
HPDI32
High Performance 32-bit Digital I/O

All Form Factors
…-HPDI32/A/AL/ALT/B

API Library

Reference Manual

Manual Revision: July 12, 2023

Driver Release Version 3.12.104.x.x

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

HPDI32, API Library Reference Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2020-2023, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or

software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Although extensive editing and reviews are performed before release, General Standards Corporation assumes no

responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are

made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this

documentation.

General Standards Corporation does not assume any liability arising out of the application or use of

documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or

any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,

software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

HPDI32, API Library Reference Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 8

1.1. Purpose.. 8

1.2. Acronyms .. 8

1.3. Definitions .. 8

1.4. Software Overview ... 8
1.4.1. Basic Software Architecture ... 8
1.4.2. API Library ... 9
1.4.3. Device Driver ... 9

1.5. Hardware Overview .. 9

1.6. Reference Material .. 10

1.7. Licensing ... 10

2. Installation ... 11

2.1. Host and Environment Support ... 11

2.2. Driver and Device Information ... 11

2.3. File List ... 11

2.4. Directory Structure .. 11

2.5. Installation .. 12

2.6. Removal .. 12

2.7. Overall Make Script .. 12

2.8. Environment Variables ... 12

3. Main Interface Files .. 13

3.1. Main Header File .. 13

3.2. Main Library File .. 13
3.2.1. Build ... 13
3.2.2. Additional Libraries .. 13

4. API Library ... 14

4.1. Files ... 14

4.2. Build ... 14

4.3. Library Use ... 14

4.4. Macros .. 14
4.4.1. IOCTL Codes ... 14
4.4.2. Registers ... 14

4.5. Data Types .. 15

4.6. Functions ... 15
4.6.1. hpdi32_close() .. 16
4.6.2. hpdi32_init() ... 16
4.6.3. hpdi32_ioctl() ... 17

HPDI32, API Library Reference Manual

4

General Standards Corporation, Phone: (256) 880-8787

4.6.4. hpdi32_open()... 18
4.6.5. hpdi32_read() ... 19
4.6.6. hpdi32_write() .. 20

4.7. IOCTL Services .. 21
4.7.1. HPDI32_IOCTL_CABLE_CMD_MODE_n ... 21
4.7.2. HPDI32_IOCTL_CABLE_CMD_STATE_n ... 22
4.7.3. HPDI32_IOCTL_GPIO_D32_OUTPUT ... 22
4.7.4. HPDI32_IOCTL_INITIALIZE .. 23
4.7.5. HPDI32_IOCTL_IRQ_CONFIG_EDGE ... 23
4.7.6. HPDI32_IOCTL_IRQ_CONFIG_HIGH.. 23
4.7.7. HPDI32_IOCTL_IRQ_ENABLE... 24
4.7.8. HPDI32_IOCTL_QUERY ... 24
4.7.9. HPDI32_IOCTL_REG_MOD .. 26
4.7.10. HPDI32_IOCTL_REG_READ .. 27
4.7.11. HPDI32_IOCTL_REG_WRITE ... 27
4.7.12. HPDI32_IOCTL_RX_AUTO_START .. 28
4.7.13. HPDI32_IOCTL_RX_ENABLE .. 28
4.7.14. HPDI32_IOCTL_RX_FIFO_AE .. 28
4.7.15. HPDI32_IOCTL_RX_FIFO_AF .. 29
4.7.16. HPDI32_IOCTL_RX_FIFO_OVERRUN .. 29
4.7.17. HPDI32_IOCTL_RX_FIFO_RESET ... 30
4.7.18. HPDI32_IOCTL_RX_FIFO_STATUS .. 30
4.7.19. HPDI32_IOCTL_RX_FIFO_UNDERRUN ... 30
4.7.20. HPDI32_IOCTL_RX_IO_ABORT .. 31
4.7.21. HPDI32_IOCTL_RX_IO_BMDMA_THRESH .. 31
4.7.22. HPDI32_IOCTL_RX_IO_DATA_SIZE .. 31
4.7.23. HPDI32_IOCTL_RX_IO_MODE .. 32
4.7.24. HPDI32_IOCTL_RX_IO_OVERRUN .. 32
4.7.25. HPDI32_IOCTL_RX_IO_PIO_THRESHOLD ... 33
4.7.26. HPDI32_IOCTL_RX_IO_TIMEOUT ... 33
4.7.27. HPDI32_IOCTL_RX_IO_UNDERRUN ... 33
4.7.28. HPDI32_IOCTL_RX_LINE_COUNT ... 34
4.7.29. HPDI32_IOCTL_RX_STATUS_COUNT ... 34
4.7.30. HPDI32_IOCTL_TRISTATE_TE_RE .. 34
4.7.31. HPDI32_IOCTL_TX_AUTO_START .. 35
4.7.32. HPDI32_IOCTL_TX_AUTO_STOP ... 35
4.7.33. HPDI32_IOCTL_TX_CLOCK_DIVIDER .. 35
4.7.34. HPDI32_IOCTL_TX_ENABLE .. 36
4.7.35. HPDI32_IOCTL_TX_FIFO_AE .. 36
4.7.36. HPDI32_IOCTL_TX_FIFO_AF .. 36
4.7.37. HPDI32_IOCTL_TX_FIFO_OVERRUN .. 37
4.7.38. HPDI32_IOCTL_TX_FIFO_RESET ... 37
4.7.39. HPDI32_IOCTL_TX_FIFO_STATUS .. 38
4.7.40. HPDI32_IOCTL_TX_FLOW_CONTROL .. 38
4.7.41. HPDI32_IOCTL_TX_IO_ABORT .. 38
4.7.42. HPDI32_IOCTL_TX_IO_BMDMA_THRESH ... 39
4.7.43. HPDI32_IOCTL_TX_IO_DATA_SIZE .. 39
4.7.44. HPDI32_IOCTL_TX_IO_MODE .. 39
4.7.45. HPDI32_IOCTL_TX_IO_OVERRUN .. 40
4.7.46. HPDI32_IOCTL_TX_IO_PIO_THRESHOLD .. 40
4.7.47. HPDI32_IOCTL_TX_IO_TIMEOUT .. 40
4.7.48. HPDI32_IOCTL_TX_LINE_VAL_OFF_CNT ... 41
4.7.49. HPDI32_IOCTL_TX_LINE_VAL_ON_CNT ... 41
4.7.50. HPDI32_IOCTL_TX_REMOTE_THROTTLE ... 41
4.7.51. HPDI32_IOCTL_TX_STATUS_VAL_CNT ... 42

HPDI32, API Library Reference Manual

5

General Standards Corporation, Phone: (256) 880-8787

4.7.52. HPDI32_IOCTL_TX_STATUS_VAL_MIR ... 42
4.7.53. HPDI32_IOCTL_USER_JUMPERS ... 43
4.7.54. HPDI32_IOCTL_WAIT_CANCEL ... 43
4.7.55. HPDI32_IOCTL_WAIT_EVENT .. 44
4.7.56. HPDI32_IOCTL_WAIT_STATUS .. 46

5. The Driver.. 48

5.1. Files ... 48

5.2. Build ... 48

5.3. Startup ... 48

5.4. Verification ... 48

5.5. Version .. 48

5.6. Shutdown .. 48

6. Document Source Code Examples ... 49

6.1. Files ... 49

6.2. Build ... 49

6.3. Library Use ... 49

7. Utilities Source Code... 50

7.1. Files ... 50

7.2. Build ... 50

7.3. Library Use ... 50

8. Operating Information ... 51

8.1. Debugging Aids .. 51
8.1.1. Device Identification .. 51
8.1.2. API Listing ... 51
8.1.3. Detailed Register Dump ... 51

8.2. I/O Modes ... 52
8.2.1. PIO - Programmed I/O ... 52
8.2.2. BMDMA - Block Mode DMA ... 52
8.2.3. DMDMA - Demand Mode DMA ... 52

8.3. Basic Transmit Configuration ... 52

8.4. Basic Transmitter Operation ... 53
8.4.1. Transmitter Cable Signals .. 53
8.4.2. Transmitter Cable Signals - continuous unstructured data stream .. 54
8.4.3. Transmitter Configuration Settings .. 58
8.4.4. Transmitter I/O Settings ... 59

8.5. Basic Receive Configuration .. 60

8.6. Basic Receiver Operation.. 60
8.6.1. Receiver Cable Signals ... 60
8.6.2. Receiver Cable Signals - continuous unstructured data stream .. 61
8.6.3. Receiver Operation Settings ... 65
8.6.4. Receiver I/O Settings .. 65

HPDI32, API Library Reference Manual

6

General Standards Corporation, Phone: (256) 880-8787

9. Sample Applications ... 67

Document History ... 68

HPDI32, API Library Reference Manual

7

General Standards Corporation, Phone: (256) 880-8787

Table of Figures

Figure 1 Basic architectural representation.. 9

Figure 2 A depiction of the HPDI32 transmitter and the transmitter cable signals. .. 53

Figure 3 A simple continuous unstructured data stream cable configuration. ... 55

Figure 4 Tx Data is synchronized with Tx Clock. ... 55

Figure 5 The Tx Enabled signal reflects the transmitter enable state. ... 56

Figure 6 The Tx Ready signal reflects the Tx FIFO empty state. .. 56

Figure 7 The Frame Valid signal reflects the data transmission process. .. 56

Figure 8 The Line Valid signal reflects valid transmit data being presented at the cable interface. 57

Figure 9 The Status Valid signal reflects valid status data being presented at the cable interface. 57

Figure 10 The remote receiving device can drive the Rx Ready signal to control data flow. 58

Figure 11 A depiction of the HPDI32 receiver and the receiver cable signals. ... 60

Figure 12 A simple continuous unstructured data stream cable configuration. ... 62

Figure 13 Rx Data is synchronized with Rx Clock. ... 62

Figure 14 The Rx Enabled signal reflects the receiver enable state... 63

Figure 15 The Frame Valid signal reflects the data reception process. ... 63

Figure 16 The Line Valid signal reflects valid transmit data being presented at the cable interface. 64

Figure 17 The Status Valid signal reflects valid status data being presented at the cable interface. 64

Figure 18 The receiver drives the Tx Ready signal to control data flow. .. 65

HPDI32, API Library Reference Manual

8

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

1.1. Purpose

The purpose of this document is to describe the interface to the HPDI32 API Library and, to a lesser extent, the

underlying device driver. The API Library software provides the interface between "Application Software" and the

device driver. The driver software provides the interface between the API Library and the actual HPDI32 hardware.

The API Library and device driver interfaces are primarily IOCTL based.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms Description

API Application Programming Interface

BMDMA Block Mode DMA

DIL Driver Interface Library

DLL Dynamic Link Library

DMA Direct Memory Access

DMDMA Demand Mode DMA

GSC General Standards Corporation

PCI Peripheral Component Interconnect

PCI64 A PCI form factor device with a 64-bit, 66MHz PCI bus.

PCIe PCI Express

PIO Programmed I/O

PMC PCI Mezzanine Card

PMC64 A PMC form factor device with a 64-bit, 66MHz PCI bus.

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

… This is a shortcut representation of the HPDI32 installation directory or any of its subdirectories.

API Library This is a library that provides application-level access to HPDI32 hardware.

Application This is a user mode process, which runs in user space with user mode privileges.

Driver This is the HPDI32 device driver, which runs in kernel space with kernel mode privileges.

HPDI32 This is used as a general reference to any device supported by this driver.

Library This is usually a general reference to the API Library.

Linux This refers to the Linux operating system. Refer to the HPDI32 Linux Driver User Manual.

Windows This refers to the Windows operating system. Refer to the HPDI32 Windows Driver User Manual.

1.4. Software Overview

1.4.1. Basic Software Architecture

This section describes the general architecture for the basic components that comprise HPDI32 applications. The

overall architecture is illustrated in Figure 1 below.

HPDI32, API Library Reference Manual

9

General Standards Corporation, Phone: (256) 880-8787

HPDI32

Device Driver

HPDI32

API Library

hpdi32_init()

hpdi32_open()

hpdi32_close()

hpdi32_ioctl()

hpdi32_read()

hpdi32_write()

Informational

Device 0

Device 1

Device X

...
HPDI32

Boards

HPDI32

Application

Hardware Level

OS Specific Level

Application Level

Figure 1 Basic architectural representation.

1.4.2. API Library

The primary means of accessing HPDI32 boards is via the HPDI32 API Library. This library forms a layer between

the application and the driver. Additional information is given in section 4 (page 14). With the library, applications

are able to open and close a device and, while open, perform I/O control and read and write operations.

1.4.3. Device Driver

The device driver is the host software that provides a means of communicating directly with HPDI32 hardware.

Depending on the OS, the driver may be a user space application, a kernel mode process, or something in between.

The software interface to the device driver is analogous to that of the API Library.

1.5. Hardware Overview

The HPDI32 is a high-performance 32-bit parallel digital I/O interface board. The host side connection is PCI based

and is either 32-bit or 64-bit according to the model ordered. The external I/O interface varies per model ordered.

The board is capable of transmitting or receiving data at up to 200 Mbytes per second over an external I/O interface,

depending on the model ordered. Onboard transmit and receive FIFOs of up to 128k data values each, buffer transfer

data between the PCI bus and the cable interface. This allows the HPDI32 to maintain maximum bursts on the cable

interface (at least up to the depth of the FIFOs) independent of the PCI bus interface. The onboard FIFOs can also be

used to buffer data between the cable interface and the PCI bus to maintain sustained data throughput for real-time

applications.

The HPDI32 offers a half-duplex external I/O interface. The board can either transmit or receive data, but it cannot

do both simultaneously. In addition to the 32 synchronous data, I/O lines, the external interface includes a set of

configurable flow control signals. Some of these can also be configured as discrete I/O. The board accommodates a

wide range of applications. This extends from transferring small blocks of data on demand, to transferring large

continuous streams of data for an extended period. Once a data link is established, the data is transferred to/from

host memory by simply writing to or reading from the onboard FIFOs. The board has an advanced PCI interface

engine, which provides for increased data throughput via DMA.

HPDI32, API Library Reference Manual

10

General Standards Corporation, Phone: (256) 880-8787

NOTE: Boards with a 32-bit PCI/PMC interface can be used interchangeably in 64-bit PCI /PMC

slots. However, the performance improvements associated with the 64-bit PCI interface can be

achieved only when a 64-bit device is used in a 64-bit slot.

1.6. Reference Material

The following reference material may be of particular benefit in using the HPDI32, the API Library and the device

driver. The specifications provide the information necessary for an in depth understanding of the specialized features

implemented on this device.

• The applicable HPDI32 Device Driver User Manual for your operating system from General

Standards Corporation.

• The applicable HPDI32 User Manual from General Standards Corporation.

• The PCI9080 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc. †

• The PCI9656 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc. †

† PLX data books are available from PLX at the following location.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE.txt in the root installation directory.

http://www.plxtech.com/

HPDI32, API Library Reference Manual

11

General Standards Corporation, Phone: (256) 880-8787

2. Installation

For additional information on driver installation refer to this same section number in the OS specific HPDI32 driver

user manual.

