HPDI32-COS

High Performance 32-bit Digital 1/0

All Form Factors
...-HPDI32B-COS

API Library
Reference Manual

Manual Revision: October 3, 2024
Driver Release Version 1.0.111.x.x

General Standards Corporation
8302A Whitesburg Drive
Huntsville, AL 35802
Phone: (256) 880-8787
Fax: (256) 880-8788
URL: www.generalstandards.com
E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

HPDI32-COS, API Library Reference Manual

Preface

Copyright © 2024, General Standards Corporation
Additional copies of this manual or other literature may be obtained from:

General Standards Corporation
8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or
software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Although extensive editing and reviews are performed before release, General Standards Corporation assumes no
responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are
made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this
documentation.

General Standards Corporation does not assume any liability arising out of the application or use of
documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or
any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or
errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,
software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.
GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

2
General Standards Corporation, Phone: (256) 880-8787

http://www.generalstandards.com/
mailto:sales@generalstandards.com

HPDI32-COS, API Library Reference Manual

Table of Contents

R Fa L f oY [11 Ao F TR 7
Lo PUIPOSE. 1.ttt ettt h bR R R R R R R R R R R Rt bt 7
L2, AACTONYIMS ...ttt bt e e h ke bttt E R AR b e st AR e AR e b e e Rt Rt R Rt bt 7
T B L AT Lo oL 7
1.4, SOTIWAIE OVEIVIEW ...t ettt e ettt e sttt e e e ettt e e ettt e e st e e e s b bt e e s aabes e e sabaeeeseabeeeseabessesbeaasssabesessabaasesasbanessbbaneas 7

1.4.1. BaSIiC SOTtWAIE ATCNITECTUIEveeivii ettt ettt e s st e e st e s st e s s bt e s sbb e s sbbessabessabesssbessrbessneeens 7
O N o B I] U RSO 8
IR G T B 1A (ot I | V7T 8
ST P U0 LV T @ A=Y VA 1= R 8
1.6. RETEIENCE IMIALEITAL ... eeiiii ittt et e et e e s et et e e s bt e e s s ebb e e e s eabb e e e sbbaeessbbaeessabaesessbbaeessabbeeeas 9
O I o =T3S oo SRS 9

A o153 = 1 F= 1 To] o IR 10
2.1. Host and ENVIFONMENT SUPPOIT.....cueiieiie ittt e e e e st e st e s ta e te e be e teaseesneesreesreeneeenneenes 10
2.2. Driver and DeViCe INFOIMALIONuviiiiiiie ettt e ettt s et e e e s st e e s e bt e e s s bt e e e s sabaeesenbaesesbaeas 10
P0G T 1 N I SRR 10
P Y= Yod (o] A 1 (0 Tox (1 -SSR 10
RS T [T 1 = LT o TR 11
P ST 2 (=T 141V | TR 11
2.7. OVEFAII IMIBKE SCIIPL. ...ttt bbb bbb bbbt bbb bbbt bbbttt e 11
2.8. ENVIFONMENT VATTADIESottt ettt e e ettt e s et e e st e e e s eta e e e s eaaeeessateeessbeeeesaabeeessebaeessseesesasrens 11

3. MAIN INTEITACE FHIES ... ettt ettt e et e e e ettt e s sttt e e s et e e s eabeeeesreraeeeeaans 12
K AV, U =T (o [T 1 TR 12
K \V - VL o] -V 1 L SO PS S 12

TR N = YU T 1 o RSP SUR R 12
A AN (o [([0 I o] =T 1= TR 12

N o B | o] - UV SRS PSSP 13
T] SRR 13
N = YU 11 o RSO TRTRR 13
T o] 1 VA U -SSP PRSPPI 13
VT (o] (o TSRS 13

o T (@ O I 7= VA ot SRR 13
O B T 1) (- £SO 13
LT B L L Rl Y/ 0 OO PP 14
A 8. FUNCHIONS. ...ttt e ettt e ettt e et e e e ettt e e e et e e s eeesasteeesaaeaeeesaeeeesasseeesaasaeeesaseeeesasseeesaaseeeennteeesasseeesssseeesarseaesasnenenanes 14
4.6.1. NPAIB2C0OS_CIOSE() ..vuvereteeerietirtetiet ettt ettt bbb bbb b n et b ettt be b 14
4.6.2. NPAIB2C0OS_TNMIE()+vvvereereititetiet ettt bbb bbb bbbt bt bbb 15
4.6.3. NPAIB2C0OS_TOCLI() vttt ettt bbbttt bbbt b ettt b ettt be b 16
3

General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

R g oTo T Yol a L o o =1 o OSSOSO USRI 17
4.6.5. NPAIB2C0OS_TEAA() -v.ververereteieetent ettt stttk bbb h bbb bbbt b bt e bbbt bbbt bbb 18
4.7, TOCTL SEIVICES ...vuiriteietereseneateie s sttt b ettt s e R R e bR Rt e Rt R Rt R bt e bRt r et n b e n e anas 19
4.7.1. HPDI32COS_IOCTL_BYTE_ENABLE ..ottt 19
4.7.2. HPDI32COS_IOCTL_CC_D0_DB_STATE ..ottt 19
4.7.3. HPDI32COS_IOCTL_CC_D5_DB ...ocvcveuiiieiiiireierisieesesiee s snsnesenennas 20
4.7.4. HPDI32COS_IOCTL_CLOCK_DIVIDER........coiitiitiiriiieinisieies et 20
4.7.5. HPDI32COS_IOCTL_COS_DETECTEDccooiiiririeeiiieenisie e 20
4.7.6. HPDI32COS_IOCTL_COUNTER_ZERODccociiiiiiiiieieiieisiee ittt 21
4.7.7. HPDI32COS_IOCTL_EVENT _COUNT ...ttt sttt 21
4.7.8. HPDI32COS_IOCTL_EVNT_CNT_INI_GET ..oiiiiiiiiiieiririeie ittt 21
4.7.9. HPDI32COS_IOCTL_EVNT_CNT_INI_SET ..coctiiiiiiiieiririeie sttt 21
4.7.10. HPDI32COS_IOCTL_FIFO_WORD_COUNT ...ctitiiiiieiirinieeisieie st 22
4.7.11. HPDI32COS_IOCTL_INITIALIZE.......cco ittt 22
4.7.12. HPDI32COS_IOCTL_IRQ_CONFIG_EDGE ..ottt 22
4.7.13. HPDI32COS_IOCTL_IRQ_CONFIG_HIGH ..ottt 22
4.7.14. HPDI32COS_IOCTL_IRQ_ENABLEcotiieiriittiset ettt 23
4.7.15. HPDI32COS_IOCTL_LA_TRIG_WORD_GETc.citiiiiirrieeisiee et 24
4.7.16. HPDI32COS_IOCTL_LA_TRIG_WORD_SETccctiiiirinieeisiee et 24
4.7.17. HPDI32COS_IOCTL_LA_TRIGGERED........cciitiiiiiiitet ettt 24
4.7.18. HPDI32COS _IOCTL_LOOPBACKottt ittt ettt st s ste et sne et e nbeebeesaesneesnees 25
4.7.19. HPDI32COS _TOCTL_IMODE.........ccitiiiiiii ittt sttt sttt et et sbe e st e sbeesbeesbeaneesneas 25
4.7.20. HPDI32COS_IOCTL_QUERY ...ttt ettt st sttt ettt e e beesaeaneenneas 25
4.7.21. HPDI32COS_IOCTL_REG _MODooovvieeieeeeeeeeeeeeesieeeeeesieeseesisssssssssessassssssnssssssssss s ssansannes 26
4.7.22. HPDI32COS _IOCTL_REG _READ.........ooooiieeeeeeeeeeeeieeieseioesiiesiessessssssesssssssssssanssssasssnssssassannes 27
4.7.23. HPDI32COS_IOCTL_REG_WRITE ...ttt et 27
4.7.24. HPDI32COS_IOCTL_RX_DATA ..ottt ettt 28
4.7.25. HPDI32COS_IOCTL_RX_DATA_MASK_GETcitiiiiiiieeeee et 28
4.7.26. HPDI32COS_IOCTL_RX_DATA_MASK_SET ...oeiiiieiirieeisiet ettt 28
4.7.27. HPDI32COS_IOCTL_RX_FIFO_AE ..ottt bbbt 29
4.7.28. HPDI32COS_IOCTL_RX_FIFO_AF ..ottt 29
4.7.29. HPDI32COS_IOCTL_RX_FIFO OVERovouieeeeeeeeeieeeeeeeeeseeeseeseesesseseseeessenssssasssnss s ssssnaanannes 29
4.7.30. HPDI32COS_IOCTL_RX_FIFO RESETouiiiiieeeeeeeeeeeeeeseeeseeseeesisssesessssssessssssess e ssssnannannes 30
4.7.31. HPDI32COS_IOCTL_RX_FIFO_STATUS ...ooooirieeeeeeeeeeeeeeeeeesieeseeseiesssesesessenssssasssesssssssesnannannes 30
4.7.32. HPDI32COS_IOCTL_RX_FIFO _UNDER..........ovioeieeeereeeeeeseesseoeseeseiesssesseessessessesssesssseesssnannannes 30
4.7.33. HPDI32COS_IOCTL_RX_10_ABORT w....covvteeiereeeeeeeieeeeeeeeeseeeseeseeeiesssessssssssessssssesssessssssannannes 31
4.7.34. HPDI32COS_IOCTL_RX_10_ BMDMA _TRSHoouiiiriieieeeieeieeeeeeieseeeeeessiesseesseesssessiessessessanninnes 31
4.7.35. HPDI32COS_IOCTL_RX_IO_MODE ..ottt 31
4.7.36. HPDI32COS_IOCTL_RX_IO_OVER ..ottt 32
4.7.37. HPDI32COS_IOCTL_RX_IO_PIO_TRSH ...ttt 32
4.7.38. HPDI32COS_IOCTL_RX_IO_TIMEOUT ..ottt 32
4.7.39. HPDI32COS_IOCTL_RX_IO_UNDER.......cccitiiiiiiiiiteie ettt 33
4.7.40. HPDI32COS _IOCTL_RX_START w..ooieieeeeeeeeeeeeeeeeeseseeeeseesas s ss s ssa s snanssns e s snnannannes 33
4.7.41. HPDI32COS _IOCTL_RX_STATE w..oooiieeeeeeeeeeeeeeeeeseeeseeseeeesesssesessssssnsssss s s nssns s nnsnssnnanssnnes 33
4.7.42. HPDI32COS_IOCTL_RX_WORD_COUNTcvvviriireeeeeesesiiesieeseessisssesseessisssesssnssnssssssssnsannannes 34
4.7.43. HPDI32COS_IOCTL_TX_DATA GET w.oooieeeeeeeeeeeeieeeeeeeeeseeeseeesiessisssesseessasssssasssnsssssnssnssnnannes 34
4.7.44. HPDI32COS_IOCTL_TX_DATA SET .oooiieeeeeeeeeeeeeieseeeseeseieseeessssssssesssssssssssssssssnsasssnssnsanssnnes 34
4.7.45. HPDI32COS _TOCTL_TX _ENABLE ... oottt sttt et eenneeanees 35
4.7.46. HPDI32COS_IOCTL_WAIT_CANCEL ..ottt 35
4.7.47. HPDI32COS_IOCTL_WAIT_EVENT ..ottt 36
4.7.48. HPDI32COS_IOCTL_WAIT_STATUS ..ottt bbbt 38
T I 1 L= I T 1Y OSSR 40
o T0 R -SSR 40

