The basic steps for Change-of-State Input configuration are illustrated in the utility function noted below. The table

also gives the location of the source file, the header file and the corresponding library containing the executable

code. The referenced files are included via the Main Header and Main Library.

Item Name/File Location

Function hpdi32cos_config_cos() Source File

Source File config_cos.c …/utils/

Header File hpdi32cos_utils.h …/include/

Library File hpdi32cos_utils.a …/lib/

8.3. Logic Analyzer Input Configuration

The basic steps for basic Logic Analyzer Input configuration are illustrated in the utility function noted below. The

table also gives the location of the source file, the header file and the corresponding library containing the

executable code. The referenced files are included via the Main Header and Main Library.

Item Name/File Location

Function hpdi32cos_config_la() Source File

Source File config_la.c …/utils/

Header File hpdi32cos_utils.h …/include/

Library File hpdi32cos_utils.a …/lib/

8.4. Data Transfer Modes

All device I/O requests move data through an intermediate driver buffer on its way between the device and

application memory. The data is processed in chunks no larger than the size of this intermediate buffer. The process

used to perform this transfer is according to the I/O mode selection. Movement of data between the application

buffers and the intermediate driver buffers is performed by the kernel.

8.4.1. PIO - Programmed I/O

This mode transfers data by repetitive register accesses. Of the modes supported this is the least efficient. However,

it is the only mode that can be used with an I/O Timeout setting of zero.

8.4.2. BMDMA - Block Mode DMA

This option uses block mode DMA transfers to fulfill application I/O requests. In this mode, movement of data by

the DMA engine is initiated for reads only after the data is already present in the Rx FIFO. In this mode the driver

subdivides requests, as needed, based on the current state of the Rx FIFO. Consequently, each I/O request may

consist of a single DMA transfer, a few DMA transfers or of many DMA transfers. Typically, the lower the transfer

clock relative to bus activity between the card and the host, the smaller and more numerous the number of transfers.

NOTE: The Rx Block Mode DMA Threshold settings is used to limit the smallest size of

individual DMA transfers. This is done to help improve efficiency. The BMDMA default exceeds

the equivalent PIO Threshold default to limit the use of PIO to those instances where it is required

to complete I/O requests. This too is done to help improve efficiency. For additional information

refer to section 4.7.34 (page 31, Rx BMDMA Threshold) and section 4.7.37 (page 32, Rx PIO

Threshold).

HPDI32-COS, API Library Reference Manual

45

General Standards Corporation, Phone: (256) 880-8787

8.4.3. DMDMA - Demand Mode DMA

In this DMA mode the transfers are subdivided and started differently. First, subdividing is done only as needed to

limit individual transfers to the size of the Rx transfer buffers maintained by the driver for each device. Second, the

transfers are started without waiting for data to arrive in the Rx FIFO. In this mode the DMA engine moves Rx data

as it appears in the Rx FIFO.

HPDI32-COS, API Library Reference Manual

46

General Standards Corporation, Phone: (256) 880-8787

9. Sample Applications

For information on the sample applications refer to this same section number in the OS specific HPDI32-COS driver

user manual.

HPDI32-COS, API Library Reference Manual

47

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

October 3, 2024 Updated to version 1.0.111.X.X.

May 2, 2024 Preliminary release. Version 1.0.110.X.X.