2.1. Host and Environment Support

For information on host and environment support refer to this same section number in the OS specific HPDI32

driver user manual.

2.2. Driver and Device Information

Each driver implements an OS specific means of obtaining generic, high-level information about the driver and the

installed devices. The information is given in textual format. Each line of text begins with an entry name, which is

followed immediately by a colon, a space character, and an entry value. Below is an example of what is provided,

followed by descriptions of each entry. This information is accessed by passing a device index value of -1 to the

API open service (section 4.6.4, page 18).

version: 3.12.104.47

32-bit support: yes

boards: 1

models: HPDI32

ids: 0x3

Entry Description

version This gives the driver version number in the form x.x.x.x.

32-bit support
This reports the driver’s support for 32-bit applications. This will be either “yes” or “no”

for 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.

models

This gives a comma separated list of the basic model number for each board the driver

detected. The model numbers are listed in the same order that the boards are accessed via

the API Library’s open function.

ids

This is a list identifying the values read from each board’s user jumpers. The id numbers

are listed in the same order that the boards are accessed via the API Library’s open

function.

The API’s source for the text provided is as follows.

OS Source

Linux The file “/proc/hpdi32”.

Windows The Driver Interface Library DLL.

2.3. File List

For the list of primary files included with each release refer to this same section number in the OS specific HPDI32

driver user manual.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory

structure is created and populated with the respective files.

HPDI32, API Library Reference Manual

12

General Standards Corporation, Phone: (256) 880-8787

NOTE: Additional or alternate directories may be installed, depending on the OS. For additional

information refer to this same section number in the OS specific HPDI32 driver user manual.

Directory Description

hpdi32/
This is the driver root directory. It contains the documentation, the Overall Make Script (section

2.7, page 12) and the below listed subdirectories.
…/api/ This directory contains the API Library source files (section 4, page 14).

…/docsrc/
This directory contains the source files for the code samples given in this document (section 6,

page 49).
…/driver/ This directory contains the driver and any related files (section 5, page 48).
…/include/ This directory contains the header files for the various libraries.
…/lib/ This directory contains all of the libraries built from the installed sources.

…/samples/
This directory contains the sample application subdirectories and all of their corresponding

source files (section 9, page 67).

…/utils/
This directory contains the source files for the utility libraries used by the sample applications

(section 7, page 50).

2.5. Installation

For installation instructions refer to this same section number in the OS specific HPDI32 driver user manual.

2.6. Removal

For removal instructions refer to this same section number in the OS specific HPDI32 driver user manual.

2.7. Overall Make Script

Each HPDI32 installation includes an OS specific means of building all of the build targets included in the

installation. For additional information refer to this same section number in the OS specific HPDI32 driver user

manual.

2.8. Environment Variables

For environment variable information refer to this same section number in the OS specific HPDI32 driver user

manual.

HPDI32, API Library Reference Manual

13

General Standards Corporation, Phone: (256) 880-8787

3. Main Interface Files

This section gives general information on the suggested device interface files to use when developing HPDI32 based

applications.

3.1. Main Header File

Throughout the remainder of this document references are made to various header files included as part of the

HPDI32 driver installation. For ease of use it is suggested that applications include only the single header file shown

below rather than individually including those headers identified separately later in this document. Including this

header file pulls in all other pertinent HPDI32 specific header files. Therefore, sources may include only this one

HPDI32 header and make files may reference only this one HPDI32 include directory.

Description File Location OS

Header File hpdi32_main.h
…/include/ Linux
…\include\ Windows

3.2. Main Library File

Throughout the remainder of this document references are made to various statically linkable libraries included as

part of the HPDI32 driver installation. For ease of use it is suggested that applications link only the single library file

shown below rather than individually linking those libraries identified separately later in this document. Linking this

library file pulls in all other pertinent HPDI32 specific static libraries. Therefore, make files may reference only this

one HPDI32 static library and only this one HPDI32 library directory.

Description File Location OS

Library File

hpdi32_main.a

hpdi32_multi.a
…/lib/ Linux

hpdi32_main.lib

hpdi32_multi.lib
…\lib\… Windows

NOTE: For applications using the HPDI32 and no other GSC devices, link the

hpdi32_main.xxx library. For applications using multiple GSC device types, link the

xxxx_main.xxx library for one of the devices and the xxxx_multi.xxx library for the

others. Linking multiple xxxx_main.xxx libraries may likely produce link errors due to

duplicate symbols being defined. While it may make little or no difference, it is recommended that

one choose the xxxx_main.xxx library from the driver with the largest number in positions

three (x.x.X.x.x) and/or four (x.x.x.X.x) in the driver release version number.

NOTE: The HPDI32 API Library is implemented as a shared or dynamically loaded library and is

thus not linked with the HPDI32 Main Library. The API Library must be linked with applications

by an OS specific means. For additional information refer to this same section number in the OS

specific HPDI32 driver user manual.

3.2.1. Build

For information on building the Main Library refer to this same section number in the OS specific HPDI32 driver

user manual.

3.2.2. Additional Libraries

For information on any additional required libraries refer to this same section number in the OS specific HPDI32

driver user manual.

HPDI32, API Library Reference Manual

14

General Standards Corporation, Phone: (256) 880-8787

4. API Library

The HPDI32 API Library is the software interface between user applications and the HPDI32 device driver. The

interface is accessed by including the header file hpdi32_api.h.

NOTE: Contact General Standards Corporation if additional library functionality is required.

4.1. Files

The API Library is built into a library linkable with HPDI32 applications. The pertinent files are identified in the

following table. Some source files are specific only to the HPDI32, some are specific only to the OS and some are

HPDI32 and OS independent.

Description Files Location OS

Source Files *.c, *.h
…/api/ Linux
…\api\ Windows

Header File hpdi32_api.h
…/include/ Linux
…\include\ Windows

Library File

libhpdi32_api.so †
…/lib/

/usr/lib/
Linux

hpdi32_api.lib

hpdi32_api.dll ‡
…\lib\… Windows

† The Linux run time executable is implemented as a shared object file.

‡ The Windows run time executable is implemented as a DLL.

4.2. Build

For build instructions refer to this same section number in the OS specific HPDI32 driver user manual.

4.3. Library Use

For Library usage information refer to this same section number in the OS specific HPDI32 driver user manual.

4.4. Macros

The Library interface includes the following macros, which are defined in hpdi32.h.

4.4.1. IOCTL Codes

The IOCTL macros are documented in section 4.7 (page 21).

4.4.2. Registers

The following gives the complete set of HPDI32 registers.

4.4.2.1. GSC Registers

The following table give the complete set of GSC specific HPDI32 registers. Please note that the set of registers

supported by any given device may vary according to model and firmware version. For the set of supported registers

and their detailed definitions of these registers please refer to the appropriate HPDI32 User Manual.

HPDI32, API Library Reference Manual

15

General Standards Corporation, Phone: (256) 880-8787

NOTE: Refer to the output of the “id” sample application (see section 9 of the OS specific

HPDI32 driver user manual) for a complete list of the registers supported by the device being

accessed.

Macros Description
HPDI32_GSC_BCR Board Control Register (BCR)
HPDI32_GSC_BSR Board Status Register (BSR)
HPDI32_GSC_FDR FIFO Data Register (FDR)
HPDI32_GSC_FRR Firmware Revision Register (FRR)
HPDI32_GSC_FSR Feature Set Register (FSR)
HPDI32_GSC_ICR Interrupt Control Register (ICR)
HPDI32_GSC_IELR Interrupt Edge/Level Register (IELR)
HPDI32_GSC_IHLR Interrupt High/Low Register (IHLR)
HPDI32_GSC_ISR Interrupt Status Register (ISR)
HPDI32_GSC_RAR Rx Almost Register (RAR)
HPDI32_GSC_RFSR Rx FIFO Size Register (RFSR)
HPDI32_GSC_RFWR Rx FIFO Words Register (RFWR)
HPDI32_GSC_RLCR Rx Line Count Register (RLCR)
HPDI32_GSC_RSCR Rx Status Count Register (RSCR)
HPDI32_GSC_TAR Tx Almost Register (TAR)
HPDI32_GSC_TCDR Tx CLock Divider Register (TCDR)
HPDI32_GSC_TFSR Tx FIFO Size Register (TFSR)
HPDI32_GSC_TFWR Tx FIFO Words Register (TFWR)
HPDI32_GSC_TLILCR Tx Line Invalid Length Counter Register (TLILCR)
HPDI32_GSC_TLVLCR Tx Line Valid Length Counter Register (TLVLCR)
HPDI32_GSC_TSVLCR Tx Status Valid Length Counter Register (TSVLCR)

4.4.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of the PCI

register identifiers refer to header files gsc_pci9080.h and gsc_pci9656.h, which are automatically

included via hpdi32_api.h.

4.4.2.3. PLX Feature Set Registers

Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX

register identifiers refer to header files gsc_pci9080.h and gsc_pci9656.h, which are automatically

included via hpdi32_api.h.

4.5. Data Types

The data types used by the API Library are described with the IOCTL services with which they are used. For

additional information refer to section 4.7 (page 21).

4.6. Functions

The Library interface includes the functions given in the following subsections. The function return values reflect

the completion status of the requested operation. A return value less than zero always reflects an error condition.

The table below summarizes the error status values. For the I/O functions, read and write, non-negative return values

reflect the number of bytes transferred from or to the device, respectively. A value equal to the requested transfer

size indicates complete success. Return values less than the requested transfer size indicate that the I/O timeout

expired. For the other API function calls a return value of zero indicates success.

HPDI32, API Library Reference Manual

16

General Standards Corporation, Phone: (256) 880-8787

Return Value Description OS

-1 to -499 This is the value “(-errno)” (see errno.h). All

-500 to -999 This is the value returned from the Driver Interface Library. †
Windows

<= -1000 This is “(int)(GetLastError()+1000)” forced to a negative value.

† Applicable error codes, if any, are defined in the header os_common.h.

4.6.1. hpdi32_close()

This function is the entry point to close a connection made via the API’s open call (section 4.6.4, page 18). The

device is put in an initialized state before this call returns.

Prototype

int hpdi32_close(int fd);

Argument Description
Fd This is the file descriptor obtained from the open service (section 4.6.4, page 18).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value descriptions above.

Example

#include <stdio.h>

#include "hpdi32_dsl.h"

int hpdi32_close_dsl(int fd)

{

 int errs;

 int ret;

 ret = hpdi32_close(fd);

 if (ret)

 printf("ERROR: hpdi32_close() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.2. hpdi32_init()

This function is the entry point to initializing the HPDI32 API Library and must be the first call into the Library.

This function may be called more than once, but only the first successful call actually initializes the library.

Subsequent calls perform no operation at all. All other API calls return a failure status when the API Library is not

initialized.

Prototype

int hpdi32_init(void);

HPDI32, API Library Reference Manual

17

General Standards Corporation, Phone: (256) 880-8787

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value descriptions above.

Example

#include <stdio.h>

#include "hpdi32_dsl.h"

int hpdi32_init_dsl(void)

{

 int errs;

 int ret;

 ret = hpdi32_init();

 if (ret)

 printf("ERROR: hpdi32_init() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.3. hpdi32_ioctl()

This function is the entry point to performing setup and control operations on a HPDI32 board. This function should

only be called after a successful open of the respective device. The specific operation performed varies according to

the request argument. The request argument also governs the use and interpretation of the arg argument. The

set of supported options for the request argument consists of the IOCTL services supported by the driver, which

are defined in section 4.7 (page 21).

NOTE: IOCTL operations are not supported for an open on device index -1.

Prototype

int hpdi32_ioctl(int fd, int request, void* arg);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 18).
request This specifies the desired operation to be performed (section 4.7, page 21).
arg This is specific to the IOCTL operation specified by the request argument.

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "hpdi32_dsl.h"

int hpdi32_ioctl_dsl(int fd, int request, void* arg)

HPDI32, API Library Reference Manual

18

General Standards Corporation, Phone: (256) 880-8787

{

 int errs;

 int ret;

 ret = hpdi32_ioctl(fd, request, arg);

 if (ret)

 printf("ERROR: hpdi32_ioctl() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.4. hpdi32_open()

This function is the entry point to open a connection to a HPDI32 board. Before returning, the initialize IOCTL

service is called to reset all hardware and software settings to their defaults.

Prototype

int hpdi32_open(int device, int share, int* fd);

Argument Description
device This is the zero-based index of the HPDI32 to access. †

share
Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).

fd

The device handle is returned here. The pointer cannot be NULL. Values returned are as

follows.

Value Description
>= 0 This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

† The index value -1 can also be given to acquire driver information (section 2.2, page 11).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value descriptions above.

Example

#include <stdio.h>

#include "hpdi32_dsl.h"

int hpdi32_open_dsl(int device, int share, int* fd)

{

 int errs;

 int ret;

 ret = hpdi32_open(device, share, fd);

 if (ret)

 printf("ERROR: hpdi32_open() returned %d\n", ret);

HPDI32, API Library Reference Manual

19

General Standards Corporation, Phone: (256) 880-8787

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.4.1. Access Modes

The value of the share argument determines the device access mode, as follows.

Shared Access Mode:

Shared Access Mode allows multiple applications to access the same device simultaneously. In this mode, the first

successful open request returns with the device in an initialized state. Subsequent successful Shared Access Mode

open requests do not affect the state of the device. Once opened in Shared Access Mode, the device access remains

in this mode until all Shared Access Mode accesses release the device with a close request.

Exclusive Access Mode:

Exclusive Access Mode allows a single application to acquire exclusive access to a device. In this mode, a

successful open request returns with the device in an initialized state. While open in this mode all subsequent open

requests will fail regardless of the access mode requested. Once opened in Exclusive Access Mode, the device

access remains in this mode until released by the application with a close request.

4.6.5. hpdi32_read()

This function is the entry point to reading data from an open connection. The function reads up to bytes bytes

from the device.

NOTE: If an open was performed using an index of -1, then read requests will acquire

information from the driver (section 2.2, page 11) rather than data from a device.

NOTE: For additional information refer to the Data Transfer Modes section (section 8.1.3, page

51).

NOTE: The check for an overflow or an underflow is performed upon entry to the read service.

The read service does not check for these conditions that occur while the read is in progress. For

in-progress overflows or underflows an application must perform the check manually or wait for

the check performed by a subsequent read request.

Prototype

int hpdi32_read(int fd, void* dst, size_t bytes);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 18).
dst The data read is put here.

bytes
This is the desired number of bytes to read. When reading from a device, this must be a

multiple of the configured Rx data size (section 4.7.22, page 31).

Return Value Description

0 to bytes

The operation succeeded. When reading from a device, a value less than bytes

indicates that the I/O timeout period (section 4.7.26, page 33) lapsed before the entire

request could be satisfied.
< 0 An error occurred. See error value description above.