General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

ST = 11T o OSSPSR 40
TR] = (1] o F TP T TP TP T TP PP UR PRSPPI 40
5.4, VEITICALION 1.ttt E et e R R n R 40
SR £ £ To o ST TSP T PP PUR 40
5.8, SNULAOWN ...t h e Rt R Rt R R R R E e r Rt n Rt ner e 40
6. Document Source Code EXAMPIES.........ccoiiiiiiiiiiiicieee e 41
B. L. FHIES. ettt b e E e h bR E R R R R R R R R R £ R R R bbbt bt nb s 41
LT = 11T o OSSPSR 41
8.3, LDIAIY USE ..ottt b bbb bbb R b bR E R bR bR bbbt n s 41
7. UTIITIES SOUNCE COUE.......eiiiiiiiiiiieste ettt 42
7L FHIBS et b E b b h R R E R h R R £ R E R b b e Rt bbbt b st n s 42
728 = V[ST STT 42
A T o] - Vg2 £ PSSR 42
8. Operating INFOFMALIONooiiiiiiiiie e 43
ST D L= TN Lo o T g o N (o TSP S PP T PP PR PUR PP 43
8.1.1. DeVICe TUBNTITICALIONecvieeiiitiecest et n et r et 43

BL L2, AP LUISTING 1.ttt ettt bbbkt h e bbb bR £ e e bbb bt bt ne e e b e renre s 43
8.1.3. Detailed REGISIEr DUMIP ..ottt bbbt b et b bbbttt 43

8.2. COS INPUL CONTIGUIALION ...ttt bbbttt b bbbttt enes 44
8.3. Logic Analyzer INput CONFIGUIALIONoiitiiiiiiieect bbbttt 44
8.4, Data TTaNSTEE IMOUES.eeeiiitieeteete ettt bbb bbb bbbt bt bbbt bbbt bbbttt et nn s 44
8.4.1. P1O - ProgramMEd /Ocuiiiiiiiiieiti ittt b bbb bbbttt b et 44
8.4.2. BMDMA - BIOCK MOGE DIMA ...ttt bbbttt b bbbttt e b e 44
8.4.3. DMDMA - Demand MOOE DIMA ..ottt s 45

9. SAMPIE APPHCATIONS ... bbbttt bbbt eneas 46
DOCUMENT HISTOTY ...ttt e e e s be e s beeaesseesbeennesneentaeneeas 47

5

General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

Table of Figures

Figure 1 Basic architeCtural repreSENTALION.c.civiiieieiesise e eee ettt e e te e ra e e e e e aesresbesreene e e enseseenrenrs

6
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

1. Introduction

1.1. Purpose
The purpose of this document is to describe the interface to the HPDI32-COS API Library and to the underlying
Linux device driver. The API Library software provides the interface between "Application Software" and the

device driver. The driver software provides the interface between the API Library and the actual HPDI32-COS
hardware. The API Library and driver interfaces are based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms | Description

API Application Programming Interface
BMDMA | Block Mode DMA

COs Change of State

DMA Direct Memory Access

DMDMA | Demand Mode DMA

GSC General Standards Corporation

LA Logic Analyzer

PCI Peripheral Component Interconnect
PIO Programmed 1/0O

PMC PCI Mezzanine Card

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

This is a shortcut representation of the HPDI32-COS installation directory or any of its
subdirectories.

API Library | This is a library that provides application-level access to HPDI32-COS hardware.

Application This is a user mode process, which runs in user space with user mode privileges.

Driver This is the HPDI132-COS device driver, which runs in kernel space with kernel mode privileges.
HPDI32-COS | This is used as a general reference to any device supported by this driver.

Library This is usually a general reference to the API Library.

Linux This refers to the Linux operating system. Refer to the HPDI132-COS Linux Driver User Manual.

1.4. Software Overview
1.4.1. Basic Software Architecture

This section describes the general architecture for the basic components that comprise HPDI32-COS applications.
The overall architecture is illustrated in Figure 1 below.

7
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

HPDI32-COS
Application
hpdi32cos_init()
¢ hpdi32cos_open()
hpdi32cos_close()
Application Level HPDI32-COS hpdi32cos_ioctl()
API Library hpdi32cos_read()
v
o HPDI32-COS Informational
OS Specific Level Device Driver Device 0
Device 1
$ Device X
Hardware Level Al 0N
Boards

Figure 1 Basic architectural representation.
1.4.2. API Library

The primary means of accessing HPDI32-COS boards is via the HPDI32-COS API Library. This library forms a
layer between the application and the driver. Additional information is given in section 4 (page 13). With the library,
applications are able to open and close a device and, while open, perform 1/O control and read operations.

1.4.3. Device Driver

The device driver is the host software that provides a means of communicating directly with HPDI32-COS
hardware. The driver executes under control of the operating system and runs in Kernel Mode as a Kernel Mode
device driver. The driver is implemented as a standard dynamically loadable Linux device driver written in the C
programming language. While applications can access the driver directly without use of the API Library, it is
recommended that all access is made through the library.

1.5. Hardware Overview

The HPDI32-COS is a high-performance 32-bit parallel digital 1/0 interface board. The host side connection is PCI
based. The board supports Change of State detection and simple Logic Analyzer input operations and can
accumulate data at a rate of up to 32M 32-bit words per second at the cable interface. An onboard receive FIFO of
8k data values buffers transfer data between the PCI bus and the cable interface. This allows the HPDI32-COS to
maintain maximum bursts on the cable interface (at least up to the depth of the Rx FIFO) independent of the PCI bus
interface. The onboard FIFO can also be used to buffer data between the cable interface and the PCI bus to maintain
sustained data throughput for real-time applications. The board accommodates a wide range of applications. The
board has an advanced PCI interface engine, which provides for increased data throughput via DMA.

The 32 cable data signals can also be used as general-purpose inputs or outputs. The general-purpose outputs are
configurable on a per byte basis. In addition to these 32 primary data lines, the external interface includes a set of
seven general-purpose inputs. Two of these can be configured as discrete outputs reflecting on-board status.

8
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

1.6. Reference Material

The following reference material may be of particular benefit in using the HPDI32-CQOS, the API Library and the
device driver. The specifications provide the information necessary for an in depth understanding of the specialized
features implemented on this device.

e The applicable HPDI32-COS Device Driver User Manual for your operating system from General
Standards Corporation.

e The applicable HPDI32-COS User Manual from General Standards Corporation.

e The PCI9080 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc. t
+ PLX data books are available from PLX at the following location.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735
WEB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE. txt in the root installation directory.

9
General Standards Corporation, Phone: (256) 880-8787

http://www.plxtech.com/

2. Installation

HPDI32-COS, API Library Reference Manual

For additional information on driver installation refer to this same section number in the OS specific HPDI32-COS

driver user manual.

2.1. Host and Environment Support

For information on host and environment support refer to this same section number in the OS specific HPDI132-COS

driver user manual.

2.2. Driver and Device Information

Each driver implements an OS specific means of obtaining generic, high-level information about the driver and the
installed devices. The information is given in textual format. Each line of text begins with an entry name, which is
followed immediately by a colon, a space character, and an entry value. Below is an example of what is provided,
followed by descriptions of each entry. This information is accessed by passing a device index value of -1 to the
API open service (section 4.6.4, page 17).

version: 1.0.111.50

32-bit support: yes

boards: 1

models: HPDI32B-COS

ids: 0x3

Entry Description

version This gives the driver version number in the form x . x . x . x.

32-bit support

This reports the driver’s support for 32-bit applications. This will be either “yes” or “no”
for 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.

This gives a comma separated list of the basic model number for each board the driver
models detected. The model numbers are listed in the same order that the boards are accessed via

the API Library’s open function.

This is a list identifying the values read from each board’s user jumpers. The id numbers
ids are listed in the same order that the boards are accessed via the API Library’s open

function.

The API’s source for the text provided is as follows.

Source

The file “/proc/hpdi32cos”.

2.3. File List

For the list of primary files included with each release refer to this same section number in the OS specific HPDI32-

COS driver user manual.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory
structure is created and populated with the respective files.

NOTE: Additional or alternate directories may be installed, depending on the OS. For additional
information refer to this same section number in the OS specific HPDI32-COS driver user manual.