HPDI32, API Library Reference Manual

20

General Standards Corporation, Phone: (256) 880-8787

Example

#include <stdio.h>

#include "hpdi32_dsl.h"

int hpdi32_read_dsl(int fd, void* dst, size_t bytes, size_t* qty)

{

 int errs;

 int ret;

 ret = hpdi32_read(fd, dst, bytes);

 if (ret < 0)

 printf("ERROR: hpdi32_read() returned %d\n", ret);

 if (qty)

 qty[0] = (ret < 0) ? 0 : (size_t) ret;

 errs = (ret < 0) ? 1 : 0;

 return(errs);

}

4.6.6. hpdi32_write()

This function is the entry point to reading data from an open connection. The function writes up to bytes bytes to

the device.

NOTE: For additional information refer to the Data Transfer Modes section (section 8.1.3, page

51).

NOTE: The check for an overflow is performed upon entry to the write service. The write service

does not check for this condition that occurs while the write is in progress. For in-progress

overflows an application must perform the check manually or wait for the check performed by a

subsequent write request.

NOTE: Write operations are not supported for an open on device index -1.

Prototype

int hpdi32_write(int fd, const void* src, size_t bytes);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 18).
src The data to write is taken from this pointer.

bytes
This is the desired number of bytes to write. This must be a multiple of the configured Tx

data size (section 4.7.43, page 39).

Return Value Description

0 to bytes
The operation succeeded. A value less than bytes indicates that the I/O timeout period

(section 4.7.47, page 40) lapsed before the entire request could be satisfied.
< 0 An error occurred. See error value description above.

HPDI32, API Library Reference Manual

21

General Standards Corporation, Phone: (256) 880-8787

Example

#include <stdio.h>

#include "hpdi32_dsl.h"

int hpdi32_write_dsl(int fd, const void* src, size_t bytes, size_t*

qty)

{

 int errs;

 int ret;

 ret = hpdi32_write(fd, src, bytes);

 if (ret < 0)

 printf("ERROR: hpdi32_write() returned %d\n", ret);

 if (qty)

 qty[0] = (ret < 0) ? 0 : (size_t) ret;

 errs = (ret < 0) ? 1 : 0;

 return(errs);

}

4.7. IOCTL Services

The HPDI32 API Library and device driver implement the following IOCTL services. Each service is described

along with the applicable hpdi32_ioctl() function arguments.

Transmitter Operation and Settings

For general information on the transmitter, the transmitter cable signals and the transmitter I/O settings refer to

sections 8.3 (page 52) and 8.4 (page 53). These include concise tables and descriptions along with references to the

respective IOCTL services.

Receiver Operation and Settings

For general information on the receiver, the receiver cable signals and the receiver I/O settings refer to sections 8.5

(page 60) and 8.6 (page 60). These include concise tables and descriptions along with references to the respective

IOCTL services.

4.7.1. HPDI32_IOCTL_CABLE_CMD_MODE_n

These services configure the operating modes for Cable Command signals zero to six. The command signals and

corresponding service macros are given in the below table.

Cable Command Service Macro

0 HPDI32_IOCTL_CABLE_CMD_MODE_0

1 HPDI32_IOCTL_CABLE_CMD_MODE_1

2 HPDI32_IOCTL_CABLE_CMD_MODE_2

3 HPDI32_IOCTL_CABLE_CMD_MODE_3

4 HPDI32_IOCTL_CABLE_CMD_MODE_4

5 HPDI32_IOCTL_CABLE_CMD_MODE_5

6 HPDI32_IOCTL_CABLE_CMD_MODE_6

HPDI32, API Library Reference Manual

22

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request HPDI32_IOCTL_CABLE_CMD_MODE_n

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.

HPDI32_CABLE_CMD_MODE_FC
This refers to the Flow Control option. If the GPIO feature is

not supported, then this is the option returned.
HPDI32_CABLE_CMD_MODE_IN This refers to the GPIO Input option.
HPDI32_CABLE_CMD_MODE_OUT_LO This refers to the GPIO Output Low option.
HPDI32_CABLE_CMD_MODE_OUT_HI This refers to the GPIO Output High option.

4.7.2. HPDI32_IOCTL_CABLE_CMD_STATE_n

These services retrieve the current signal state for Cable Command signals zero to six, irrespective of their current

configuration. The command signals and corresponding service macros are given in the below table.

Cable Command Service Macro

0 HPDI32_IOCTL_CABLE_CMD_STATE_0

1 HPDI32_IOCTL_CABLE_CMD_STATE_1

2 HPDI32_IOCTL_CABLE_CMD_STATE_2

3 HPDI32_IOCTL_CABLE_CMD_STATE_3

4 HPDI32_IOCTL_CABLE_CMD_STATE_4

5 HPDI32_IOCTL_CABLE_CMD_STATE_5

6 HPDI32_IOCTL_CABLE_CMD_STATE_6

Usage

Argument Description
request HPDI32_IOCTL_CABLE_CMD_STATE_n

arg s32*

The current state is reported as one of the following values.

Value Description
HPDI32_CABLE_CMD_STATE_0 The signal is at logic level zero.
HPDI32_CABLE_CMD_STATE_1 The signal is at logic level one.

4.7.3. HPDI32_IOCTL_GPIO_D32_OUTPUT

This service configures the GPIO D32 Output feature. This service refers only to the output portion of GPIO D32

feature, as the input portion is always active.

Usage

Argument Description
request HPDI32_IOCTL_GPIO_D32_OUTPUT

arg s32*

Valid argument values include the options listed below.

HPDI32, API Library Reference Manual

23

General Standards Corporation, Phone: (256) 880-8787

Value Description

-1
Retrieve the current setting. This value is returned if

the feature is unsupported.

HPDI32_GPIO_D32_OUTPUT_DISABLE
This option disables the feature so the GPIO Output

Register content is not driven to the cable interface.

HPDI32_GPIO_D32_OUTPUT_ENABLE
This option enables the feature so the GPIO Output

Register content is driven to the cable interface.

4.7.4. HPDI32_IOCTL_INITIALIZE

This service returns all driver interface settings for the device to the state they were in when the device was first

opened. This includes both hardware-based settings and software-based settings.

Usage

Argument Description
request HPDI32_IOCTL_INITIALIZE

arg Not used.

4.7.5. HPDI32_IOCTL_IRQ_CONFIG_EDGE

This service configures firmware interrupts to be either edge triggered or level triggered. If a bit is set, then the

interrupt is edge triggered. If a bit is clear, then the interrupt is level triggered.

Usage

Argument Description
request HPDI32_IOCTL_IRQ_CONFIG_EDGE

arg s32*

Valid argument values include any bitwise combination of the bits defined for the HPDI32_IOCTL_IRQ_ENABLE

service (section 4.7.7, page 24), or -1 to retrieve the current configurations. The argument value -1 is returned if

the device feature is unsupported.

4.7.6. HPDI32_IOCTL_IRQ_CONFIG_HIGH

This service configures firmware interrupts to be either high or low triggered. High refers to either a high level or a

rising edge, depending on the interrupt’s edge/level configuration. Low refers to either a low level or a falling edge,

depending on the interrupt’s edge/level configuration. If a bit is set, then the interrupt is high triggered. If a bit is

clear, then the interrupt is low triggered.

Usage

Argument Description
request HPDI32_IOCTL_IRQ_CONFIG_HIGH

arg s32*

Valid argument values include any bitwise combination of the bits defined for the HPDI32_IOCTL_IRQ_ENABLE

service (section 4.7.7, page 24), or -1 to retrieve the current configurations. The argument value -1 is returned if

the device feature is unsupported.

HPDI32, API Library Reference Manual

24

General Standards Corporation, Phone: (256) 880-8787

4.7.7. HPDI32_IOCTL_IRQ_ENABLE

This service enables a specified set of firmware interrupts. If a bit is set, then the interrupt is enabled. If a bit is clear,

then the interrupt is disabled. When an interrupt is generated, it is serviced and disabled by the driver.

Usage

Argument Description
request HPDI32_IOCTL_IRQ_ENABLE

arg s32*

Valid argument values include any bitwise combination of the following bits, or -1 to retrieve the current

configuration.

Value Description

HPDI32_IRQ_CC0_FV_E_GPIO6

This refers to the Cable Command 0 signal, whose default

configuration is to trigger on a falling edge. This signal may be

configured as Frame Valid or GPIO 6.

HPDI32_IRQ_CC0_FV_S_GPIO6

This refers to the Cable Command 0 signal, whose default

configuration is to trigger on a rising edge. This signal may be

configured as Frame Valid or GPIO 6.

HPDI32_IRQ_CC1_LV_GPIO0
This refers to the Cable Command 1 signal. This signal may be

configured as Line Valid or GPIO 0.

HPDI32_IRQ_CC2_SV_GPIO1
This refers to the Cable Command 2 signal. This signal may be

configured as Status Valid or GPIO 1.

HPDI32_IRQ_CC3_RR_GPIO2
This refers to the Cable Command 3 signal. This signal may be

configured as Rx Ready or GPIO 2.

HPDI32_IRQ_CC4_TR_GPIO3
This refers to the Cable Command 4 signal. This signal may be

configured as Tx Data Ready or GPIO 3.

HPDI32_IRQ_CC5_TE_GPIO4
This refers to the Cable Command 4 signal. This signal may be

configured as Tx Enabled or GPIO 4.

HPDI32_IRQ_CC6_RE_GPIO5
This refers to the Cable Command 5 signal. This signal may be

configured as Rx Enabled or GPIO 5.
HPDI32_IRQ_RX_FIFO_AE This refers to the Rx FIFO’s Almost Empty status.
HPDI32_IRQ_RX_FIFO_AF This refers to the Rx FIFO’s Almost Full status.
HPDI32_IRQ_RX_FIFO_EMPTY This refers to the Rx FIFO’s empty status.
HPDI32_IRQ_RX_FIFO_FULL This refers to the Rx FIFO’s full status.
HPDI32_IRQ_TX_FIFO_AE This refers to the Tx FIFO’s Almost Empty status.
HPDI32_IRQ_TX_FIFO_AF This refers to the Tx FIFO’s Almost Full status.
HPDI32_IRQ_TX_FIFO_EMPTY This refers to the Tx FIFO’s empty status.
HPDI32_IRQ_TX_FIFO_FULL This refers to the Tx FIFO’s full status.

4.7.8. HPDI32_IOCTL_QUERY

This service queries the driver for various pieces of information about the device and the driver.

Usage

Argument Description
request HPDI32_IOCTL_QUERY

arg s32*

Valid argument values are as follows.

HPDI32, API Library Reference Manual

25

General Standards Corporation, Phone: (256) 880-8787

Value Description

HPDI32_QUERY_BSR_D18_XCVR
This indicates if BSR bit D18 reports the transceiver

selection.

HPDI32_QUERY_BUS_WIDTH
This returns the device’s PCI interface bus width in bits,

which is either 32 or 64.

HPDI32_QUERY_CLOCK_MAX
This returns the maximum cable interface clock rate in

hertz, which is either 25,000,000 or 50,000,000.

HPDI32_QUERY_COUNT
This returns the number of query options supported by the

IOCTL service.

HPDI32_QUERY_DEVICE_TYPE
This returns the identifier value for the device’s type. This

should be GSC_DEV_TYPE_HPDI32.

HPDI32_QUERY_DMDMA_1
This indicates if Demand Mode DMA is supported on

DMA channel 1.

HPDI32_QUERY_FIFO_SIZE_RX
This indicates the depth of the Rx FIFO in 32-bit words. A

value of zero indicates the FIFO size in not known.

HPDI32_QUERY_FIFO_SIZE_TX
This indicates the depth of the Tx FIFO in 32-bit words. A

value of zero indicates the FIFO size in not known.

HPDI32_QUERY_FORM_FACTOR
This indicates the device’s native form factor. The options

are listed below.

HPDI32_QUERY_GPIO_0_5

This indicates if the GPIO 0 to 5 configuration options are

available for Cable Command signals 1 through 6,

respectively.

HPDI32_QUERY_GPIO_6
This indicates if the GPIO 6 configuration option is

available for Cable Command signal 0.
HPDI32_QUERY_GPIO_D32 This indicates if the GPIO D32 feature is supported.

HPDI32_QUERY_IRQ_CONFIG_REGS
This indicates if the firmware supports the Interrupt

Edge/Level Register and the Interrupt High/Low Register.

HPDI32_QUERY_MODEL
This indicates the device’s basic model number. The

options are listed below.

HPDI32_QUERY_OVER_UNDER_RUN

This indicates if the firmware supports the Rx FIFO

Overrun bit (BSR D21), the Rx FIFO Underrun bit (BSR

D22), and the Tx FIFO Overrun bit (BSR D23).

HPDI32_QUERY_REG_FSR
This indicates if the firmware supports the Feature Set

Register.

HPDI32_QUERY_REG_IELR
This indicates if the firmware supports the Interrupt

High/Low Register.

HPDI32_QUERY_REG_IHLR
This indicates if the firmware supports the Interrupt

Edge/Level Register.

HPDI32_QUERY_REG_RFSR
This indicates if the firmware supports the Rx FIFO Size

Register.

HPDI32_QUERY_REG_RFWR
This indicates if the firmware supports the Rx FIFO Words

Register.

HPDI32_QUERY_REG_TCDR
This indicates if the firmware supports the Tx Clock

Divider Register.

HPDI32_QUERY_REG_TFSR
This indicates if the firmware supports the Tx FIFO Size

Register.

HPDI32_QUERY_REG_TFWR
This indicates if the firmware supports the Tx FIFO Words

Register.

HPDI32_QUERY_SINGLE_CYC_DIS
This indicates if the firmware supports the Single Cycle

Disable Bit (BCR D11).

HPDI32_QUERY_TRISTATE_TE_RE
This indicates if the firmware supports the Tristate Tx

Enabled/Rx Enabled feature (BCR D31).

HPDI32_QUERY_TX_AUTO_STOP
This indicates if the firmware supports the Tx Start Auto-

Clear Disable bit (BCR D6).

HPDI32, API Library Reference Manual

26

General Standards Corporation, Phone: (256) 880-8787

HPDI32_QUERY_TX_CLOCK_DIV_MAX
This indicates the maximum supported value for the Tx

Clock Divider.

HPDI32_QUERY_TX_CLOCK_DIV_MIN
This indicates the minimum supported value for the Tx

Clock Divider.

HPDI32_QUERY_USER_JUMPERS
This indicates if the firmware supports the User Jumper

status bits (BSR D16 and D17).

HPDI32_QUERY_XCVR_TYPE
This indicates the device’s transceiver type. The options are

listed below.

Valid return values are as indicated in the above table and as given in the below table.

Value Description

HPDI32_IOCTL_QUERY_ERROR
Either there was a processing error or the query option is

unrecognized.

Valid return values for the Form Factor query are as follows.

Value Description
HPDI32_QUERY_FF_CPCI The form factor is Compact PCI.
HPDI32_QUERY_FF_PC104P The form factor is PC/104+.
HPDI32_QUERY_FF_PCI The form factor is PCI.
HPDI32_QUERY_FF_PMC The form factor is PMC.
HPDI32_QUERY_FF_UNKNOWN The form factor is unknown.

Valid return values for the Model query are as follows.

Value Description
HPDI32_QUERY_MODEL_HPDI32 The device is an HPDI32.
HPDI32_QUERY_MODEL_HPDI32A The device is an HPDI32A.
HPDI32_QUERY_MODEL_HPDI32AL The device is an HPDI32AL.
HPDI32_QUERY_MODEL_HPDI32ALT The device is an HPDI32ALT.
HPDI32_QUERY_MODEL_HPDI32B The device is an HPDI32B.

Valid return values for the Transceiver query are as follows.

Value Description
HPDI32_QUERY_XCVR_PECL The device has PECL transceivers.
HPDI32_QUERY_XCVR_RS485 The device has RS-485 transceivers.
HPDI32_QUERY_XCVR_UNKNOWN This indicates that the transceiver type is unknown.

4.7.9. HPDI32_IOCTL_REG_MOD

This service performs a read-modify-write of an HPDI32 register. This includes only the GSC firmware registers.

The PCI and PLX Feature Set Registers are read-only. Refer to hpdi32.h for a complete list of the GSC firmware

registers.

Usage

Argument Description
request HPDI32_IOCTL_REG_MOD

arg gsc_reg_t*

HPDI32, API Library Reference Manual

27

General Standards Corporation, Phone: (256) 880-8787

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This contains the value for the register bits to modify.

mask
This specifies the set of bits to modify. If a bit here is set, then the respective register bit is

modified. If a bit here is zero, then the respective register bit is unmodified.

4.7.10. HPDI32_IOCTL_REG_READ

This service reads the value of an HPDI32 register. This includes the PCI registers, the PLX Feature Set Registers

and the GSC firmware registers. Refer to hpdi32.h, gsc_pci9080.h and to gsc_pci9656.h for the

complete list of accessible registers.

Usage

Argument Description
request HPDI32_IOCTL_REG_READ

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This is the value read from the specified register.
mask This is ignored for read request.

4.7.11. HPDI32_IOCTL_REG_WRITE

This service writes a value to an HPDI32 register. This includes only the GSC firmware registers. The PCI and PLX

Feature Set Registers are read-only. Refer to hpdi32.h for a complete list of the GSC firmware registers.

Usage

Argument Description
request HPDI32_IOCTL_REG_WRITE

arg gsc_reg_t*

Definition

typedef struct

HPDI32, API Library Reference Manual

28

General Standards Corporation, Phone: (256) 880-8787

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This is the value to write to the specified register.
mask This is ignored for write request.

4.7.12. HPDI32_IOCTL_RX_AUTO_START

This service configures the driver to automatically enable the receiver when a data read request is made.

Usage

Argument Description
request HPDI32_IOCTL_RX_AUTO_START

arg s32*

Valid argument values include the options listed below.

Value Description
-1 Retrieve the current setting.
HPDI32_AUTO_START_NO Do not enable the receiver when performing read requests.
HPDI32_AUTO_START_YES Enable the receiver when performing read requests. This is the default

4.7.13. HPDI32_IOCTL_RX_ENABLE

This service enables or disables the receiver.

Usage

Argument Description
request HPDI32_IOCTL_RX_ENABLE

arg s32*

Valid argument values include the options listed below.

Value Description
-1 Retrieve the current setting.
HPDI32_RX_ENABLE_NO This disables the receiver.
HPDI32_RX_ENABLE_YES This enables the receiver.

4.7.14. HPDI32_IOCTL_RX_FIFO_AE

This service configures the Rx FIFO fill level at which the Almost Empty status is asserted. The status is asserted

when the FIFO contains Almost Empty or fewer samples. The Rx FIFO is reset when a setting is applied to the

device.

HPDI32, API Library Reference Manual

29

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request HPDI32_IOCTL_RX_FIFO_AE

arg s32*

Valid argument values are from zero to 0xFFFF, or -1 to retrieve the current setting.

NOTE: The Almost Empty level should never be set to a value less than 15. Doing so could result

is corrupted data being retrieved from the device.

4.7.15. HPDI32_IOCTL_RX_FIFO_AF

This service configures the Rx FIFO fill level at which the Almost Full status is asserted. The status is asserted when

the FIFO can receive Almost Full or fewer samples before being full. The Rx FIFO is reset when a setting is applied

to the device.

Usage

Argument Description
request HPDI32_IOCTL_RX_FIFO_AF

arg s32*

Valid argument values are from zero to 0xFFFF, or -1 to retrieve the current setting.

4.7.16. HPDI32_IOCTL_RX_FIFO_OVERRUN

This service operates on the Rx FIFO overrun status.

NOTE: An overrun occurs when data is clocked into the Rx FIFO while the FIFO is already full.

This typically occurs only when the rate at which data enters the FIFO exceeds the rate at which

an application is able read the data.

Usage

Argument Description
request HPDI32_IOCTL_RX_FIFO_OVERRUN

arg s32*

Valid argument values supplied to the service are as follows.

Value Description
-1 Retrieve the current state.
HPDI32_FIFO_ERROR_CLEAR Clear the overrun status.
HPDI32_FIFO_ERROR_TEST Report the current status.

The current state is reported as one of the following values. This service always returns the current overrun state.

Value Description
-1 The feature is not supported.
HPDI32_FIFO_ERROR_NO The FIFO has not experienced an overrun condition.
HPDI32_FIFO_ERROR_YES The FIFO has experienced an overrun condition.

HPDI32, API Library Reference Manual

30

General Standards Corporation, Phone: (256) 880-8787

4.7.17. HPDI32_IOCTL_RX_FIFO_RESET

This service resets the Rx FIFO, which clears the content and applies any pending Almost Empty or Almost Full

settings. It also clears the associated overrun and underrun status bits.

NOTE: When Almost Empty and Almost Full settings are applied via their respective IOCTL

services, the driver automatically performs a FIFO reset to apply the changes. The Almost Empty

level is adjusted via the service HPDI32_IOCTL_RX_FIFO_AE (section 4.7.14, page 28). The

Almost Full level is adjusted via the service HPDI32_IOCTL_RX_FIFO_AF (section 4.7.15,

page 29).

Usage

Argument Description
request HPDI32_IOCTL_RX_FIFO_RESET

arg Not used.

4.7.18. HPDI32_IOCTL_RX_FIFO_STATUS

This service retrieves the current Rx FIFO fill level status.

Usage

Argument Description
request HPDI32_IOCTL_RX_FIFO_STATUS

arg s32*

The current status is reported as one of the following values.

Value Description
HPDI32_FIFO_STATUS_ALMOST_EMPTY The FIFO contains Almost Empty values or fewer.

HPDI32_FIFO_STATUS_ALMOST_FULL
The FIFO has room to accept Almost Full additional

values or fewer before becoming full.
HPDI32_FIFO_STATUS_EMPTY The FIFO is empty.
HPDI32_FIFO_STATUS_FULL The FIFO is full.

HPDI32_FIFO_STATUS_MEDIUM
The FIFO’s fill level is between the Almost Empty mark

and the Almost Full mark.

4.7.19. HPDI32_IOCTL_RX_FIFO_UNDERRUN

This service operates on the Rx FIFO underrun status.

NOTE: An Rx FIFO underrun occurs when the FIFO is read while empty. This can typically only

occur when an application reads from the FIFO directly.

Usage

Argument Description
request HPDI32_IOCTL_RX_FIFO_UNDERRUN

arg s32*

Valid argument values supplied to the service are as follows.

HPDI32, API Library Reference Manual

31

General Standards Corporation, Phone: (256) 880-8787

Value Description
-1 Retrieve the current state.
HPDI32_FIFO_ERROR_CLEAR Clear the underrun status.
HPDI32_FIFO_ERROR_TEST Report the current status.

The current state is reported as one of the following values. This service always returns the current underrun status.

Value Description
-1 The device feature is unsupported.
HPDI32_FIFO_ERROR_NO The FIFO has not experienced an underrun condition.
HPDI32_FIFO_ERROR_YES The FIFO has experienced an underrun condition.

4.7.20. HPDI32_IOCTL_RX_IO_ABORT

This service aborts an ongoing hpdi32_read() request.

Usage

Argument Description
request HPDI32_IOCTL_RX_IO_ABORT

arg s32*

The results are reported as one of the following values.

Value Description
HPDI32_IO_ABORT_NO An hpdi32_read() request was not aborted as none were ongoing.

HPDI32_IO_ABORT_YES An ongoing hpdi32_read() request was aborted.

4.7.21. HPDI32_IOCTL_RX_IO_BMDMA_THRESH

This service sets the minimum DMA transfer size used during Block Mode DMA based read requests. As such read

requests may consist of multiple smaller DMA transfers, this setting limits the smallest size of those individual

transfers. This setting does not apply to the last DMA transfer of the read request. The unit of measure for this

setting is bytes.

Usage

Argument Description
request HPDI32_IOCTL_RX_IO_BMDMA_THRESH

arg s32*

Valid argument values are from zero to the depth of the Rx FIFO in 32-bit words, or -1 to retrieve the current

setting. The default is 132 bytes.

4.7.22. HPDI32_IOCTL_RX_IO_DATA_SIZE

This service configures the number of cable interface data bits used for read operations. Data bit D0 is always

aligned with cable signal D0.

NOTE: The data size refers to the number of Rx FIFO data bits used when data is read from the

FIFO. FIFO data values are always 32-bit wide and any unused bits are simply ignored.

HPDI32, API Library Reference Manual

32

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request HPDI32_IOCTL_RX_IO_DATA_SIZE

arg s32*

Valid argument values supplied to the service are as follows.

Value Description
-1 Retrieve the current setting.
HPDI32_IO_DATA_SIZE_8_BITS The data size is 8-bits.
HPDI32_IO_DATA_SIZE_16_BITS The data size is 16-bits.
HPDI32_IO_DATA_SIZE_32_BITS The data size is 32-bits. This is the default.

4.7.23. HPDI32_IOCTL_RX_IO_MODE

This service selects the mechanism used to retrieve data from the Rx FIFO during read requests.

Usage

Argument Description
request HPDI32_IOCTL_RX_IO_MODE

arg s32*

Valid argument values supplied to the service are as follows.

Value Description
-1 Retrieve the current setting.

GSC_IO_MODE_BMDMA
Data is retrieved using Block Mode DMA. In this mode the data must be

present in the FIFO before the transfer is initiated.

GSC_IO_MODE_DMDMA

Data is retrieved using Demand Mode DMA. In this mode the request can

exceed the FIFO size as data is retrieved from the FIFO as it becomes

available. This is the default. †
GSC_IO_MODE_PIO Data is retrieved using repetitive register accesses.

† On 64-bit HPDI32 devices the DMA engine performs DMDMA transfers in 64-bit increments. On 32-

bit devices DMDMA is performed in 32-bit increments. (The increment sizing is not enforced at the end

of DMDMA transfers that are not sized on such boundaries.) To insure DMDMA data integrity the

HPDI32 pauses DMDMA transfers when the Rx FIFO fill level falls to the Almost Empty level and

resumes the transfer when the fill level rises above the Almost Empty level. For non-continuous data

streams applications may need to accommodate the pause by retrieving the last Almost Empty number

of data values using PIO or DMA.

4.7.24. HPDI32_IOCTL_RX_IO_OVERRUN

This service configures the read service to check for an Rx FIFO overrun before performing read operations. Data is

lost when there is an overrun. If the check is performed and an overrun is detected, then the read service

immediately returns an error.

NOTE: This setting is ignored if the device doesn’t support the Rx FIFO Overrun feature.

NOTE: The check for an overrun is performed upon entry to the read service. The read service

does not check for overruns that occur while the read is in progress. For in-progress overruns an

application must perform the check manually or wait for the check performed by a subsequent

read request.

HPDI32, API Library Reference Manual

33

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request HPDI32_IOCTL_RX_IO_OVERRUN

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
HPDI32_IO_ERROR_CHECK Perform the check. This is the default.
HPDI32_IO_ERROR_IGNORE Do not perform the check.

4.7.25. HPDI32_IOCTL_RX_IO_PIO_THRESHOLD

This service sets the threshold at which DMA read requests instead resort to PIO mode. When the number of

samples in a read request is less than or equal to this value, then the operation automatically uses PIO instead of

DMA. This is intended to improve efficiency as small read requests can be performed more efficiently when done

using PIO rather than DMA.

Usage

Argument Description
request HPDI32_IOCTL_RX_IO_PIO_THRESHOLD

arg s32*

Valid argument values are any non-negative number, or -1 to retrieve the current setting. The default is 32 samples.

4.7.26. HPDI32_IOCTL_RX_IO_TIMEOUT

This service sets the timeout limit for read requests. The value is expressed in seconds. The timeout limit is the total

amount of time allowed for a single hpdi32_read() request. When this time limit has expired the service

terminates. When this occurs the hpdi32_read() return value will be less than the number of bytes requested,

and possibly zero.

Usage

Argument Description
request HPDI32_IOCTL_RX_IO_TIMEOUT

arg s32*

Valid argument values are in the range from zero to 3600, -1, and HPDI32_IO_TIMEOUT_INFINITE. A value

of zero tells the driver not to sleep in order to wait for more data, and should only be used with PIO mode reads. A

value of -1 is used to retrieve the current setting. If the option HPDI32_IO_TIMEOUT_INFINITE is used, then

the driver waits indefinitely rather than timing out. The default is 10 seconds.

4.7.27. HPDI32_IOCTL_RX_IO_UNDERRUN

This service operates on the Rx FIFO underrun status.

NOTE: This setting is ignored if the device doesn’t support the Rx FIFO Underrun feature.

HPDI32, API Library Reference Manual

34

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request HPDI32_IOCTL_RX_IO_UNDERRUN

arg s32*

Valid argument values supplied to the service are as follows.

Value Description
-1 Retrieve the current state.
HPDI32_IO_ERROR_CHECK Check the underrun status. This is the default.
HPDI32_IO_ERROR_IGNORE Ignore the current status.

4.7.28. HPDI32_IOCTL_RX_LINE_COUNT

This service reports the number of values received during the most recent frame during the periods in which the Line

Valid signal was asserted.

Usage

Argument Description
request HPDI32_IOCTL_RX_LINE_COUNT

arg s32*

The count returned is from zero to 0xFFFFFFFF.

4.7.29. HPDI32_IOCTL_RX_STATUS_COUNT

This service reports the number of values received during the most recent frame during the periods in which the

Status Valid signal was asserted.

Usage

Argument Description
request HPDI32_IOCTL_RX_STATUS_COUNT

arg s32*

The count returned is from zero to 0xFFFFFFFF.

4.7.30. HPDI32_IOCTL_TRISTATE_TE_RE

This service affects the operation of the Tx Enabled and Rx Enabled signals on the cable interface. When these

signals appear on the cable interface, they may be either driven or tristated. This is intended to accommodate the

circumstance where two HPDI32 devices are connected back-to-back, which is when the signals must be tristated.

Usage

Argument Description
request HPDI32_IOCTL_TRISTATE_TE_RE

arg s32*

Valid argument values include the options listed below.

HPDI32, API Library Reference Manual

35

General Standards Corporation, Phone: (256) 880-8787

Value Description

-1
Retrieve the current setting. Returned if the feature is

unsupported.
HPDI32_TRISTATE_TE_RE_NO The signals are driven on the cable interface.
HPDI32_TRISTATE_TE_RE_YES The signals are tristated.