10
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

Directory Description
hpdi32cos/ This is the driver root directqry. It con_tains the documentation, the Overall Make Script (section
2.7, page 11) and the below listed subdirectories.
../api/ This directory contains the API Library source files (section 4, page 13).
/d This directory contains the source files for the code samples given in this document (section 6,
../docsrc/ page 41)

../driver/ | This directory contains the driver and any related files (section 5, page 40).

../include/ | This directory contains the header files for the various libraries.

../1ib/ This directory contains all of the libraries built from the installed sources.

This directory contains the sample application subdirectories and all of their corresponding

1 i i
/samples/ | oo irce files (section 9, page 46).

This directory contains the source files for the utility libraries used by the sample applications

~/utils/ (section 7, page 42).

2.5. Installation

For installation instructions refer to this same section number in the OS specific HPDI32-COS driver user manual.
2.6. Removal

For removal instructions refer to this same section number in the OS specific HPDI132-COS driver user manual.
2.7. Overall Make Script

Each HPDI32-COS installation includes an OS specific means of building all of the build targets included in the
installation. For additional information refer to this same section number in the OS specific HPDI32-COS driver
user manual.

2.8. Environment Variables

For environment variable information refer to this same section number in the OS specific HPDI132-COS driver user
manual.

11
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

3. Main Interface Files

This section gives general information on the suggested device interface files to use when developing HPDI32-COS
based applications.

3.1. Main Header File

Throughout the remainder of this document references are made to various header files included as part of the
HPDI32-COS driver installation. For ease of use it is suggested that applications include only the single header file
shown below rather than individually including those headers identified separately later in this document. Including
this header file pulls in all other pertinent HPDI32-COS specific header files. Therefore, sources may include only
this one HPDI132-COS header and make files may reference only this one HPDI32-COS include directory.

Description | File Location
Header File | hpdi32cos main.h | ../include/

3.2. Main Library File

Throughout the remainder of this document references are made to various statically linkable libraries included as
part of the HPDI32-COS driver installation. For ease of use it is suggested that applications link only the single
library file shown below rather than individually linking those libraries identified separately later in this document.
Linking this library file pulls in all other static libraries included with the driver. Therefore, make files may
reference only this one HPDI32-COS static library and only this one HPDI32-COS library directory.

Description | File Location
Lib Fil hpdi32cos main.a /1ib/
tbrary File hpdi32cos multi.a |~

NOTE: For applications using the HPDI32-COS and no other GSC devices, link the
hpdi32cos main.a library. For applications using multiple GSC device types, link the
xxxx_main.a library for one of the devices and the xxxx multi.a library for the others.
Linking multiple xxxx main.a libraries may likely produce link errors due to duplicate
symbols being defined. While it may make little or no difference, it is recommended that one
choose the xxxx main.a library from the driver with the largest number in positions three
(x.x.X.x.X) and/or four (x.x.x.X.x) in the driver release version number.

NOTE: The HPDI32-COS API Library is implemented as a shared library and is thus not linked
with the HPDI32-COS Main Library. The API Library must be linked with applications by adding
the argument ~1hpdi32cos_api to the linker command line.

3.2.1. Build

For information on building the Main Library refer to this same section number in the OS specific HPDI32-COS
driver user manual.

3.2.2. Additional Libraries

For information on any additional required libraries refer to this same section number in the OS specific HPDI32-
COS driver user manual.

12
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

4. API Library

The HPDI32-COS API Library is the software interface between user applications and the HPDI32-COS device
driver. The interface is accessed by including the header file hpdi32cos api.h.

NOTE: Contact General Standards Corporation if additional library functionality is required.
4.1. Files

The library files are summarized in the table below.

Description | File Location
Source Files | *.c, *.h/api/
Header File | hpdi32cos api.h ../include/

./ 1ib/
/usr/lib/ ¥
+ The shared object library is automatically copied to /usr/1ib/ when it is built.

Library File | 1ibhpdi32cos api.so

4.2. Build

For build instructions refer to this same section number in the OS specific HPDI32-COS driver user manual.

4.3. Library Use

For Library usage information refer to this same section number in the OS specific HPDI32-COS driver user
manual.

4.4. Macros

The API Library and driver interfaces include the following macros, which are defined in hpdi32cos.h.

4.4.1. I0CTL Services

The IOCTL macros are documented in section 4.7 (page 19).

4.4.2. Registers

The following gives the complete set of HPDI32-COS registers.

4.4.2.1. GSC Registers

The following table gives the complete set of GSC specific HPDI32-COS registers. Please note that the set of
registers supported by any given device may vary according to model and firmware version. For the set of supported

registers and their detailed definitions refer to the appropriate HPD132-COS User Manual.

NOTE: Refer to the output of the “id” sample application (.../id/) for a complete list of the
registers supported by the device being accessed.

Macros Description

HPDI32COS_GSC_BCR Board Control Register (BCR)
HPDI32COS_GSC_BSR Board Status Register (BSR)
HPDI32COS_GSC_DMR Data Mask Register (DMR)
HPDI32COS_GSC_ECIVR | Event Counter Initial Value Register (ECIVR)

13
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

HPDI32COS GSC_ECR Event Counter Register (ECR)
HPDI32COS GSC_FRR Firmware Revision Register (FRR)
HPDI32COS GSC_ ICR Interrupt Control Register (ICR)
HPDI32COS_GSC_IELR | Interrupt Edge/Level Register (IELR)
HPDI32COS_GSC_IHLR | Interrupt High/Low Register (IHLR)
HPDI32COS GSC_ ISR Interrupt Status Register (ISR)
HPDI32COS_GSC_LATR | Logic Analyzer Trigger Register (LATR)
HPDI32COS GSC RAR Rx Almost Register (RAR)
HPDI32COS_GSC_RDFR | Rx Data FIFO Register (RDFR)
HPDI32COS_GSC_RDIR | Rx Data Input Register (RDIR)
HPDI32COS_GSC_RFSR | Rx FIFO Size Register (RFSR)
HPDI32COS_GSC_REWCR | Rx FIFO Word Count Register (RFWCR)
HPDI32COS_GSC_RWCR | Rx Word Count Register (RWCR)
HPDI32COS_GSC_SCDR | Sample Clock Divider Register (SCDR)
HPDI32COS_GSC_TDOR | Tx Data Output Register (TDOR)

4.4.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of the PCI
register identifiers refer to the driver header file gsc pci9080.h, which is automatically included via
hpdi32cos _api.h

4.4.2.3. PLX Feature Set Registers

Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX
register identifiers refer to the driver header file gsc pci9080.h, which is automatically included via
hpdi32cos_api.h.

4.5. Data Types

The data types used by the API Library are described with the IOCTL services with which they are used. For
additional information refer to section 4.7 (page 19).

4.6. Functions

The interface includes the following functions. The return values reflect the completion status of the requested
operation. A return value less than zero always reflects an error condition. The table below summarizes the error
status values. For the I/O function, read, non-negative return values reflect the number of bytes transferred between
the application and the interface. A value equal to the requested transfer size indicates complete success. Return
values less than the requested transfer size indicate that the I/O timeout expired. For the other API function calls a
return value of zero indicates success.

Return Value | Description
-1to-499 This is the value “ (-errno)” (see errno.h).

4.6.1. hpdi32cos_close()

This function is the entry point to close a connection made via the API’s open call (section 4.6.4, page 17). The
device is put in an initialized state before this call returns.

Prototype

int hpdi32cos_close(int £fd);

14
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

Argument | Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 17).

Return Value | Description
0 The operation succeeded.
<0 An error occurred. See error value description above.

Example
#include <stdio.h>
#include "hpdi32cos dsl.h"
int hpdi32cos close dsl(int £d)
{
int errs;
int ret;

ret = hpdi32cos close(fd);

if (ret)
printf ("ERROR: hpdi32cos close() returned %d\n", ret);

errs =ret 2 1 : 0;
return (errs) ;

}
4.6.2. hpdi32cos_init()
This function is the entry point to initializing the HPDI32-COS API Library and must be the first call into the
Library. This function may be called more than once, but only the first successful call actually initializes the library.
Subsequent calls perform no operation at all. All other API calls return a failure status when the API Library is not
initialized.
Prototype

int hpdi32cos_init (void);

Return Value | Description

0 The operation succeeded.

<0 An error occurred. See error value description above.
Example

#include <stdio.h>
#include "hpdi32cos dsl.h"
int hpdi32cos_init dsl(void)
{

int errs;

int ret;

ret = hpdi32cos_init();

15
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

if (ret)
printf ("ERROR: hpdi32cos_init () returned $d\n", ret);

errs =ret 2 1 : 0;
return (errs) ;

}
4.6.3. hpdi32cos_ioctl()
This function is the entry point to performing setup and control operations on a HPDI32-COS. This function should
only be called after a successful open of the respective device. The specific operation performed varies according to
the request argument. The request argument also governs the use and interpretation of the arg argument. The

set of supported options for the request argument consists of the IOCTL services supported by the driver, which
are defined in section 4.7 (page 19).

NOTE: IOCTL operations are not supported for an open on device index -1.

Prototype

int hpdi32cos _ioctl (int fd, int request, void* arq);

Argument | Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 17).
request | This specifies the desired operation to be performed (section 4.7, page 19).
arg This is specific to the IOCTL operation specified by the request argument.
Return Value | Description
0 The operation succeeded.
<0 An error occurred. See error value description above.
Example

#include <stdio.h>
#include "hpdi32cos dsl.h"
int hpdi32cos ioctl dsl(int £fd, int request, void* arg)
{ int errs;
int ret;

ret = hpdi32cos ioctl (fd, request, arg);

if (ret)
printf ("ERROR: hpdi32cos ioctl() returned %d\n", ret);

errs = ret 21 : 0;
return (errs) ;

16
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

4.6.4. hpdi32cos_open()

This function is the entry point to open a connection to an HPDI32-COS board. Before returning, the initialize
IOCTL service is called to reset all hardware and software settings to their defaults.

Prototype

int hpdi32cos open(int device, int share, int* fd);

Argument | Description

device This is the zero-based index of the HPDI32-COS to access. T

Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

h L . .
share Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).
The device handle is returned here. The pointer cannot be NULL. Values returned are as
follows.
fd

Value | Description
>= 0 | This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

+ The index value —1 can also be given to acquire driver information (section 2.2, page 10).

Return Value | Description

0 The operation succeeded.

<0 An error occurred. See error value description above.
Example

#include <stdio.h>
#include "hpdi32cos dsl.h"
int hpdi32cos open dsl(int device, int share, int* £fd)
{
int errs;
int ret;

ret = hpdi32cos open (device, share, £d);

if (ret)
printf ("ERROR: hpdi32cos open() returned %d\n", ret);

errs = ret 2 1 : 0;
return (errs) ;
}
4.6.4.1. Access Modes
The value of the share argument determines the device access mode, as follows.

Shared Access Mode:

Shared Access Mode allows multiple applications to access the same device simultaneously. In this mode, the first
successful open request returns with the device in an initialized state. Subsequent successful Shared Access Mode

17
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

open requests do not affect the state of the device. Once opened in Shared Access Mode, the device access remains
in this mode until all Shared Access Mode accesses release the device with a close request.

Exclusive Access Mode:

Exclusive Access Mode allows a single application to acquire exclusive access to a device. In this mode, a
successful open request returns with the device in an initialized state. While open in this mode all subsequent open
requests will fail regardless of the access mode requested. Once opened in Exclusive Access Mode, the device
access remains in this mode until released by the application with a close request.

4.6.5. hpdi32cos_read()

This function is the entry point to reading data from an open connection. The function reads up to bytes bytes.

NOTE: If an open was performed using an index of -1, then read requests will acquire
information from the driver (section 2.2, page 10) rather than data from a device.

NOTE: For additional information refer to the Data Transfer Modes section (section 8.2, page
44).

NOTE: The check for an overflow or an underflow is performed upon entry to the read service.
The read service does not check for these conditions that occur while the read is in progress. For

in-progress overflows or underflows an application must perform the check manually or wait for
the check performed by a subsequent read request.

Prototype

int hpdi32cos_read(int fd, void* dst, size t bytes);

Argument | Description

fd This is the file descriptor obtained from the open service (section 4.6.4, page 17).

dst The data read is put here.

This is the desired number of bytes to read. When reading from a device, this must be a

PYTeS | ultiple of four (4).

Return Value | Description

The operation succeeded. When reading from a device, a value less than bytes

0 tobytes indicates that the 1/0 timeout period lapsed (section 4.7.38, page 32) before the entire
request could be satisfied.
<0 An error occurred. See error value description above.

Example
#include <stdio.h>
#include "hpdi32cos dsl.h"
int hpdi32cos_read dsl(int fd, void* dst, size t bytes, size t* gty)
{ int errs;

int ret;

ret = hpdi32cos read(fd, dst, bytes);

18
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

if (ret < 0)

printf ("ERROR: hpdi32cos read() returned %$d\n", ret);
if (qty)

gty[0] = (ret < 0) 2 O (size t) ret;
errs = (ret < 0) 21 : 0;

return (errs) ;

}
4.7. 10CTL Services

The HPDI32-COS API Library and device driver implement the following IOCTL services. Each service is
described along with the applicable hpdi32cos ioctl () function arguments.

4.7.1. HPDI32COS_ IOCTL_BYTE_ENABLE
This service configures the use of the 32 digital cable data signals as GPIO.

NOTE: The Tx Enable service (section 4.7.45, page 35) configures all fours bytes to outputs, but
it does not affect the Byte Enable bits.

Usage
Argument | Description
request | HPDI32COS IOCTL BYTE ENABLE
arg s32%*

Valid argument values are as follows. These options can be OR’d together to select multiple bytes at a time. Any
byte referenced is enabled as an output. Any byte not referenced is an input only.

Value Description
-1 Retrieve the current setting.

HPDI32COS BYTE ENABLE ALL

This enables all four bytes as outputs.

HPDI32COS BYTE ENABLE D7 DO

This enables bits DO through D7 as outputs.

HPDI32COS BYTE ENABLE D15 D8

This enables bits DO through D7 as outputs.

HPDI32COS BYTE ENABLE D23 D16

This enables bits DO through D7 as outputs.

HPDI32COS BYTE ENABLE D31 D24

This enables bits DO through D7 as outputs.

HPDI32COS BYTE ENABLE NONE

This sets all 32 bits as inputs only.

4.7.2. HPDI32COS_IOCTL_CC_DO_D6_STATE

This service retrieves the current signal state for Cable Command signals DO through D86, irrespective of their

current configuration.

Usage
Argument | Description
request | HPDI32COS IOCTL CC DO D6 STATE
arg s32*

Valid values returned are from 0x0 through 0x7F. Cable Command signal DO is represented by value bit DO, and so

on.

19

General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

4.7.3. HPDI32COS_IOCTL_CC_D5_D6
This service configures the use of Cable Command signals D5 and D6 as GPIO.

Usage

Argument | Description
request | HPDI32COS IOCTL CC D5 D6
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
HPDI32COS_CC_D5_D6_ INPUT | This sets both signals as inputs only.
HPDI32COS_CC_D5_D6_OUTPUT | This sets both signals as outputs.

4.7.4. HPDI32COS_IOCTL_CLOCK_DIVIDER

This service configures the firmware clock divider to reduce the effective COS and LA sampling frequency. The
value specified is the number of inactive clock cycles inserted between active clocking cycles.

Usage

Argument | Description
request | HPDI32COS IOCTL CLOCK DIVIDER
arg s32%*

Valid argument values are in the range from zero through OXFFFF, or -1 to retrieve the current setting.
4.7.5. HPDI32COS_IOCTL_COS_DETECTED
This service operates on the COS Detected status and always returns the current status.
NOTE: In early firmware versions (0x02 and prior) the COS Detected status is cleared with any
write to the Interrupt Status Register. Thus, if any interrupt is enabled and triggered, then the

status is cleared when the interrupt is serviced.

Usage

Argument | Description
request | HPDI32COS IOCTL COS DETECTED
arg s32*

The following are the valid options that can be passed to the service.

Value Description
HPDI32COS COS DETECTED CHECK | This option requests the current status.
HPDI32COS COS DETECTED CLEAR | This option clears the status.

Argument values returned are one of the following.

20
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

Value

Description

HPDI32COS_COS_DETECTED NO | A COS event has not been detected.

HPDI32COS_COS_DETECTED_YES | A COS event has been detected.

4.7.6. HPDI32COS_IOCTL_COUNTER_ZERO

This service retrieves an indication of the Event Counter equaling zero.

Usage

Argument | Description
request | HPDI32COS IOCTL COUNTER ZERO
arg s32%*

Valid argument values are as follows.

Value

Description

HPDI32COS_COUNTER ZERO_NO | The Event Counter is not zero.

HPDI32COS COUNTER ZERO YES | The Event Counter is zero.

4.7.7. HPDI32COS_IOCTL_EVENT_COUNT

This service retrieves the current event counter value.

Usage

Argument | Description
request | HPDI32COS IOCTL EVENT COUNT
arg u32*

Valid argument values are in the range from zero through OXxFFFFFFFF.

4.7.8. HPDI32COS_IOCTL_EVNT_CNT_INI_GET

This service retrieves the Event Counter Initial value, which is copied to the Event Counter each time the receiver is

started.

Usage

Argument | Description
request | HPDI32COS IOCTL EVNT CNT INI GET
arg u32*

Argument values returned are in the range from zero through OXFFFFFFFF.

4.7.9. HPDI32COS_IOCTL_EVNT_CNT_INI_SET

This service updated the Event Counter Initial value, which is copied to the Event Counter each time the receiver is

started.

Usage

Argument

Description

request

HPDI32COS IOCTL EVNT CNT INI SET

21
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

|arg |u32* |

Valid argument values are in the range from zero through OXFFFFFFFF,
4.7.10. HPDI32COS_IOCTL_FIFO_WORD_COUNT

This service retrieves the Event Counter Initial value, which is copied to the Event Counter each time the receiver is
started.

Usage

Argument | Description
request | HPDI32COS IOCTL FIFO WORD COUNT
arg u32*

Argument values returned are in the range from zero up through OXFFFFFFFF.
4.7.11. HPDI32COS_IOCTL_INITIALIZE

This service returns all driver interface settings for the device to the state they were in when the device was first
opened. This includes both hardware-based settings and software-based settings.

Usage

Argument | Description
request | HPDI32COS IOCTL INITIALIZE

arg Not used.

4.7.12. HPDI32COS_IOCTL_IRQ_CONFIG_EDGE

This service configures firmware interrupts to be either edge triggered or level triggered. If a bit is set, then the
interrupt is edge triggered. If a bit is clear, then the interrupt is level triggered.

Usage

Argument | Description
request | HPDI32COS IOCTL IRQ CONFIG EDGE
arg s32%*

Valid argument values include any bitwise combination of the bits defined for the
HPDI32COS IOCTL IRQ ENABLE service (section 4.7.14, page 23), or -1 to retrieve the current
configurations.

4.7.13. HPDI32COS_IOCTL_IRQ_CONFIG_HIGH

This service configures firmware interrupts to be either high or low triggered. High refers to either a high level or a
rising edge, depending on the interrupt’s edge/level configuration. Low refers to either a low level or a falling edge,
depending on the interrupt’s edge/level configuration. If a bit is set, then the interrupt is high triggered. If a bit is
clear, then the interrupt is low triggered.

Usage

Argument | Description
request | HPDI32COS IOCTL IRQ CONFIG HIGH

22
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Li

brary Reference Manual

|arg |s32*

Valid argument values include any bitwise

combination of the bits defined for the

HPDI32COS IOCTL IRQ ENABLE service (section 4.7.14, page 23), or -1 to retrieve the current

configurations.

4.7.14. HPDI32COS_IOCTL_IRQ_ENABLE

This service enables a specified set of firmware interrupts. If a bit is set, then the interrupt is enabled. If a bit is clear,
then the interrupt is disabled. When an interrupt is generated, it is serviced and disabled by the driver.