4.7.31. HPDI32_IOCTL_TX_AUTO_START

This service configures the driver to automatically enable the transmitter and start transmission when a data write

request is made.

Usage

Argument Description
request HPDI32_IOCTL_TX_AUTO_START

arg s32*

Valid argument values include the options listed below.

Value Description
-1 Retrieve the current setting.

HPDI32_AUTO_START_NO
Do not enable the transmitter or start transmission when performing

write requests.

HPDI32_AUTO_START_YES
Enable the transmitter and start transmission when performing write

requests. This is the default.

4.7.32. HPDI32_IOCTL_TX_AUTO_STOP

This service configures the driver to automatically end data transmission any time the Tx FIFO becomes empty.

NOTE: This service is operable only if it is supported by firmware. Refer to the

HPDI32_IOCTL_QUERY IOCTL service option HPDI32_QUERY_TX_AUTO_STOP (section

4.7.8, page 24) to determine if this feature is supported by firmware.

Usage

Argument Description
request HPDI32_IOCTL_TX_AUTO_STOP

arg s32*

Valid argument values include the options listed below.

Value Description
-1 Retrieve the current setting.

HPDI32_AUTO_STOP_NO
Do not terminate transmission when the Tx FIFO becomes empty. This is

the default option when the feature is supported by firmware.

HPDI32_AUTO_STOP_YES
Terminate transmission when the Tx FIFO becomes empty. This is the

default option when the feature is unsupported by firmware.

4.7.33. HPDI32_IOCTL_TX_CLOCK_DIVIDER

This service sets the clock divider used with the Tx Clock’s onboard oscillator.

HPDI32, API Library Reference Manual

36

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request HPDI32_IOCTL_TX_CLOCK_DIVIDER

arg s32*

Valid argument values are in the range from zero to0xFFFF, and -1. A value of -1 is used to retrieve the current

setting. The argument value -1 is returned if the feature is unsupported.

NOTE: If the Clock Divider is zero, then the Tx Clock frequency equals the on-board oscillator

frequency. Otherwise, the Tx Clock frequency is governed by the formula given below. In the

formula, FTxC is the Tx Clock frequency, FOsc is the on-board oscillator frequency, and Divider

is the Tx Clock Divider value.

FTxC = FOsc / (Divider * 2)

4.7.34. HPDI32_IOCTL_TX_ENABLE

This service enables or disables the transmitter.

Usage

Argument Description
request HPDI32_IOCTL_TX_ENABLE

arg s32*

Valid argument values include the options listed below.

Value Description
-1 Retrieve the current setting.
HPDI32_TX_ENABLE_NO This disables the transmitter.
HPDI32_TX_ENABLE_YES This enables the transmitter.

4.7.35. HPDI32_IOCTL_TX_FIFO_AE

This service configures the Tx FIFO fill level at which the Almost Empty status is asserted. The status is asserted

when the FIFO contains Almost Empty or fewer samples. The Tx FIFO is reset when a setting is applied to the

device.

Usage

Argument Description
request HPDI32_IOCTL_TX_FIFO_AE

arg s32*

Valid argument values are from zero to 0xFFFF, or -1 to retrieve the current setting.

4.7.36. HPDI32_IOCTL_TX_FIFO_AF

This service configures the Tx FIFO fill level at which the Almost Full status is asserted. The status is asserted when

the FIFO can receive Almost Full or fewer samples before being full. The Tx FIFO is reset when a setting is applied

to the device.

HPDI32, API Library Reference Manual

37

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request HPDI32_IOCTL_TX_FIFO_AF

arg s32*

Valid argument values are from zero to 0xFFFF, or -1 to retrieve the current setting.

NOTE: The Almost Full value should never be set to a value less than 16. Doing so could result is

data loss while writing to the device.

4.7.37. HPDI32_IOCTL_TX_FIFO_OVERRUN

This service operates on the Tx FIFO overrun status.

NOTE: A overrun occurs when data is written to the Tx FIFO while it is already full. This can

typically occur only when an application writes to the Tx FIFO directly.

Usage

Argument Description
request HPDI32_IOCTL_TX_FIFO_OVERRUN

arg s32*

Valid argument values supplied to the service are as follows.

Value Description
-1 Retrieve the current state.
HPDI32_FIFO_ERROR_CLEAR Clear the overrun status.
HPDI32_FIFO_ERROR_TEST Report the current status.

The current state is reported as one of the following values. This service always returns the current overrun status.

Value Description
-1 The device feature is unsupported.
HPDI32_FIFO_ERROR_NO The FIFO has not experienced an overrun condition.
HPDI32_FIFO_ERROR_YES The FIFO has experienced an overrun condition.

4.7.38. HPDI32_IOCTL_TX_FIFO_RESET

This service resets the Tx FIFO, which clears the content and applies any pending Almost Empty or Almost Full

settings. It also clears the associated overrun status bit.

NOTE: When Almost Empty or Almost Full settings are applied via their respective IOCTL

services, the driver automatically performs a FIFO reset to apply the changes. The Almost Empty

level is adjusted via the service HPDI32_IOCTL_TX_FIFO_AE (section 4.7.35, page 36). The

Almost Full level is adjusted via the service HPDI32_IOCTL_TX_FIFO_AF (section 4.7.36,

page 36).

Usage

Argument Description
request HPDI32_IOCTL_TX_FIFO_RESET

arg Not used.

HPDI32, API Library Reference Manual

38

General Standards Corporation, Phone: (256) 880-8787

4.7.39. HPDI32_IOCTL_TX_FIFO_STATUS

This service retrieves the current Tx FIFO fill level status.

Usage

Argument Description
request HPDI32_IOCTL_TX_FIFO_STATUS

arg s32*

The current status is reported as one of the following values.

Value Description
HPDI32_FIFO_STATUS_ALMOST_EMPTY The FIFO contains Almost Empty values or fewer.

HPDI32_FIFO_STATUS_ALMOST_FULL
The FIFO has room to accept Almost Full additional

values or fewer before becoming full.
HPDI32_FIFO_STATUS_EMPTY The FIFO is empty.
HPDI32_FIFO_STATUS_FULL The FIFO is full.

HPDI32_FIFO_STATUS_MEDIUM
The FIFO’s fill level is between the Almost Empty mark

and the Almost Full mark.

4.7.40. HPDI32_IOCTL_TX_FLOW_CONTROL

This service starts and stops data transmission. The transmitter must be enabled for data transmission to be started

(HPDI32_IOCTL_TX_ENABLE, section 4.7.34, page 36).

NOTE: If this service is used to stop data transmission, then the desired operation may be negated

if the Auto Start feature is enabled (see section 4.7.31, page 35).

Usage

Argument Description
request HPDI32_IOCTL_TX_FLOW_CONTROL

arg s32*

Valid argument values include the options listed below.

Value Description
-1 Retrieve the current setting.
HPDI32_TX_FLOW_CONTROL_START Data transmission is enabled.
HPDI32_TX_FLOW_CONTROL_STOP Data transmission is disabled.

4.7.41. HPDI32_IOCTL_TX_IO_ABORT

This service aborts an ongoing hpdi32_write() request.

Usage

Argument Description
request HPDI32_IOCTL_TX_IO_ABORT

arg s32*

The results are reported as one of the following values.

HPDI32, API Library Reference Manual

39

General Standards Corporation, Phone: (256) 880-8787

Value Description
HPDI32_IO_ABORT_NO An hpdi32_write() request was not aborted as none were ongoing.

HPDI32_IO_ABORT_YES An ongoing hpdi32_write() request was aborted.

4.7.42. HPDI32_IOCTL_TX_IO_BMDMA_THRESH

This service sets the minimum DMA transfer size used during Block Mode DMA based write requests. As such

write requests may consist of multiple smaller DMA transfers, this setting limits the smallest size of those individual

transfers. This setting does not apply to the last DMA transfer of the write request. The unit of measure for this

setting is bytes.

Usage

Argument Description
request HPDI32_IOCTL_TX_IO_BMDMA_THRESH

arg s32*

Valid argument values are from zero to the depth of the Tx FIFO in 32-bit words, or -1 to retrieve the current

setting. The default is 132 bytes.

4.7.43. HPDI32_IOCTL_TX_IO_DATA_SIZE

This service configures the number of cable interface data bits used for write operations. Data bit D0 is always

aligned with cable signal D0.

NOTE: The data size refers to the number of Tx FIFO data bits used when data is written to the

FIFO. FIFO data values are always 32-bit wide and any unused bits are indeterminate.

Usage

Argument Description
request HPDI32_IOCTL_TX_IO_DATA_SIZE

arg s32*

Valid argument values supplied to the service are as follows.

Value Description
-1 Retrieve the current setting.
HPDI32_IO_DATA_SIZE_8_BITS The data size is 8-bits.
HPDI32_IO_DATA_SIZE_16_BITS The data size is 16-bits.
HPDI32_IO_DATA_SIZE_32_BITS The data size is 32-bits. This is the default.

4.7.44. HPDI32_IOCTL_TX_IO_MODE

This service selects the mechanism used to move data to the Tx FIFO during write requests.

Usage

Argument Description
request HPDI32_IOCTL_TX_IO_MODE

arg s32*

Valid argument values supplied to the service are as follows.

HPDI32, API Library Reference Manual

40

General Standards Corporation, Phone: (256) 880-8787

Value Description
-1 Retrieve the current setting.

GSC_IO_MODE_BMDMA
Data is moved using Block Mode DMA. In this mode the data written must fit

in the FIFO before the transfer is initiated.

GSC_IO_MODE_DMDMA

Data is moved using Demand Mode DMA. In this mode the request can

exceed the FIFO size as data is moved to the FIFO as space becomes

available. This is the default.
GSC_IO_MODE_PIO Data is written using repetitive register accesses.

4.7.45. HPDI32_IOCTL_TX_IO_OVERRUN

This service configures the write service to check for a Tx FIFO overrun before performing write operations. Data is

lost when there is an overrun. If the check is performed and an overrun is detected, then the write service

immediately returns an error.

NOTE: This setting is ignored if the device doesn’t support the Tx FIFO Overrun feature.

NOTE: The check for an overrun is performed upon entry to the write service. The write service

does not check for overruns that occur while the write is in progress. For in-progress overruns an

application must perform the check manually or wait for the check performed by a subsequent

write request.

Usage

Argument Description
request HPDI32_IOCTL_TX_IO_OVERRUN

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
HPDI32_IO_ERROR_CHECK Perform the check. This is the default.
HPDI32_IO_ERROR_IGNORE Do not perform the check.

4.7.46. HPDI32_IOCTL_TX_IO_PIO_THRESHOLD

This service sets the threshold at which DMA write requests instead resorts to PIO mode. When the number of

samples in a write request is less than or equal to this value, then the operation automatically uses PIO instead of

DMA. This is intended to improve efficiency as small write requests can be performed more efficiently when done

using PIO rather than DMA.

Usage

Argument Description
request HPDI32_IOCTL_TX_IO_PIO_THRESHOLD

arg s32*

Valid argument values are any non-negative number, or -1 to retrieve the current setting. The default is 32 samples.

4.7.47. HPDI32_IOCTL_TX_IO_TIMEOUT

This service sets the timeout limit for write requests. The value is expressed in seconds. The timeout limit is the total

amount of time allowed for a single hpdi32_write() request. When this time limit has expired the service

HPDI32, API Library Reference Manual

41

General Standards Corporation, Phone: (256) 880-8787

terminates. When this occurs the hpdi32_write() return value will be less than the number of bytes requested,

and possibly zero.

Usage

Argument Description
request HPDI32_IOCTL_TX_IO_TIMEOUT

arg s32*

Valid argument values are in the range from zero to 3600, -1, and HPDI32_IO_TIMEOUT_INFINITE. A value

of zero tells the driver not to sleep in order to wait for more space, and should only be used with PIO mode reads. A

value of -1 is used to retrieve the current setting. If the option HPDI32_IO_TIMEOUT_INFINITE is used, then

the driver waits indefinitely rather than timing out. The default is 10 seconds.

4.7.48. HPDI32_IOCTL_TX_LINE_VAL_OFF_CNT

This service sets the number of transmit clock cycles that the Line Valid signal is negated preceding each Tx Line

Valid assertion period. Data is not clocked out the cable interface while the Line Valid signal is negated.

NOTE: This parameter, as well as the Line Valid signal itself, is ignored if the Cable Command 1

signal is configured for GPIO operation rather than for Line Valid operation.

Usage

Argument Description
request HPDI32_IOCTL_TX_LINE_VAL_OFF_CNT

arg s32*

Valid argument values are in the range from zero to 0xFFFF, and -1. A value of -1 is used to retrieve the current

setting.

4.7.49. HPDI32_IOCTL_TX_LINE_VAL_ON_CNT

This service sets the number of transmit clock cycles that the Line Valid signal is asserted following each Tx Line

Valid negation period. Data is clocked out the cable interface while the Line Valid signal is asserted.

NOTE: This parameter, as well as the Line Valid signal itself, is ignored if the Cable Command 1

signal is configured for GPIO operation rather than for Line Valid operation.

Usage

Argument Description
request HPDI32_IOCTL_TX_LINE_VAL_ON_CNT

arg s32*

Valid argument values are any non-negative number, and -1. A value of -1 is used to retrieve the current setting.

To apply the 32-bit equivalent of -1 an application must access the Tx Line Valid Length Count Register (TLVLCR)

directly.

4.7.50. HPDI32_IOCTL_TX_REMOTE_THROTTLE

This service enables or disables the transmitter’s ability to pause data transmission via the Rx Ready cable signal, as

driven by a receiving device.

HPDI32, API Library Reference Manual

42

General Standards Corporation, Phone: (256) 880-8787

NOTE: The device’s Tx Flow Control feature (HPDI32_IOCTL_TX_FLOW_CONTROL, section

4.7.40, page 38) operates in parallel with the Remote Throttle feature. When using Remote

Throttling the Tx Flow Control feature should be set to stop data flow and the Tx Auto Start

feature (HPDI32_IOCTL_TX_AUTO_START, section 4.7.31, page 35) should be disabled.

Usage

Argument Description
request HPDI32_IOCTL_TX_REMOTE_THROTTLE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
HPDI32_TX_REMOTE_THROTTLE_NO This option disables remote throttling.
HPDI32_TX_REMOTE_THROTTLE_YES This option enables remote throttling.

4.7.51. HPDI32_IOCTL_TX_STATUS_VAL_CNT

This service sets the number of transmit clock cycles that the Status Valid signal is asserted at the beginning of each

data frame. Data is clocked out the cable interface while the Status Valid signal is asserted.

NOTE: This parameter, as well as the Status Valid signal itself, is ignored if the Cable Command

2 signal is configured for GPIO operation rather than for Status Valid operation.

Usage

Argument Description
request HPDI32_IOCTL_TX_STATUS_VAL_CNT

arg s32*

Valid argument values are any non-negative 32-bit number, and -1. A value of -1 is used to retrieve the current

setting. To apply the 32-bit equivalent of -1 an application must access the Tx Status Valid Length Count Register

(TSVLCR) directly.