Usage

Argument | Description

request | HPDI32COS IOCTL IRQ ENABLE

arg s32%*

Valid argument values include any bitwise combinati
configuration.

on of the following bits, or -1 to retrieve the current

Value

Description

HPDI32COS IRQ ALL

This refers to all interrupt options.

HPDI32COS_IRQ CCl FALL

This refers to the Cable Command 1 signal, an input only
signal, being negated.

HPDI32COS_IRQ CCl RISE

This refers to the Cable Command 1 signal, an input only
signal, being asserted.

HPDI32COS_IRQ CC2

This refers to the Cable Command 2 signal, an input only
signal, being asserted or negated, which depends on how
the interrupt is configured.

HPDI32C0OS_IRQ CC3

This refers to the Cable Command 3 signal, an input only
signal, being asserted or negated, which depends on how
the interrupt is configured.

HPDI32COS_IRQ CC4

This refers to the Cable Command 4 signal, an input only
signal, being asserted or negated, which depends on how
the interrupt is configured.

HPDI32COS_IRQ CC5

This refers to the Cable Command 5 signal being asserted
or negated, which depends on how the interrupt is
configured. This signal may be an input or an output,
depending on the HPDI32COS_IOCTL CC D5 D6
setting (section 4.7.3, page 20).

HPDI32C0OS_IRQ CC6

This refers to the Cable Command 6 signal being asserted
or negated, which depends on how the interrupt is
configured. This signal may be an input or an output,
depending on the HPDI32COS IOCTL CC D5 D6
setting (section 4.7.3, page 20).

HPDI32COS IRQ COS DETECTED

This refers to the detection of a COS event.

HPDI32COS_IRQ EVENT COUNT ZERO

This refers to the Event Counter Zero status. This status is
asserted when the count becomes zero or equals zero,
depending on the interrupt configuration.

HPDI32COS IRQ LA TRIGGERED

This refers to the Logic Analyzer being triggered.

HPDI32COS IRQ RX FIFO AE

This refers to the Rx FIFO’s Almost Empty status.

HPDI32COS IRQ RX FIFO AF

This refers to the Rx FIFO’s Almost Full status.

HPDI32COS IRQ RX FIFO EMPTY

This refers to the Rx FIFO’s empty status.

HPDI32COS IRQ RX FIFO FULL

This refers to the Rx FIFO’s full status.

23

General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

HPDI32COS IRQ RX FIFO OVER This refers to the Tx FIFO Overflow status.
HPDI32COS_IRQ RX FIFO_ UNDER This refers to the Tx FIFO Underflow status.
This refers to the receiver running status. The status is
HPDI32COS_IRQ_RX_ RUNNING asserted when the receiver is started and negated when the
receiver is stopped.
HPDI32COS_IRQ RX STOPPED This refers to the Rx Stopped status.

4.7.15. HPDI32COS_IOCTL_LA TRIG_WORD_GET
This service retrieves the current Logic Analyzer Trigger Word.

Usage

Argument | Description
request | HPDI32COS IOCTL LA TRIG WORD GET
arg u32*

Argument values returned are in the range from zero through OXFFFFFFFF.
4.7.16. HPDI32COS_IOCTL_LA_TRIG_WORD_SET
This service updates the current Logic Analyzer Trigger Word.

Usage

Argument | Description
request | HPDI32COS IOCTL LA TRIG WORD SET
arg u32*

Valid argument values are in the range from zero through OXFFFFFFFF.
4.7.17. HPDI32COS_IOCTL_LA_TRIGGERED
This service reports whether or not the Logic Analyzer has been triggered.

NOTE: The LA Triggered status is cleared when Rx Start (section 4.7.40, page 33) is set to its NO
option.

Usage

Argument | Description
request | HPDI32COS IOCTL LA TRIGGERED
arg s32%*

The following are the valid options that can be passed to the service.

Value Description
HPDI32COS LA TRIGGERED CHECK | This option requests the current status.

Argument values returned are as follows.

Value Description
HPDI32COS LA TRIGGERED NO | The Logic Analyzer has not been triggered.
HPDI32COS LA TRIGGERED YES | The Logic Analyzer has been triggered.

24
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

4.7.18. HPDI32COS_IOCTL_LOOPBACK

This service enables or disables the Loopback feature. When enabled, it allows simultaneous Rx Start (section
4.7.40, page 33) and Tx Enable (section 4.7.45, page 35) operation.

NOTE: If Loopback is disabled, then Tx Enable (section 4.7.45, page 35) inhibits Rx Start
(section 4.7.40, page 33). It doesn’t affect the Rx Start setting, but it does prevent Rx Start from
taking place.

Usage

Argument | Description
request | HPDI32COS TOCTL LOOPBACK
arg s32%*

Valid argument values include the following options.

Value Description
HPDI32COS_LOOPBACK_ DISABLE | This refers to the loopback feature being disabled.
HPDI32COS_LOOPBACK ENABLE | This refers to the loopback feature being enabled.

4.7.19. HPDI32COS_IOCTL_MODE
This service selects the firmware’s basic operating mode as either Change of State detection of Logic Analyzer.

Usage

Argument | Description
request | HPDI32COS IOCTL MODE
arg s32%*

Valid argument values include the following options.

Value Description

-1 Retrieve the current setting.
HPDI32COS_MODE_COS | This refers to Change of State mode.
HPDI32COS_MODE_ LA | This refers to Logic Analyzer mode.

4.7.20. HPDI32COS_IOCTL_QUERY

This service queries the driver for various pieces of information about the device and the driver. The query option is
passed to the service and the associated information is returned.

Usage

Argument | Description
request | HPDI32COS IOCTL QUERY
arg s32%*

Valid argument values are as follows.

Value Description

This refers to the maximum Clock Divider value for the
HPDI32COS IOCTL CLOCK DIVIDER service (section

HPDI32COS_QUERY CLOCK DIV MAX

25
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

4.7.4, page 20).

HPDI32COS_QUERY COUNT

This refers to the number of query options supported. The
range of options supported is from zero to count - 1.

HPDI32COS_QUERY DEVICE TYPE

This refers to the basic device type, which should be
GSC DEV TYPE HPDI32COS.

HPDI32COS QUERY FIFO SIZE RX

This refers to the size of the board’s Rx FIFO.

HPDI32COS_QUERY FORM FACTOR

This refers to the board’s formfactor. See the
hpdi32cos form factor t enumeration below.

HPDI32COS QUERY FREF DEFAULT

This refers to board’s default reference clock frequency.

HPDI32COS_QUERY FREF MAX

This refers to board’s maximum supported reference clock
frequency. The reference oscillator is user replaceable, but
should not be replaced with an oscillator exceeding this
frequency.

HPDI32COS_QUERY JUMPER ON

This reports the bit value returned when a user jumper is
installed.

HPDI32COS QUERY JUMPER QTY

This refers to the number of supported user jumpers.

HPDI32COS QUERY JUMPER VAL

This refers to the value read from the user jumpers.

HPDI32COS_QUERY MODEL

This refers to the board’s basic model number. See the
hpdi32cos model t enumeration below.

Valid return values are as indicated in the above table and as given in the below table.

Value Description

HPDI32COS IOCTL_ QUERY ERROR

Either there was a processing error or the query option is
unrecognized.

Valid return values for the Form Factor query are as follows per the hpdi32cos form factor t

enumeration.

Value

Description

HPDI32COS FORM FACTOR UNKNOWN

The form factor is unknown.

HPDI32COS FORM FACTOR PCI

The form factor is PCI.

HPDI32COS FORM FACTOR PMC

The form factor is PMC.

Valid return values for the Model query are as follows per the hpdi32cos model t enumeration.

Value Description

HPDI32COS_MODEL_HPDI32A | The device is an HPDI32A-COS model board.

HPDI32COS_MODEL_HPDI32B | The device is an HPDI32B-COS model board.

4.7.21. HPDI32COS_IOCTL_REG_MOD

This service performs a read-modify-write of an HPDI32-COS register. This includes only the GSC firmware
registers. The PCI and PLX Feature Set Registers are read-only. Refer to hpdi32cos.h for a complete list of the

GSC firmware registers.

Usage

Argument | Description

request | HPDI32COS IOCTL REG MOD

arg gsc reg t*

26

General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

Definition

typedef struct
{
u32 reg;
u32 value;
u32 mask;
} gsc_reg t;

Fields | Description

reg This is set to the identifier for the register to access.

value | This contains the value for the register bits to modify.

This specifies the set of bits to modify. If a bit here is set, then the respective register bit is
modified. If a bit here is zero, then the respective register bit is unmodified.

mask

4.7.22. HPDI32COS_IOCTL_REG_READ

This service reads the value of an HPDI32-COS register. This includes the PCI registers, the PLX Feature Set
Registers and the GSC firmware registers. Refer to hpdi32cos.h and gsc_pci9080.h for the complete list of

accessible registers.

Usage
Argument | Description
request | HPDI32COS IOCTL REG READ
arg gsc reg t*

Definition

typedef struct
{
u32 reg;
u32 value;
u32 mask;
} gsc _reg t;

Fields | Description

reg This is set to the identifier for the register to access.
value | This is the value read from the specified register.
mask | This is ignored for read request.

4.7.23. HPDI32COS_|IOCTL_REG_WRITE

This service writes a value to an HPDI32-COS register. This includes only the GSC firmware registers. The PCI and
PLX Feature Set Registers are read-only. Refer to hpdi32cos.h for a complete list of the GSC firmware

registers.

Usage

Argument | Description
request | HPDI32COS IOCTL REG WRITE

arg gsc reg t*

27
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

Definition

typedef struct
{
u32 reg;
u32 value;
u32 mask;
} gsc_reg t;

Fields | Description

reg This is set to the identifier for the register to access.
value | This is the value to write to the specified register.
mask | This is ignored for write request.