4.7.52. HPDI32_IOCTL_TX_STATUS_VAL_MIR

This service configures the asserted Status Valid signal to be mirrored onto, or assert, the Line Valid signal.

NOTE: This parameter, as well as the Status Valid signal itself, is ignored if the Cable Command

2 signal is configured for GPIO operation rather than for Status Valid operation.

Usage

Argument Description
request HPDI32_IOCTL_TX_STATUS_VAL_MIR

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.

HPDI32, API Library Reference Manual

43

General Standards Corporation, Phone: (256) 880-8787

HPDI32_TX_STATUS_VAL_MIR_NO

While asserted, the Status Valid signal is not mirrored onto

the Line Valid signal. The Line Valid signal remains negated

while the Status Valid signal is asserted.

HPDI32_TX_STATUS_VAL_MIR_YES

While asserted, the Status Valid signal is mirrored onto the

Line Valid signal. The Line Valid signal is asserted while the

Status Valid signal is asserted.

4.7.53. HPDI32_IOCTL_USER_JUMPERS

This service retrieves the status for the user installable jumpers.

Usage

Argument Description
request HPDI32_IOCTL_USER_JUMPERS

arg s32*

The current state is reported as one of the following values.

Value Description
0x0 Either neither jumper is installed or the device doesn’t support the jumper feature. †
0x1 Only jumper one is installed
0x2 Only jumper two is installed
0x3 Both jumpers are installed

† Refer to the HPDI32_IOCTL_QUERY IOCTL service’s HPDI32_QUERY_USER_JUMPERS option to

determine if the device supports the user jumper feature (section 4.7.8, page 24).

4.7.54. HPDI32_IOCTL_WAIT_CANCEL

This service resumes all threads blocked via HPDI32_IOCTL_WAIT_EVENT IOCTL calls (section 4.7.55, page

44), according to the provided criteria. When a blocked thread is waiting for any event specified in the structure,

then the thread is resumed.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver

initiated waits are unaffected by application cancel requests.

Usage

Argument Description
request HPDI32_IOCTL_WAIT_CANCEL

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

HPDI32, API Library Reference Manual

44

General Standards Corporation, Phone: (256) 880-8787

Fields Description
flags This is unused by wait cancel operations.

main
This specifies the set of GSC_WAIT_MAIN_* events whose wait requests are to be

cancelled. Refer to section 4.7.55.2 (page 45).

gsc
This specifies the set of HPDI32_WAIT_GSC_* events whose wait requests are to be

cancelled. Refer to section 4.7.55.3 (page 45).
alt This is unused by the HPDI32 driver and should be zero.

io
This specifies the set of HPDI32_WAIT_IO_* events whose wait requests are to be

cancelled. Refer to section 4.7.55.4 (page 46).
timeout_ms This is unused by wait cancel operations.
count Upon return this indicates the number of waits that were cancelled.

4.7.55. HPDI32_IOCTL_WAIT_EVENT

This service blocks a thread until any one of a specified set of events occurs, or until a timeout lapses, whichever

occurs first. The set of possible events to wait for are specified in the structure’s main, gsc, alt and io fields. All

field values must be valid and at least one event must be specified. If the thread is resumed because one of the

referenced events has occurred, then the bit for the respective event is the only event bit set. All other event bits and

fields are zero. (Multiple event bits are set only if the events occur simultaneously.)

NOTE: The service waits only for the first of the specified events, not for all specified events.

NOTE: A wait timeout is reported via the gsc_wait_t structure’s flags field having the

GSC_WAIT_FLAG_TIMEOUT flag set, rather than via an ETIMEDOUT error.

Usage

Argument Description
request HPDI32_IOCTL_WAIT_EVENT

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description

flags
This must initially be zero. Upon return this indicates the reason that the thread was

resumed. Refer to section 4.7.55.1 (page 45).

main
This specifies any number of GSC_WAIT_MAIN_* events that the thread is to wait for.

Refer to section 4.7.55.2 (page 45).

gsc
This specifies any number of HPDI32_WAIT_GSC_* events that the thread is to wait

for. Refer to section 4.7.55.3 (page 45).
alt This is unused by the HPDI32 driver and must be zero.

io
This specifies any number of HPDI32_WAIT_IO_* events that the thread is to wait

for. Refer to section 4.7.55.4 (page 46).

HPDI32, API Library Reference Manual

45

General Standards Corporation, Phone: (256) 880-8787

timeout_ms

This specified the maximum amount of time, in milliseconds, that the thread is to wait

for any of the referenced events. A value of zero means do not timeout at all. If non-

zero, then upon return the value is the approximate amount of time actually waited.
count This is unused by wait event operations and must be zero.

4.7.55.1. gsc_wait_t.flags Options

Upon return from a wait request the wait structure’s flags field indicates the reason that the thread was resumed.

Only one of the below options will be set.

Fields Description
GSC_WAIT_FLAG_CANCEL The wait request was cancelled.
GSC_WAIT_FLAG_DONE One of the referenced events occurred.
GSC_WAIT_FLAG_TIMEOUT The timeout period lapsed before a referenced event occurred.

4.7.55.2. gsc_wait_t.main Options

The wait structure’s main field may specify any of the below primary interrupt options. These interrupt options are

supported by the HPDI32 and other General Standards products.

Fields Description
GSC_WAIT_MAIN_DMA0 This refers to the DMA Done interrupt on DMA engine number zero.
GSC_WAIT_MAIN_DMA1 This refers to the DMA Done interrupt on DMA engine number one.
GSC_WAIT_MAIN_GSC This refers to any of the Interrupt Control/Status Register interrupts.

GSC_WAIT_MAIN_OTHER
This generally refers to an interrupt generated by another device sharing the

same interrupt as the HPDI32.
GSC_WAIT_MAIN_PCI This refers to any interrupt generated by the HPDI32.
GSC_WAIT_MAIN_SPURIOUS This refers to device interrupts which should never be generated.
GSC_WAIT_MAIN_UNKNOWN This refers to device interrupts whose source could not be identified.

4.7.55.3. gsc_wait_t.gsc Options

The wait structure’s gsc field may specify any combination of the below interrupt options. These are the interrupt

options referenced in the Interrupt Control Register. Applications are responsible for enabling the desired interrupt

options. Refer to HPDI32_IOCTL_IRQ_ENABLE (section 4.7.7, page 24). If a device supports the Interrupt

Edge/Level Register then interrupts configured for level triggering are disabled by the driver when they occur. If a

device does not support this register, then all firmware interrupts are disabled by the driver when they occur.

Value Description

HPDI32_WAIT_GSC_CC0_FV_E_GPIO6

This refers to the Cable Command 0 signal, whose default

configuration is to trigger on a falling edge. This signal may be

configured as Frame Valid or GPIO 6.

HPDI32_WAIT_GSC_CC0_FV_S_GPIO6

This refers to the Cable Command 0 signal, whose default

configuration is to trigger on a rising edge. This signal may be

configured as Frame Valid or GPIO 6.

HPDI32_WAIT_GSC_CC1_LV_GPIO0
This refers to the Cable Command 1 signal. This signal may be

configured as Line Valid or GPIO 0.

HPDI32_WAIT_GSC_CC2_SV_GPIO1
This refers to the Cable Command 2 signal. This signal may be

configured as Status Valid or GPIO 1.

HPDI32_WAIT_GSC_CC3_RR_GPIO2
This refers to the Cable Command 3 signal. This signal may be

configured as Rx Ready or GPIO 2.

HPDI32_WAIT_GSC_CC4_TR_GPIO3
This refers to the Cable Command 4 signal. This signal may be

configured as Tx Data Ready or GPIO 3.

HPDI32, API Library Reference Manual

46

General Standards Corporation, Phone: (256) 880-8787

HPDI32_WAIT_GSC_CC5_TE_GPIO4
This refers to the Cable Command 4 signal. This signal may be

configured as Tx Enabled or GPIO 4.

HPDI32_WAIT_GSC_CC6_RE_GPIO5
This refers to the Cable Command 5 signal. This signal may be

configured as Rx Enabled or GPIO 5.
HPDI32_WAIT_GSC_RX_FIFO_AE This refers to the Rx FIFO’s Almost Empty status.
HPDI32_WAIT_GSC_RX_FIFO_AF This refers to the Rx FIFO’s Almost Full status.
HPDI32_WAIT_GSC_RX_FIFO_EMPTY This refers to the Rx FIFO’s empty status.
HPDI32_WAIT_GSC_RX_FIFO_FULL This refers to the Rx FIFO’s full status.
HPDI32_WAIT_GSC_TX_FIFO_AE This refers to the Tx FIFO’s Almost Empty status.
HPDI32_WAIT_GSC_TX_FIFO_AF This refers to the Tx FIFO’s Almost Full status.
HPDI32_WAIT_GSC_TX_FIFO_EMPTY This refers to the Tx FIFO’s empty status.
HPDI32_WAIT_GSC_TX_FIFO_FULL This refers to the Tx FIFO’s full status.

4.7.55.4. gsc_wait_t.io Options

The wait structure’s io field may specify any of the below event options. These events are generated in response to

application device data read requests.

Fields Description
HPDI32_WAIT_IO_RX_ABORT This refers to read requests which have been aborted.
HPDI32_WAIT_IO_RX_DONE This refers to read requests which have been satisfied.
HPDI32_WAIT_IO_RX_ERROR This refers to read requests which end due to an error.
HPDI32_WAIT_IO_RX_TIMEOUT This refers to read requests which end due to the timeout period lapse.
HPDI32_WAIT_IO_TX_ABORT This refers to write requests which have been aborted.
HPDI32_WAIT_IO_TX_DONE This refers to write requests which have been satisfied.
HPDI32_WAIT_IO_TX_ERROR This refers to write requests which end due to an error.
HPDI32_WAIT_IO_TX_TIMEOUT This refers to write requests which end due to the timeout period lapse.

4.7.56. HPDI32_IOCTL_WAIT_STATUS

This service counts all threads blocked via the HPDI32_IOCTL_WAIT_EVENT IOCTL service (section 4.7.55,

page 44), according to the provided criteria. A match is made when a waiting thread’s wait criteria matches any of

the criteria specified in the structure passed to this service.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver

initiated waits are ignored by application status requests.

Usage

Argument Description
request HPDI32_IOCTL_WAIT_STATUS

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

HPDI32, API Library Reference Manual

47

General Standards Corporation, Phone: (256) 880-8787

} gsc_wait_t;

Fields Description
flags This is unused by wait status operations.

main
This specifies the set of GSC_WAIT_MAIN_* events whose wait requests are to be

counted. Refer to section 4.7.55.2 (page 45).

gsc
This specifies the set of HPDI32_WAIT_GSC_* events whose wait requests are to be

counted. Refer to section 4.7.55.3 (page 45).
alt This is unused by the HPDI32 driver and should be zero.

io
This specifies the set of HPDI32_WAIT_IO_* events whose wait requests are to be

counted. Refer to section 4.7.55.4 (page 46).
timeout_ms This is unused by wait status operations.
count Upon return this indicates the number of waits that met any of the specified criteria.

HPDI32, API Library Reference Manual

48

General Standards Corporation, Phone: (256) 880-8787

5. The Driver

NOTE: Contact General Standards Corporation if additional driver functionality is required.

5.1. Files

The driver is built into an OS specific executable. The pertinent files are identified in the following table. Some

source files are specific only to the HPDI32, some are specific only to the OS and some are HPDI32 and OS

independent.

NOTE: The driver source files are not included with the Windows driver.

Description Files Location OS

Source Files *.c, *.h …/driver/ Linux

Header File hpdi32.h
…/driver/ Linux
…\include\ Windows

Driver File

hpdi32.ko † …/driver/ Linux (kernels version 2.6 and later)

hpdi32.o † …/driver/ Linux (kernels version 2.4 and earlier)
hpdi32_dil.lib

hpdi32_dil.dll
…\lib\…

Windows
hpdi32_9080.sys ‡

hpdi32_9656.sys ‡
…\driver\…

† The Linux run time executable is implemented as a loadable kernel module.

‡ The Windows run time executables are implemented as driver .sys files.

5.2. Build

For instructions on building the driver refer to this same section number in the OS specific HPDI32 driver user

manual.

5.3. Startup

For instructions on starting the driver executable refer to this same section number in the OS specific HPDI32 driver

user manual.

5.4. Verification

For instructions on verifying that the driver has been loaded and is running refer to this same section number in the

OS specific HPDI32 driver user manual.

5.5. Version

For instructions on obtaining the driver version number refer to this same section number in the OS specific HPDI32

driver user manual.

5.6. Shutdown

For instructions on terminating the driver executable refer to this same section number in the OS specific HPDI32

driver user manual.

HPDI32, API Library Reference Manual

49

General Standards Corporation, Phone: (256) 880-8787

6. Document Source Code Examples

The source code examples included in this document are built into a statically linkable library usable with console

applications. The purpose of these files is to verify that the documentation samples compile and to provide a library

of working sample code to assist in a user’s learning curve and application development effort.

6.1. Files

The library files are summarized in the table below.

Description Files Location OS

Source Files *.c, *.h …
…/docsrc/ Linux
…\docsrc\ Windows

Header File hpdi32_dsl.h
…/include/ Linux
…\include\ Windows

Library File
hpdi32_dsl.a …/lib/ Linux
hpdi32_dsl.lib …\lib\… Windows

6.2. Build

For library build instructions refer to this same section number in the OS specific HPDI32 driver user manual.

6.3. Library Use

For library usage information refer to this same section number in the OS specific HPDI32 driver user manual.

HPDI32, API Library Reference Manual

50

General Standards Corporation, Phone: (256) 880-8787

7. Utilities Source Code

The API Library installation includes a body of utility source code designed to aid in the understanding and use of

the interface calls and IOCTL services. Utility sources are also included for device independent and common,

general-purpose services. Most of the utilities are implemented as visual wrappers around the corresponding services

to facilitate structured console output for the sample applications. The utility sources are compiled and linked into

static libraries to simplify their use. An additional purpose of these utility services is to provide a library of working

sample code to assist in a user’s learning curve and application development effort.

For each API function there is a corresponding utility source file with a corresponding utility service. As an

example, for the API function hpdi32_open() there is the utility file open.c containing the utility function

hpdi32_open_util(). The naming pattern is as follows: API function hpdi32_xxxx(), utility file name

xxxx.c, utility function hpdi32_xxxx_util(). Additionally, for each IOCTL code there is a corresponding

utility source file with a corresponding utility service. As an example, for IOCTL code HPDI32_IOCTL_QUERY

there is the utility file util_query.c containing the utility function hpdi32_query(). The naming pattern is

as follows: IOCTL code HPDI32_IOCTL_XXXX, utility file name util_xxxx.c, utility function

hpdi32_xxxx().

7.1. Files

The library files are summarized in the table below.

Description Files Location OS

Source Files *.c, *,h …
…/utils/ Linux
…\utils\ Windows

Header File hpdi32_utils.h
…/include/ Linux
…\include\ Windows

Library File

hpdi32_utils.a

gsc_utils.a

os_utils.a

plx_utils.a

…/lib/ Linux

hpdi32_utils.lib

gsc_utils.lib

os_utils.lib

plx_utils.lib

…\lib\… Windows

7.2. Build

For library build instruction refer to this same section number in the OS specific HPDI32 driver user manual.