4.7.24. HPDI32COS_IOCTL_RX DATA
This service retrieves the current state driven on the 32 cable data signals.

Usage

Argument | Description
request | HPDI32COS TOCTL RX DATA

arg u32*

The value returned are in the range from zero through OXFFFFFFFF.
4.7.25. HPDI32COS_IOCTL_RX_DATA_MASK_GET
This service retrieves the current data mask applied to the 32 cable data signal states before COS or LA processing.

Usage

Argument | Description
request | HPDI32COS IOCTL RX DATA MASK GET
arg u32*

The value returned are in the range from zero through OxFFFFFFFF.
4.7.26. HPDI32COS_IOCTL_RX_DATA_MASK_SET

This service updates the current data mask applied to the 32 cable data signal states before COS or LA processing. If
a bit is set, then that bit is used for COS or LA processing. If a bit clear, then that bit is ignored.

Usage

Argument | Description
request | HPDI32COS IOCTL RX DATA MASK SET

arg u32*

The value returned are in the range from zero through OxFFFFFFFF.

28
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

4.7.27. HPDI32COS_IOCTL_RX_FIFO_AE

This service updates the Rx FIFO Almost Empty threshold level. The Rx FIFO content is discarded during this
service when a setting is being applied.

Usage

Argument | Description
request | HPDI32COS IOCTL RX FIFO AE
arg s32%*

Valid argument values are in the range from zero through OXFFFF, or -1 to retrieve the current setting.
4.7.28. HPDI32COS_ IOCTL_RX_FIFO_AF

This service updates the Rx FIFO Almost Full threshold level. The Rx FIFO content is discarded during this service
when a setting is being applied.

Usage

Argument | Description
request | HPDI32COS IOCTL RX FIFO AF
arg s32%*

Valid argument values are in the range from zero through the OXFFFF, or -1 to retrieve the current setting.
NOTE: If the threshold is set to a value larger than the Rx FIFO, then the Rx FIFO will never
become Almost Full. Consequently, the Rx FIFO Almost Full status cannot stop the receiver. The
result is that Rx FIFO may likely overflow.

4.7.29. HPDI32COS_IOCTL_RX_FIFO_OVER

This service reports the current Rx FIFO overflow status.

NOTE: An overflow occurs when data is clocked into the Rx FIFO while the FIFO is already full.
For the HPDI32-COS, this can only occur when the Rx FIFO Almost Full threshold level is set to
a value larger than the size of Rx FIFO.

NOTE: Rx FIFO overflows are cleared by resetting the Rx FIFO (section 4.7.30, page 30).

Usage

Argument | Description
request | HPDI32COS IOCTL RX FIFO OVER
arg s32*

Valid options that can be passed to the service are as follows.

Value Description
HPDI32COS FIFO ERROR CHECK | This option requests the current error status.
HPDI32COS FIFO ERROR CLEAR | This option clears the error status.

The current state is reported as one of the following values.

29
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

Value Description
HPDI32COS_FIFO_ERROR_NO | The FIFO has not experienced an overflow condition.
HPDI32COS_FIFO_ERROR_YES | The FIFO has experienced an overflow condition.

4.7.30. HPDI32COS_

IOCTL_RX_FIFO_RESET

This service resets the Rx FIFO, which clears the content. It also clears the Rx FIFO overflow and underflow status

bits.

Usage
Argument | Description
request | HPDI32COS IOCTL RX FIFO RESET
arg Not used.

4.7.31. HPDI32COS_

IOCTL_RX_FIFO_STATUS

This service retrieves the current Rx FIFO fill level status.

Usage
Argument | Description
request | HPDI32COS IOCTL RX FIFO STATUS
arg s32%*

The current status is reported as one of the following values.

Value Description

HPDI32COS FIFO STATUS AE The FIFO contains Almost Empty values or fewer.

HPDI32C0S FIFO STATUS AF The FIFO has room 'go accept Almost Full or fewer additional
- — — values before becoming full.

HPDI32COS FIFO_STATUS_EMPTY | The FIFO is empty.

HPDI32COS FIFO STATUS FULL The FIFO is full.

HPDI32C0S FIFO STATUS MEDIUM The FIFO’s fill level is between the Almost Empty mark and
- - - the Almost Full mark.

4.7.32. HPDI32COS_

This service reports the

IOCTL_RX_FIFO_UNDER

current Rx FIFO underflow status.

NOTE: An Rx FIFO underflow occurs when the FIFO is read while empty. This can typically
only occur when an application reads from the FIFO directly.

NOTE: Rx FIFO underflows are cleared by resetting the Rx FIFO (section 4.7.30, page 30).

Usage
Argument | Description
request | HPDI32COS IOCTL RX FIFO UNDER
arg s32*

Valid options that can be passed to the service are as follows.

30
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

Value

Description

HPDI32COS FIFO ERROR CHECK | This option requests the current error status.

HPDI32COS FIFO ERROR CLEAR | This option clears the error status.

The current state is reported as one of the following values.

Value

Description

HPDI32COS_FIFO_ERROR_NO | The FIFO has not experienced an underflow condition.

HPDI32COS_FIFO_ERROR_YES | The FIFO has experienced an underflow condition.

4.7.33. HPDI32COS_IOCTL_RX_10_ABORT

This service aborts an ongoing hpdi32cos_ read () request.

Usage
Argument | Description
request | HPDI32COS IOCTL RX IO ABORT
arg s32%*

The results are reported as one of the following values.

Value Description

HPDI32C0S TO ABORT No | AN hpdi32cos read() request was not aborted as none were
- - - ongoing.

HPDI32COS_IO_ABORT_YES | Anongoing hpdi32cos read () request was aborted.

4.7.34. HPDI32COS_|IOCTL_RX_IO_BMDMA_TRSH

This service sets the minimum DMA transfer size used during Block Mode DMA based read requests. As such read
requests may consist of multiple smaller DMA transfers, this setting limits the smallest size of those individual
transfers. This setting does not apply to the last DMA transfer of the read request. The unit of measure for this

setting is bytes.

Usage
Argument | Description
request | HPDI32COS IOCTL RX IO BMDMA TRSH
arg s32%*

Valid argument values are from zero to the depth of the Rx FIFO in 32-bit words, or -1 to retrieve the current
setting. The default is 60 bytes.

4.7.35. HPDI32COS_IOCTL_RX_IO_MODE

This service selects the mechanism used to retrieve data from the Rx FIFO during read requests.

Usage
Argument | Description
request | HPDI32COS IOCTL RX IO MODE
arg s32%*

Valid argument values supplied to the service are as follows.

31
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

Value Description

-1 Retrieve the current setting.

GSC_TIO_MODE_ BMDMA | Data is retrieved using Block Mode DMA.
GSC_IO_MODE_ DMDMA | Data is retrieved using Demand Mode DMA.
GSC IO MODE PIO Data is retrieved using repetitive register accesses.

4.7.36. HPDI32COS_IOCTL_RX_I10_OVER

This service configures the read service to check for an Rx FIFO overflow before performing read operations. Data
is lost when there is an overflow. If the check is performed and an overflow is detected, then the read service
immediately returns an error.

NOTE: The check for an overflow is performed upon entry to the read service. The read service
does not check for overflows that occur while the read is in progress. For in-progress overflows an
application must perform the check manually or wait for the check performed by a subsequent
read request.

Usage

Argument | Description
request | HPDI32COS IOCTL RX IO OVER
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
HPDI32COS_IO_ERROR CHECK | Perform the check. This is the default.
HPDI32COS IO ERROR_IGNORE | Do not perform the check.

4.7.37. HPDI32COS_IOCTL_RX_IO_PIO_TRSH

This service sets the threshold at which DMA read requests instead resort to PIO mode. When the number of data
values in a read request is less than or equal to this value, then the operation automatically uses PIO instead of
DMA. This is intended to improve efficiency as small read requests can be performed more efficiently when done
using P10 rather than DMA.

Usage

Argument | Description
request | HPDI32COS IOCTL RX IO PIO TRSH
arg s32%*

Valid argument values are any non-negative number, or -1 to retrieve the current setting. The default is 15 values.
4.7.38. HPDI32COS_IOCTL_RX_IO_TIMEOUT

This service sets the timeout limit for read requests. The value is expressed in seconds. The timeout limit is the total
amount of time allowed for a single hpdi32cos read () request. When this time limit has expired the service
terminates. When this occurs the hpdi32cos_read() return value will be less than the number of bytes
requested, and possibly zero.

32
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

Usage

Argument | Description
request | HPDI32COS IOCTL RX IO TIMEOUT
arg s32%*

Valid argument values are in the range from zero to 3600, -1, and HPDI32COS IO TIMEOUT INFINITE. A
value of zero tells the driver not to sleep in order to wait for more data, and should only be used with PIO mode
reads. A value of -1 is used to retrieve the current setting. If the option HPDI32C0OS_ IO TIMEOUT INFINITE
is used, then the driver waits indefinitely rather than timing out. The default is 10 seconds.

4.7.39. HPDI32COS_IOCTL_RX_IO_UNDER

This service operates on the Rx FIFO underflow status.

Usage

Argument | Description
request | HPDI32COS IOCTL RX IO UNDER
arg s32%*

Valid argument values supplied to the service are as follows.

Value Description

-1 Retrieve the current setting.
HPDI32COS_IO_ERROR CHECK | Check the underflow status. This is the default.
HPDI32COS_ IO ERROR_IGNORE | Ignore the current status.

4.7.40. HPDI32COS_IOCTL_RX_START
This service starts or stops the receiver.
NOTE: Setting Rx Start to NO (0), clears the LA Triggered (section 4.7.17, page 24) status.

Usage

Argument | Description
request | HPDI32COS IOCTL RX START
arg s32%*

Valid argument values include the following options.

Value Description

-1 Retrieve the current setting.
HPDI32COS_RX START_NO | This option halts receiver operation.
HPDI32COS_RX_ START_YES | This option activates receiver operation.

4.7.41. HPDI32COS_ IOCTL_RX_ STATE
This service retrieves the current state of the receiver.
NOTE: If Loopback (section 4.7.18, page 25) is disabled, then Tx Enable (section 4.7.45, page

35) inhibits Rx Start. It doesn’t affect the Rx Start setting, but it does prevent Rx Start from taking
place.

33
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

Usage

Argument | Description
request | HPDI32COS IOCTL RX STATE
arg s32%*

Valid argument values supplied to the service are as follows.

Value Description

HPDI32COS RX STATE DISABLED | The receiver is disabled.

HPDI32COS_RX_ STATE_RUNNING | The receiver is enabled and running.

The receiver is stopped due to the Rx FIFO becoming Almost

HPDT32COS_RX_STATE_STOPPED |

4.7.42. HPDI32COS_IOCTL_RX WORD_COUNT
This service retrieves the number of data values recorded into the Rx FIFO since the receiver was last started.

Usage

Argument | Description
request | HPDI32COS IOCTL RX WORD COUNT
arg u32*

Argument values returned are in the range from zero through OXFFFFFFFF.

4.7.43. HPDI32COS_IOCTL_TX_DATA_GET

This service retrieves the current Tx Data provided for output on the 32 cable interface data signals. Only those
bytes current configured as output are driven onto the cable interface (see HPDI32COS IOCTL BYTE ENABLE,

section 4.7.1, page 19).

Usage

Argument | Description
request | HPDI32COS IOCTL TX DATA GET
arg u32*

Argument values returned are in the range from zero through OXFFFFFFFF.

4.7.44. HPDI32COS_IOCTL_TX_DATA_SET

This service updates the current Tx Data provided for output on the 32 cable interface data signals. Only those bytes
current configured as output are driven onto the cable interface (see HPDI32COS IOCTL BYTE ENABLE,

section 4.7.1, page 19).

Usage

Argument | Description
request | HPDI32COS IOCTL TX DATA SET

arg u32*

Valid argument values are in the range from zero through OXFFFFFFFF.

34
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

4.7.45. HPDI32COS_IOCTL_TX_ENABLE

This service enables or disables the 32 cable interface data signals to be driven as discrete outputs. When enabled,
only those bytes current configured as output are driven onto the cable interface (see
HPDI32COS IOCTL BYTE ENABLE, section 4.7.1, page 19).

NOTE: If Loopback (section 4.7.18, page 25) is disabled, then Tx Enable inhibits Rx Start
(section 4.7.40, page 33). It doesn’t affect the Rx Start setting, but it does prevent Rx Start from
taking place.

NOTE: The Tx Enable service configures all fours Byte Enable (section 4.7.1, page 19) bytes as
outputs, but it does not affect the Byte Enable configuration bits.

Usage

Argument | Description
request | HPDI32COS IOCTL TX ENABLE
arg s32%*

Valid argument values supplied to the service are as follows.

Value Description

-1 Request current setting.
HPDI32COS_TX ENABLE_NO | Disable the transmission functionality.
HPDI32COS_TX ENABLE_YES | Enable the transmission functionality.

4.7.46. HPDI32COS_IOCTL_WAIT_CANCEL

This service resumes all threads blocked via HPDI32COS IOCTL WAIT EVENT IOCTL calls (section 4.7.47,
page 36), according to the provided criteria. When a blocked thread is waiting for any event specified in the
structure, then the thread is resumed.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver
initiated waits are unaffected by application cancel requests.

Usage
Argument | Description
request | HPDI32COS IOCTL WAIT CANCEL
arg gsc wait t*

Definition

typedef struct

{
u32 flags;
u32 main;

u32 gsc;
u32 alt;
u32 io;

u32 timeout ms;
u32 count;
} gsc_wait t;

35
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

Fields Description

flags This is unused by wait cancel operations.

main This specifies the set of GSC_WAIT MAIN * events whose wait requests are to be
cancelled. Refer to section 4.7.47.2 (page 37).

gsc This specifies the set of HPDI32C0S WAIT GSC_* events whose wait requests are to
be cancelled. Refer to section 4.7.47.3 (page 37).

alt This is unused by the HPDI32-COS driver and should be zero.

i This specifies the set of HPDI32COS WAIT IO * events whose wait requests are to
be cancelled. Refer to section 4.7.47.4 (page 38).

timeout ms | Thisis unused by wait cancel operations.

count Upon return this indicates the number of waits that were cancelled.

4.7.47. HPDI32COS_IOCTL_WAIT_EVENT

This service blocks a thread until any one of a specified set of events occurs, or until a timeout lapses, whichever
occurs first. The set of possible events to wait for are specified in the structure’s main, gsc and io fields. All field
values must be valid and at least one event must be specified. If the thread is resumed because one of the referenced
events has occurred, then the bit for the respective event is the only event bit set. All other event bits and fields are
zero. (Multiple event bits are set only if the events occur simultaneously.)

Usage
Argument | Description
request | HPDI32COS IOCTL WAIT EVENT
arg gsc wait t*

Definition

NOTE: The service waits only for the first of the specified events, not for all specified events.

NOTE: A wait timeout is reported via the gsc_wait t structure’s flags field having the
GSC WAIT FLAG TIMEOUT flag set, rather than via an ETIMEDOUT errofr.

typedef struct

{

u32 flags;

u32 main;

u32 gsc;

u32 alt;

u32 io;

u32 timeout ms;
u32 count;

} gsc_wait t;

Fields Description

flags This must initially be zero. Upon return this indicates the reason that the thread was
resumed. Refer to section 4.7.47.1 (page 37).

. This specifies any number of GSC WAIT MAIN * events that the thread is to wait for.

main _ — — —
Refer to section 4.7.47.2 (page 37).

gsc This specifies any number of HPDI32COS WAIT GSC_* events that the thread is to
wait for. Refer to section 4.7.47.3 (page 37).

alt This is unused by the HPDI32-COS driver and must be zero.

. This specifies any number of HPDI32C0S WAIT IO * events that the thread is to

io) i — _tv_
wait for. Refer to section 4.7.47.4 (page 38).

36
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

This specified the maximum amount of time, in milliseconds, that the thread is to wait
timeout_ms | for any of the referenced events. A value of zero means do not timeout at all. If non-
zero, then upon return the value is the approximate amount of time actually waited.

count This is unused by wait event operations and must be zero.

4.7.47.1. gsc_wait t.flags Options

Upon return from a wait request the wait structure’s £lags field indicates the reason that the thread was resumed.
Only one of the below options will be set.

Fields Description

GSC_WAIT FLAG_CANCEL | The wait request was cancelled.

GSC_WAIT FLAG DONE One of the referenced events occurred.

GSC_WAIT_ FLAG_TIMEOUT | The timeout period lapsed before a referenced event occurred.

4.7.47.2. gsc_wait t.main Options

The wait structure’s main field may specify any of the below primary interrupt options. These interrupt options are
supported by the HPDI32-COS and other General Standards products.

Fields Description

GSC_WAIT MAIN DMAO This refers to the DMA Done interrupt on DMA engine number zero.
GSC_WAIT MAIN DMAl This refers to the DMA Done interrupt on DMA engine number one.
GSC WAIT MAIN GSC This refers to any of the Interrupt Control/Status Register interrupts.

This generally refers to an interrupt generated by another device sharing the

GSC WAIT MAIN OTHER ’ .
- — - same interrupt as the accessed HPDI132-COS device.

GSC WAIT MAIN PCI This refers to any interrupt generated by the HPDI32-COS.

GSC_WAIT MAIN SPURIOUS | This refers to device interrupts which should never be generated.

GSC_WAIT MAIN UNKNOWN | This refers to device interrupts whose source could not be identified.

4.7.47.3. gsc_wait t.gsc Options

The wait structure’s gsc field may specify any combination of the below interrupt options. These are the interrupt
options referenced in the Interrupt Control Register. Applications are responsible for enabling the desired interrupt
options. Refer to HPDI32COS IOCTL IRQ ENABLE (section 4.7.14, page 23). If a device supports the Interrupt
Edge/Level Register then interrupts configured for level triggering are disabled by the driver when they occur. If a
device does not support this register, then all firmware interrupts are disabled by the driver when they occur.

Value Description

HPDI32COS WAIT GSC ALL This refers to all firmware interrupts.

HPDI32COS WAIT GSC CCl FALL This refers to a falling edge on the Cable Command 1 signal.
HPDI32COS WAIT GSC CCl RISE This refers to a rising edge on the Cable Command 1 signal.
HPDI32COS WAIT GSC CC2 This refers to the Cable Command 2 signal.

HPDI32COS WAIT GSC CC3 This refers to the Cable Command 3 signal.

HPDI32COS WAIT GSC CC4 This refers to the Cable Command 4 signal.

HPDI32COS WAIT GSC CC5 This refers to the Cable Command 5 signal.

HPDI32COS WAIT GSC CC6 This refers to the Cable Command 6 signal.

HPDI32COS WAIT GSC_COS DETECTED | This refers to the detection of a Change of State event.
HPDI32COS_WAIT_GSC_EVENT COUNT_0 | This refers to the Event Counter equaling zero.
HPDI32COS_WAIT GSC_LA TRIGGERED | This refersto Logic Analyzer being triggered.
HPDI32COS WAIT GSC RX FIFO _AE This refers to the Rx FIFO’s Almost Empty status.
HPDI32COS WAIT GSC _RX FIFO AF This refers to the Rx FIFO’s Almost Full status.
HPDI32COS WAIT_GSC _RX FIFO EMPTY | This refers to the Rx FIFO’s empty status.

37
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

HPDI32COS WAIT

GSC_RX FIFO FULL | This refers to the Rx FIFO’s full status.

HPDI32COS WAIT

GSC_RX FIFO OVER | This refers to an Rx FIFO overflow event.

HPDI32COS WAIT

GSC_RX FIFO UNDER | This refers to an Rx FIFO underflow event.

HPDI32COS WAIT

GSC RX RUNNING This refers to the receiver being enable.

HPDI32COS WAIT

GSC RX STOPPED This refers to the receiver being stopped.

4.7.47.4. gsc_wait

t.1io Options

The wait structure’s io field may specify any of the below event options. These events are generated in response to
application device data read requests.