7.3. Library Use

For library usage information refer to this same section number in the OS specific HPDI32 driver user manual.

HPDI32, API Library Reference Manual

51

General Standards Corporation, Phone: (256) 880-8787

8. Operating Information

This section explains some basic operational procedures for using the HPDI32. This is in no way intended to be a

comprehensive guide. This is simply to address a very few issues relating to their use.

8.1. Debugging Aids

The driver package includes the following items useful for development and/or debugging aids.

8.1.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id

example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as

follows.

Description File Location OS

Application
id …/id/ Linux
id.exe …\id\… Windows

8.1.2. API Listing

Among the utility services provided is a function to generate a listing to the console of all API settings and all

register contents. When used, the function is typically used to verify the device configuration. In these cases, the

function should be called just prior to the first read or write operation. The function arguments are as follows. The

utility location is given in the subsequent table.

Argument Description
fd This is the file descriptor used to access the device.

Description File/Name Location OS

Function hpdi32_api_listing() Source File All

Source File util_api_listing.c …/utils/ All

Header File hpdi32_utils.h …/include/ All

Library File
hpdi32_utils.a …/lib/ Linux
hpdi32_utils.lib …\lib\… Windows

8.1.3. Detailed Register Dump

Among the utility services provided is a function to generate a detailed listing of device registers to the console.

When used, the function is typically used to verify device configuration. In these cases, the function should be called

after complete device configuration and before the first I/O call. When intended for sending to GSC tech support,

please set the detail arguments to 1. The function arguments are as follows. The utility location is given in the

subsequent table.

Argument Description
fd This is the file descriptor used to access the device.
detail If non-zero the register dump will include details of each register field.

Description File/Name Location OS

Function hpdi32_reg_list() Source File All

Source File util_reg.c
…/utils/ Linux
…\utils\ Windows

HPDI32, API Library Reference Manual

52

General Standards Corporation, Phone: (256) 880-8787

Header File hpdi32_utils.h
…/include/ Linux
…\include\ Windows

Library File
hpdi32_utils.a …/lib/ Linux
hpdi32_utils.lib …\lib\ Windows

8.2. I/O Modes

NOTE: Transfer requests below a configurable limit are automatically performed using PIO

mode. This is because PIO is more efficient for very small transfers. The default driver defined

limits are 32 samples for both reads and write. However, the transition points are configurable via

the HPDI32_IOCTL_TX_IO_PIO_THRESHOLD (section 4.7.46, page 40) and

HPDI32_IOCTL_RX_IO_PIO_THRESHOLD services (section 4.7.25, page 33).

8.2.1. PIO - Programmed I/O

This mode transfers data by repetitive register accesses. Of the modes supported this is the least efficient. However,

it is the only mode that can be used with an I/O Timeout setting of zero.

8.2.2. BMDMA - Block Mode DMA

This option uses block mode DMA transfers to fulfill application I/O requests. In this mode, movement of data by

the DMA engine is initiated for reads only after the data is already present in the Rx FIFO or for writes when space

is available in Tx FIFO. In this mode the driver subdivides requests, as needed, based on the current state of the

respective FIFO. Consequently, each I/O request may consist of a single DMA transfer, a few DMA transfers or of

many DMA transfers. Typically, the lower the transfer clock relative to bus activity between the card and the host,

the smaller and more numerous the number of transfers.

NOTE: The Tx and Rx Block Mode DMA Threshold settings are used to limit the smallest size of

individual DMA transfers. This is done to help improve efficiency. The BMDMA default exceeds

the equivalent PIO Threshold default to limit the use of PIO to those instances where it is required

to complete I/O requests. This too is done to help improve efficiency. For additional information

refer to section 4.7.42 (page 39, Tx BMDMA Threshold), section 4.7.21 (page 31, Rx BMDMA

Threshold), section 4.7.46 (page 40, Tx PIO Threshold) and section 4.7.25 (page 33, Rx PIO

Threshold).

8.2.3. DMDMA - Demand Mode DMA

In this DMA mode the transfers are subdivided and started differently. First, subdividing is done only as needed to

limit individual transfers to the size of the Tx and Rx transfer buffers (8MB each) maintained by the driver for each

device. Second, the transfers are started without waiting for data to arrive in the Rx FIFO or for space to become

available in the Tx FIFO. In this mode the DMA engine moves Rx data as it appears in the Rx FIFO and moves Tx

data as space appears in the Tx FIFO.

8.3. Basic Transmit Configuration

The basic steps needed for transmitter configuration are illustrated in the utility function noted below. The table also

gives the location of the source file, the header file and the corresponding library containing the executable code.

Description File/Name Location OS

Function hpdi32_config_tx() Source File All

Source File util_config_tx.c
…/utils/ Linux
…\utils\ Windows

Header File hpdi32_utils.h
…/include/ Linux
…\include\ Windows

HPDI32, API Library Reference Manual

53

General Standards Corporation, Phone: (256) 880-8787

Library File
hpdi32_utils.a …/lib/ Linux
hpdi32_utils.lib …\lib\… Windows

8.4. Basic Transmitter Operation

A basic illustration of the transmitter and the transmitter cable signals is given in Figure 2 below.

Tx/Rx Enabled Tri-State

Tx Overrun

Tx Remote Throttle

Tx Flow Control

Tx Auto Stop

Tx Auto Start

Tx Enable

Tx Data

hpdi32_write()

Oscillator Tx Clock Divider

Tx FIFO

Control Logic

Rx Ready

(CC3/GPIO2)

Status Valid

(CC2/GPIO1)

Line Valid

(CC1/GPIO0)

Frame Valid

(CC0/GPIO6)

Tx Ready

(CC4/GPIO3)

Tx Enabled

(CC5/GPIO4)

Tx Data

Tx Clock

On Count/Valid Data Out

Flow
Pause

Enabled
Disabled

Tx FIFO is Empty
Tx FIFO Has Data

Transmitting Data
Not Transmitting Data

Off Count/No Data Out

On Count/Valid Status Out

Mirror

Data is clocked out on the rising edge.

No Status Out

Figure 2 A depiction of the HPDI32 transmitter and the transmitter cable signals.

8.4.1. Transmitter Cable Signals

The transmitter cable interface operates as described in the table below. The signals are described according to their

flow control functionality. If a cable signal is not configured for flow control operation (it may be GPIO) then the

corresponding flow control feature is disabled. While the transmitter is disabled the transmitter cable signal

functionalities are disabled. In this case, the output signals are tristated and the inputs are ignored. The exception is

the Tx Enabled signal, which is active even when the transmitter is disabled. While the transmitter is enabled, the

signals are driven according to how they are configured, with some also depending on the presence of transmit data

in the Tx FIFO. The cable signals are configured via the Cable Command Mode IOCTL services (section 4.7.1, page

21). The signal states, high or low, are readable via the Cable Command State IOCTL services (section 4.7.2, page

22) regardless of how the signals are configured.

Signal Description

Tx Clock
The Tx Clock signal is driven at all times while the transmitter is enabled. For information on the

Tx Clock frequency refer to section 4.7.33, page 35.

Tx Data

These are the 32 signals representing the data being transmitted. The signals are driven when the

transmitter is enabled and tristated when the transmitter is disabled. When driven, all 32 signals are

active, even if the I/O data size is set for eight-bits or 16-bits. Transmit data is posted to the cable

interface on the rising edge of the Tx Clock signal. When data is not being clock out the data

content is indeterminate. The source of the transmit data is the Tx FIFO, which receives data via

the hpdi32_write() API Library call.

HPDI32, API Library Reference Manual

54

General Standards Corporation, Phone: (256) 880-8787

Tx Enabled

This signal is driven high when the transmitter is enabled and is driven low when it is disabled. If

the Tx/Rx Enabled Tristate setting is enabled, then this signal is tristated rather than being driven.

This is primarily for cases where two HPDI32 devices are connected back-to-back.

Tx Ready

This signal reflects the availability of transmit data. The signal is driven low when data is present in

the Tx FIFO and it is driven high when the Tx FIFO is empty. The signal is driven when the

transmitter is enabled and tristated when the transmitter is disabled.

Frame Valid

This is the primary “data valid” signal. The signal is driven high at the Tx Clock rising edge when

data is being clocked onto the cable interface. The signal is driven low at the Tx Clock rising edge

when data is not being clocked onto the cable interface. The signal is driven when the transmitter is

enabled and tristated when the transmitter is disabled. †

Line Valid

This is a secondary “data valid” signal intended for data organized into frames. The signal is driven

low at the Tx Clock rising edge for Line Valid Off consecutive clocks. Then, the signal is driven

high at the Tx Clock rising edge for Line Valid On clocks as line data is being clocked onto the

cable interface. This off/on pattern appears immediately after the Status Valid On period and is

repeated until the end of the frame. This feature is disabled if either of the Line Valid Off or Line

Valid On count is zero. The signal is driven when the transmitter is enabled and tristated when the

transmitter is disabled. †

Status Valid

This is a secondary “data valid” signal intended for data organized into frames. The signal is driven

high at the Tx Clock rising edge for Status Valid On clocks as status data is being clocked onto the

cable interface. The signal is then driven low for the remainder of the frame. The feature is disabled

if the Status Valid On count is set to zero. The signal is driven when the transmitter is enabled and

tristated when the transmitter is disabled. †

Rx Ready

This is a flow control signal driven by the receiving device. The receiving device drives the signal

high to enable data transmission and drives it low to inhibit data transmission. This transmitter

feature is enabled by enabling the Tx Remote Throttle setting. The signal is usable when the

transmitter is enabled and ignored when the transmitter is disabled.

† If this signal is not enabled, then it is not used to quality transmission of data. If none of these signals are enabled,

then there is no means of distinguishing between valid data and indeterminate data.

8.4.2. Transmitter Cable Signals - continuous unstructured data stream

The HPDI32 transmitter supports two basic data organization schemes; a structured stream of frames divided into

lines, and an unstructured continuous data stream. The structured format divides the overall data stream into a series

of data frames, with each frame further divided into a series of data lines. Each line may be preceded by a fixed time

delay in which no data is transmitted. In the unstructured format, data appears on the cable when it is available for

transmission without delay. By far, most HPDI32 applications employ an unstructured data stream. For this reason,

the cable signal descriptions that follow assume the use of an unstructured data stream.

For continuous unstructured data streams, some cable signals are required and some can be ignored or used for

GPIO. The Tx Clock and Tx Data signals are always required. The Frame Valid signal is virtually always required

while the Line Valid and Status valid signals can be ignored or used for GPIO. If the remote device will be

controlling data flow, then the Rx Ready signal must be used as the Remote Throttle input. Otherwise, the Rx Ready

signal can be ignored or used as GPIO. The Tx Enabled signal can be used to indicate when the transmitter is

enabled, if desired, or it can be ignored or used as GPIO. Also, the Tx Ready signal can be used to indicate when the

transmitter has data, if desired, or it too can be ignored or used as GPIO.

The simplest configuration usable for a continuous unstructured data stream is illustrated in Figure 3. This

configuration uses the Tx Clock, Tx Data and Frame Valid signals, while all of the other transmitter signals are

unused. Even in this simplest configuration the unused signals must be configured, even if simply configured so that

they are unused by the transmitter. The easiest way to do this is to configure the unused signals as general-purpose

inputs.

HPDI32, API Library Reference Manual

55

General Standards Corporation, Phone: (256) 880-8787

Rx Ready

Status Valid

Frame Valid

Tx Ready

Line Valid

Tx Enabled

Tx Clock

Tx Data

optional

unused

unused

optional

optional

Remote throttling input.

Figure 3 A simple continuous unstructured data stream cable configuration.

8.4.2.1. Tx Clock

The Tx Clock output signal is the clock that synchronizes the transmitter logic and which clocks transmit data out

the cable interface. The signal is driven on the cable interface only when the transmitter is enabled. When the

transmitter is disabled, the signal is not driven by the HPDI32. This signal is required for data transmission and

cannot be disabled or reconfigured. The Tx Clock is derived from the on-board oscillator, which is routed through

the Tx Clock Divider. If the divider is zero, then the Tx Clock frequency equals the on-board oscillator frequency.

Otherwise, the Tx Clock frequency is governed by the formula FTxC = FOsc / (Div * 2). In the formula, FTxC

is the Tx Clock frequency, FOsc is the on-board oscillator frequency, and Div is the Tx Clock Divider value (see

section 4.7.33, page 35).

8.4.2.2. Tx Data

The Tx Data output signals are synchronized with the Tx Clock to transmit 32-bits of parallel data out the cable

interface. The signals are driven on the cable interface only when the transmitter is enabled. When the transmitter is

disabled, the signals are not driven by the HPDI32. These signals are required for transmission of data. The

transmitter clocks out the data on Tx Clock’s rising edge. See Figure 4. The transmitter hardware has a 32-bit data

path, including the FIFOs and the cable transceivers, though the source data width is configurable (section 4.7.43,

page 39). When the source data is less than 32-bits wide, it is aligned with the D0 bit and passed through the

transmitter as 32-bit data words. When the source data is 8-bits wide the data appears on cable signals D0 through

D7. The upper 24 data signals can be ignored, though they are driven by the transmitter. When the source data is 16-

bits wide the data appears on cable signals D0 through D15. The upper 16 data signals can be ignored, though they

are driven by the transmitter.

Tx Clock

Tx Data

The transmitter clocks data

out on the rising edge.

Figure 4 Tx Data is synchronized with Tx Clock.

When not used for data transmission, the data lines can be used as a 32-bit wide discrete digital output port (see

section 4.7.3, page 22), when supported by firmware (see HPDI32_IOCTL_GPIO_D32_OUTPUT, section

4.7.8, page 24). When configured as discrete output, the port output is updated by writing to the GPIO Output

Register.

HPDI32, API Library Reference Manual

56

General Standards Corporation, Phone: (256) 880-8787

8.4.2.3. Tx Enabled

The Tx Enabled output signal reflects the enabled state of the transmitter. The signal is normally driven on the cable

interface to indicate that the transmitter is enabled or disabled, but can be tristated when the transmitter is disabled.

This signal is not required for Flow Control of continuous, unstructured data streams. The Tx Enabled signal is

driven high when the transmitter is enabled and is driven low when disabled. See Figure 5. However, to avoid

possible contention with other devices, the signal can be configured to become tristated when the transmitter is

enabled (section 4.7.30, page 34). Signal state changes are not synchronized with Tx Clock.

Tx Enabled

DisabledTransmitter Enabled Disabled

Figure 5 The Tx Enabled signal reflects the transmitter enable state.

The Tx Enabled signal is the default functionality of the cable pin identified in the board user manual as Cable

Command 5 (CC5). This default behavior can be negated by configuring the pin as a general purpose I/O signal (see

section 4.7.1, page 21). In this configuration the signal is identified as GPIO 4. When the pin is not used it is

recommended that it be configured as a GPIO input.