Fields Description

HPDI32COS_WAIT_ IO RX ABORT This refers to read requests which have been aborted.
HPDI32COS_WAIT IO RX DONE This refers to read requests which have been satisfied.

HPDI32COS _WAIT IO RX ERROR This refers to read requests which end due to an error.
HPDI32COS_WAIT_IO_RX TIMEOUT | This refers to read requests which end due to a timeout period lapse.

4.7.48. HPDI32COS_IOCTL_WAIT_STATUS

This service counts all threads blocked via the HPDI32COS IOCTL WAIT EVENT IOCTL service (section
4.7.47, page 36), according to the provided criteria. A match is made when a waiting thread’s wait criteria matches
any of the criteria specified in the structure passed to this service.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver
initiated waits are ignored by application status requests.

Usage
Argument | Description
request | HPDI32COS IOCTL WAIT STATUS
arg gsc wait t*

Definition

typedef struct

{

u32 flags;
u32 main;
u32 gsc;
u32 alt;
u32 io;

u32 timeout ms;
u32 count;
} gsc_wait t;

Fields Description
flags This is unused by wait status operations.
. This specifies the set of GSC WAIT MAIN * events whose wait requests are to be

maln N — — —
counted. Refer to section 4.7.47.2 (page 37).

gsc This specifies the set of HPDI32C0S WAIT GSC_* events whose wait requests are to
be counted. Refer to section 4.7.47.3 (page 37).

alt This is unused by the HPDI32-COS driver and should be zero.

38
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

i This specifies the set of HPDI32C0OS WAIT IO * events whose wait requests are to
be counted. Refer to section 4.7.47.4 (page 38).
timeout ms | Thisis unused by wait status operations.

count Upon return this indicates the number of waits that met any of the specified criteria.

39
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

5. The Driver

NOTE: Contact General Standards Corporation if additional driver functionality is required.

5.1. Files

The device driver files are summarized in the table below.

Description | Files Location
Source Files | *.c, *.h ...
Header File | hpdi32cos.h
hpdi32cos.ko t
hpdi32cos.o f
+ This is for kernel versions 2.6 and later.
1 This is for kernel versions 2.4 are earlier.

../driver/
Driver File

5.2. Build

For instructions on building the driver refer to this same section number in the OS specific HPDI32-COS driver user
manual.

5.3. Startup

For instructions on starting the driver executable refer to this same section number in the OS specific HPDI32-COS
driver user manual.

5.4. Verification

For instructions on verifying that the driver has been loaded and is running refer to this same section number in the
OS specific HPDI32-COS driver user manual.

5.5. Version

For instructions on obtaining the driver version number refer to this same section number in the OS specific
HPDI32-COS driver user manual.

5.6. Shutdown

For instructions on terminating the driver executable refer to this same section number in the OS specific HPDI32-
COS driver user manual.

40
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

6. Document Source Code Examples
The source code examples included in this document are built into a statically linkable library usable with console
applications. The purpose of these files is to verify that the documentation samples compile and to provide a library

of working sample code to assist in a user’s learning curve and application development effort.

6.1. Files

The library files are summarized in the table below.

Description | Files Location
Source Files | *.c,*.h/docsrc/
Header File | hpdi32cos dsl.h | ../include/
Library File | hpdi32cos dsl.a | ../1lib/

6.2. Build

For library build instructions refer to this same section number in the OS specific HPDI32-COS driver user manual.
6.3. Library Use

For library usage information refer to this same section number in the OS specific HPDI32-COS driver user manual.

41
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

7. Utilities Source Code

The API Library installation includes a body of utility source code designed to aid in the understanding and use of
the interface calls and IOCTL services. Utility sources are also included for device independent and common,
general-purpose services. Most of the utilities are implemented as visual wrappers around the corresponding services
to facilitate structured console output for the sample applications. The utility sources are compiled and linked into
static libraries to simplify their use. An additional purpose of these utility services is to provide a library of working
sample code to assist in a user’s learning curve and application development effort.

For each API function there is a corresponding utility source file with a corresponding utility service. As an
example, for the API function hpdi32cos open () there is the utility file open . c containing the utility function
hpdi32cos_open util (). The naming pattern is as follows: API function hpdi32cos xxxx (), utility file
name xxxx.c, utility function hpdi32cos xxxx util (). Additionally, for each IOCTL code there is a
corresponding utility source file with a corresponding utility service. As an example, for IOCTL code
HPDI32COS_ IOCTL QUERY there is the utility file query.c -containing the utility function
hpdi32cos_query (). The naming pattern is as follows: IOCTL code HPDI32COS IOCTL XXXX, utility file
name xxxx . c, utility function hpdi32cos_ xxxx ().

7.1. Files

The utility files are summarized in the table below.

Description | Files Location
Source Files | *.c, *.h/utils/
Header File | hpdi32cos utils.h | ../include/
hpdi32cos utils.a
gsc_utils.a

os _utils.a

plx utils.a

Library Files ../1ib/

7.2. Build
For library build instruction refer to this same section number in the OS specific HPDI132-COS driver user manual.
7.3. Library Use

For library usage information refer to this same section number in the OS specific HPDI32-COS driver user manual.

42
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

8. Operating Information

This section explains some basic operational procedures for using the HPDI32-COS. This is in no way intended to
be a comprehensive guide. This is simply to address a very few issues relating to their use.

8.1. Debugging Aids

The driver package includes the following items useful for development and/or debugging aids.

8.1.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id
example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as
follows.

Description | File | Location
Application | id | ../id/

8.1.2. API Listing

Among the utility services provided is a function to generate a listing to the console of all API settings and all
register contents. When used, the function is typically used to verify the device configuration. In these cases, the
function should be called just prior to the first read or digital I/O operation. The function arguments are as follows.
The utility location is given in the subsequent table.

Argument | Description

fd This is the file descriptor used to access the device.
Description | File/Name Location
Function hpdi32cos api listing() | Source File
Source File | api listing.c ./utils/
Header File | hpdi32cos utils.h ../include/
Library File | hpdi32cos utils.a ../1ib/

8.1.3. Detailed Register Dump

Among the utility services provided is a function to generate a detailed listing of device registers to the console.
When used, the function is typically used to verify device configuration. In these cases, the function should be called
after complete device configuration and before the first 1/0 call. When intended for sending to GSC tech support,
please set the detail arguments to 1. The function arguments are as follows. The utility location is given in the
subsequent table.

Argument | Description
fd This is the file descriptor used to access the device.
detail If non-zero the register dump will include details of each register field.
Description | File/Name Location
Function hpdi32cos reg list () | Source File
Source File | reg.c ../utils/
Header File | hpdi32cos utils.h ../include/
Library File | hpdi32cos utils.a /1ib/
43

General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

8.2. COS Input Configuration

The basic steps for Change-of-State Input configuration are illustrated in the utility function noted below. The table
also gives the location of the source file, the header file and the corresponding library containing the executable
code. The referenced files are included via the Main Header and Main Library.

Item Name/File Location
Function hpdi32cos config cos () | Source File
Source File | config cos.c .Jutils/
Header File | hpdi32cos utils.h ../include/
Library File | hpdi32cos utils.a ./1ib/

8.3. Logic Analyzer Input Configuration

The basic steps for basic Logic Analyzer Input configuration are illustrated in the utility function noted below. The
table also gives the location of the source file, the header file and the corresponding library containing the
executable code. The referenced files are included via the Main Header and Main Library.

Item Name/File Location
Function hpdi32cos config la() | Source File
Source File | config la.c ../utils/
Header File | hpdi32cos utils.h ../include/
Library File | hpdi32cos utils.a ../1ib/

8.4. Data Transfer Modes

All device 1/0 requests move data through an intermediate driver buffer on its way between the device and
application memory. The data is processed in chunks no larger than the size of this intermediate buffer. The process
used to perform this transfer is according to the I/0O mode selection. Movement of data between the application
buffers and the intermediate driver buffers is performed by the kernel.

8.4.1. PIO - Programmed 1/O

This mode transfers data by repetitive register accesses. Of the modes supported this is the least efficient. However,
it is the only mode that can be used with an 1/0 Timeout setting of zero.

8.4.2. BMDMA - Block Mode DMA

This option uses block mode DMA transfers to fulfill application 1/O requests. In this mode, movement of data by
the DMA engine is initiated for reads only after the data is already present in the Rx FIFO. In this mode the driver
subdivides requests, as needed, based on the current state of the Rx FIFO. Consequently, each 1/O request may
consist of a single DMA transfer, a few DMA transfers or of many DMA transfers. Typically, the lower the transfer
clock relative to bus activity between the card and the host, the smaller and more numerous the number of transfers.

NOTE: The Rx Block Mode DMA Threshold settings is used to limit the smallest size of
individual DMA transfers. This is done to help improve efficiency. The BMDMA default exceeds
the equivalent PIO Threshold default to limit the use of PIO to those instances where it is required
to complete 1/0O requests. This too is done to help improve efficiency. For additional information
refer to section 4.7.34 (page 31, Rx BMDMA Threshold) and section 4.7.37 (page 32, Rx PIO
Threshold).

44
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

8.4.3. DMDMA - Demand Mode DMA

In this DMA mode the transfers are subdivided and started differently. First, subdividing is done only as needed to
limit individual transfers to the size of the Rx transfer buffers maintained by the driver for each device. Second, the
transfers are started without waiting for data to arrive in the Rx FIFO. In this mode the DMA engine moves Rx data
as it appears in the Rx FIFO.

45
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

9. Sample Applications

For information on the sample applications refer to this same section number in the OS specific HPDI32-COS driver
user manual.

46
General Standards Corporation, Phone: (256) 880-8787

HPDI32-COS, API Library Reference Manual

Document History

Revision Description
October 3, 2024 Updated to version 1.0.111.X.X.
May 2, 2024 Preliminary release. Version 1.0.110.X.X.

47
General Standards Corporation, Phone: (256) 880-8787