8.4.2.4. Tx Ready

The Tx Ready output signal reflects the availability of data from the transmitter. The signal is driven on the cable

interface only when the transmitter is enabled. When the transmitter is disabled, the signal is not driven by the

HPDI32. This signal is not required for Flow Control of continuous, unstructured data streams. When it is used, it is

driven high when the Tx FIFO is empty and is driven low when the Tx FIFO has data. See Figure 6. The signal state

changes are not synchronized with Tx Clock.

Tx Ready

Has DataTx FIFO Empty Has Data

Figure 6 The Tx Ready signal reflects the Tx FIFO empty state.

The Tx Ready signal is the default functionality of the cable pin identified in the board user manual as Cable

Command 4 (CC4). This default behavior can be negated by configuring the pin as a general purpose I/O signal (see

section 4.7.1, page 21). In this configuration the signal is identified as GPIO 3. When the pin is not used it is

recommended that it be configured as a GPIO input.

8.4.2.5. Frame Valid

The Frame Valid output signal indicates when data is being transmitted out the cable interface. The signal is driven

on the cable interface only when the transmitter is enabled. When the transmitter is disabled, the signal is not driven

by the HPDI32. This signal is virtually always used for Flow Control purposes when data is to be transmitted. The

signal is driven high when data is being transmitted and is driven low otherwise. See Figure 7. The signal is

synchronized with Tx Clock and changes state on the clock’s rising edge.

Frame Valid

IdleTransmitter Active Idle

Tx Clock

Figure 7 The Frame Valid signal reflects the data transmission process.

HPDI32, API Library Reference Manual

57

General Standards Corporation, Phone: (256) 880-8787

The Frame Valid signal is the default functionality of the cable pin identified in the board user manual as Cable

Command 0 (CC0). This default behavior can be negated by configuring the pin as a general purpose I/O signal (see

section 4.7.1, page 21). In this configuration the signal is identified as GPIO 6. When the pin is not used it is

recommended that it be configured as a GPIO input.

NOTE: Technically, it is possible to transmit data without using the Frame Valid signal. In this

case transmission is governed by whatever other flow control signals are configured for use. If

none are, then data is transmitted at the present Tx Clock rate without any flow control whatever.

This is a way to achieve discrete output functionality when the D32 GPIO feature is not supported

by firmware. This is also a means to performs tests at the board’s maximum transmission rate.

8.4.2.6. Line Valid

The Line Valid output signal reflects valid transmit data being presented at the cable interface. The signal is driven

on the cable interface only when the transmitter is enabled. When the transmitter is disabled, the signal is not driven

by the HPDI32. This signal is not required for Flow Control of continuous, unstructured data streams. When it is

used, it is driven high to indicate that data is being clocked out the cable interface and is driven low otherwise. See

Figure 8. The signal is synchronized with Tx Clock and changes state on the clock’s rising edge.

Line Valid

NoTransmit Data Yes No

Tx Clock

Figure 8 The Line Valid signal reflects valid transmit data being presented at the cable interface.

The Line Valid signal is the default functionality of the cable pin identified in the board user manual as Cable

Command 1 (CC1). This default behavior can be negated by configuring the pin as a general purpose I/O signal (see

section 4.7.1, page 21). In this configuration the signal is identified as GPIO 0. When the pin is not used it is

recommended that it be configured as a GPIO input. An additional means of negating the transmitter’s Line Valid

functionality is by setting the Line Valid On Count and Line Valid Off Count values to zero (see section 4.7.49,

page 41 and section 4.7.48, page 41, respectively).

8.4.2.7. Status Valid

The Status Valid output signal reflects valid status data being transmitted out the cable interface. The signal is driven

on the cable interface only when the transmitter is enabled. When the transmitter is disabled, the signal is not driven

by the HPDI32. This signal is not required for Flow Control of continuous, unstructured data streams. When it is

used, it is driven high when status data is being clocked out the cable interface and is driven low otherwise. See

Figure 9. The signal is synchronized with Tx Clock and changes state on the clock’s rising edge.

NOTE: Status Data is data clocked out while the Status Valid signal is asserted. Refer to the board

user manual for additional information.

Status Valid

NoStatus Data Yes No

Tx Clock

Figure 9 The Status Valid signal reflects valid status data being presented at the cable interface.

HPDI32, API Library Reference Manual

58

General Standards Corporation, Phone: (256) 880-8787

The Status Valid signal is the default functionality of the cable pin identified in the board user manual as Cable

Command 2 (CC2). This default behavior can be negated by configuring the pin as a general purpose I/O signal (see

section 4.7.1, page 21). In this configuration the signal is identified as GPIO 1. When the pin is not used it is

recommended that it be configured as a GPIO input. An additional means of negating the transmitter’s Status Valid

functionality is by setting the Status Valid On Count value to zero (see section 4.7.51, page 42).

8.4.2.8. Rx Ready

The Rx Ready input signal may be used by receiving devices to pause the flow of data from the HPDI32 transmitter.

As a flow control signal, the transmitter responds to the input from the cable interface only when the transmitter is

enabled. When the transmitter is disabled, the transmitter ignores the signal. This signal is not required for Flow

Control of continuous, unstructured data streams. The Rx Ready signal is driven high by the remote receiver to

permit data flow and is driven low to pause data flow. See Figure 10. The signal is synchronized with Tx Clock such

that state changes are clocked in on the clock’s rising edge. Data flow neither pauses nor resumes instantaneously. It

may take several Tx Clock cycles for transmission to pause or resume due to the firmware’s internal pipeline.

Rx Ready

PauseTransmission Flow Pause

Tx Clock

Figure 10 The remote receiving device can drive the Rx Ready signal to control data flow.

The Rx Ready signal is the default functionality of the cable pin identified in the board user manual as Cable

Command 3 (CC3). This default behavior can be negated by configuring the pin as a general purpose I/O signal (see

section 4.7.1, page 21). In this configuration the signal is identified as GPIO 2. When the pin is not used it is

recommended that it be configured as a GPIO input.

8.4.3. Transmitter Configuration Settings

The following is a general description of the transmitter configuration settings.

Setting Description

Tx Auto Start

If this setting is enabled, then the hpdi32_write() service initiates data

transmission via the Tx Flow Control - Start feature. This setting should usually be

enabled. (See section 4.7.31, page 35.)

Tx Auto Stop

When available in firmware, disabling this setting permits data transmission to

continue without interruption even though the Tx FIFO may temporarily become

empty. This setting should virtually always be disabled. (See section 4.7.32, page 35.)

Tx Clock Divider
This setting is the value by which the master clock is divided to generate the Tx Clock.

(See section 4.7.33, page 35.)

Tx Enable
This is the master setting that enables or disables the transmitter. (See section 4.7.34,

page 36.)

Tx FIFO Almost Empty

During transmission, the transmitter slows or pauses transmission when the Tx FIFO

fill level falls below this level. This is done to prevent the transmission pipeline from

reading from an empty Tx FIFO. Applications can adjust this threshold and can use the

state as an interrupt source. The level should never be reduced below the default. (See

section 4.7.35, page 36.)

HPDI32, API Library Reference Manual

59

General Standards Corporation, Phone: (256) 880-8787

Tx FIFO Almost Full

During data transfer, the transmitter slows or pauses DMDMA data movement into the

Tx FIFO if its fill level exceeds this setting. This is done to prevent the transmission

pipeline from overflowing the Tx FIFO. Applications can adjust this threshold and can

use the state as an interrupt source. The level should never be reduced below the

default. (See section 4.7.36, page 36.)

Tx FIFO Overrun
This setting allows applications to query for, and clear, a Tx FIFO Overrun. During

normal operation the driver prevents overruns. (See section 4.7.37, page 37.)

Tx Flow Control

This setting is a manual means of starting or stopping data transmission. The Stop

option should be selected while the Tx Remote Throttle feature is used. (See section

4.7.40, page 38.) †

Tx Line Valid Off Count
This setting adjusts the Line Valid signal’s Off count. If set to zero, the Line Valid

feature is disabled. (See section 4.7.48, page 41.)

Tx Line Valid On Count
This setting adjusts the Line Valid signal’s On count. If set to zero, the Line Valid

feature is disabled. (See section 4.7.49, page 41.)

Tx Remote Throttle

This setting controls the transmitter’s use of the Rx Ready signal. If enabled, the

remote device can drive the signal for hardware flow control. The Disable setting

should be selected while the Tx Flow Control feature is used. (See section 4.7.50, page

41.) †

Tx Status Valid Count
This setting adjusts the Status Valid On count. If set to zero, the Status Valid feature is

disabled. (See section 4.7.51, page 42.)

Tx Status Valid Mirror

This setting controls the state of the Line Valid signal while the Status Valid signal is

driven high. If the On setting is selected, then the Line Valid signal is driven high

while the Status Valid signal is driven high. The Status Valid signal otherwise remains

low. (See section 4.7.52, page 42.)

† The Tx Flow Control and Tx Remote Throttle features operate independently and in parallel so should not be used

simultaneously.

8.4.4. Transmitter I/O Settings

The following is a general description of the transmitter I/O settings, which are the settings affecting the operation of

the hpdi32_write() service.

Setting Description

Tx I/O Data Size

This setting specifies the size of each data item transferred over the cable interface. The

options are 8-bits, 16-bits and 32-bits. This setting affects only the transfer of data from

the host to the device as the Tx FIFO does not perform data packing and the cable

interface always drives all 32 data lines. Data alignment is such that data bit D0 always

corresponds to cable data signal D0. (See section 4.7.42, page 39.)

Tx I/O Mode

This service selects the method the driver uses to transfer data from the host to the

device. The options are PIO, Block Mode DMA and Demand Mode DMA. (See section

4.7.44, page 39, and section 8.1.3, page 51.)

Tx I/O Overrun

This setting configures the hpdi32_write() service’s response to Tx FIFO

overruns. If the check option is selected, the default, then the service checks for a Tx

FIFO overrun before the service starts transferring data to the device. If the ignore

option is selected, then the check is not performed. During normal operation the driver

prevents overruns. (See section 4.7.45, page 40.)

Tx I/O DMA Threshold

This setting limits the size of the smallest individual DMA transfers. This is done to

help improve efficiency. The BMDMA default exceeds the equivalent PIO Threshold

default to limit the use of PIO to those instances where it is required to complete I/O

requests. (See section 4.7.42, page 39.)

Tx I/O PIO Threshold

For very small data transfers the driver automatically changes DMA requests to PIO.

This is done because PIO is more efficient for very small write requests. This service

configures the threshold at which that change takes place. The default is 32 data values.

(See section 4.7.46, page 40.)

HPDI32, API Library Reference Manual

60

General Standards Corporation, Phone: (256) 880-8787

Tx I/O Timeout
This setting specifies the maximum duration of each hpdi32_write() request. (See

section 4.7.47, page 40.)

Tx/Rx Enable Tristate

This setting controls the operation of the Tx Enabled and Rx Enabled cable signals

when either the transmitter or receiver is enabled, respectively. With the No setting,

each signal is driven. With the Yes settings each signal is tristated rather than being

driven. (See section 4.7.30, page 34.)

8.5. Basic Receive Configuration

The basic steps needed for receiver configuration are illustrated in the utility function noted below. The table also

gives the location of the source file, the header file and the corresponding library containing the executable code.

Description File/Name Location OS

Function hpdi32_config_rx() Source File All

Source File util_config_rx.c
…/utils/ Linux
…\utils\ Windows

Header File hpdi32_utils.h
…/include/ Linux
…\include\ Windows

Library File
hpdi32_utils.a …/lib/ Linux
hpdi32_utils.lib …\lib\… Windows

8.6. Basic Receiver Operation

A basic illustration of the receiver and the receiver cable signals is given in Figure 11 below.

Tx/Rx Enabled Tri-State

Rx Under Run

Rx Enable

Data

hpdi32_read()
Rx FIFO

Control Logic

Rx Ready

(CC3/GPIO2)

Status Valid

(CC2/GPIO1)

Line Valid

(CC1/GPIO0)

Frame Valid

(CC0/GPIO6)

Rx Enabled

(CC6/GPIO5)

Rx Data

Rx Clock

Data is clocked in on the falling edge.

Rx Overrun

Enabled
Disabled

Valid Data In

No Status In

Tx Ready

(CC4/GPIO3)
Transmitter is Empty

Transmitter Has Data

Receive Data
Do Not Receive Data

No Data In

Valid Status In

Flow
Pause

Rx Auto Start

Figure 11 A depiction of the HPDI32 receiver and the receiver cable signals.

8.6.1. Receiver Cable Signals

The receiver cable interface operates as described in the table below. The signals are described according to their

flow control functionality. If a cable signal is not configured for flow control operation (it may be GPIO) then the

corresponding flow control feature is disabled. While the receiver is disabled the receiver cable signal functionalities

are disabled. In this case, the output signals are tristated and the inputs are ignored. The exception is the Rx Enabled

signal, which is active even when the receiver is disabled. While the receiver is enabled, the signals are driven

according to how they are configured, with some also depending on the volume of data in the Rx FIFO. The cable

HPDI32, API Library Reference Manual

61

General Standards Corporation, Phone: (256) 880-8787

signals are configured via the Cable Command Mode IOCTL services (section 4.7.1, page 21). The signal states,

high or low, are readable via the Cable Command State IOCTL services (section 4.7.2, page 22) regardless of how

the signals are configured.

Signal Description

Rx Clock
The Rx Clock signal is observed only while the receiver is enabled. The signal is ignored when the

receiver is disabled.

Rx Data

These are the 32 signals representing the data being received. The signals are observed as data is

clocked in and are ignored otherwise. When observed, all 32 signals are used, even if the I/O data

size is set for eight-bits or 16-bits. Receive data is taken from the cable interface on the falling edge

of the Rx Clock signal. The destination for the receive data is the Rx FIFO, which returns data via

the hpdi32_read() API Library call.

Rx Enabled

This signal is driven high when the receiver is enabled and is driven low when it is disabled. If the

Tx/Rx Enabled Tristate setting is enabled, then this signal is tristated rather than being driven. This

is primarily for cases where two HPDI32 devices are connected back-to-back.

Tx Ready

This signal reflects the availability of transmit data and is driven by the transmitting device. The

receiver does not make use of this signal. However, the signal state can be used by software to

control operation of an application.

Frame Valid

This is the primary “data valid” input signal. The signal is high at the Rx Clock falling edge when

data is to be clocked in from the cable interface. The signal is low at the Rx Clock falling edge

when data is not to be clocked in from the cable interface. The signal is used when the receiver is

enabled and is ignored when the receiver is disabled. †

Line Valid

This is a secondary “data valid” signal intended for data organized into frames. The signal is high

at the Rx Clock falling edge when data is to be clocked in from the cable interface. The signal is

low at the Rx Clock falling edge when data is not to be clocked in from the cable interface. The

signal is observed when the receiver is enabled and is ignored when the receiver is disabled. †

Status Valid

This is a secondary “data valid” input signal intended for data organized into frames. At the start of

a frame, the signal is high at the Rx Clock falling edge when status data is to be clocked in from the

cable interface. After the start of a frame, the signal remains low till the end of the frame. The

signal is observed when the receiver is enabled and is ignored when the receiver is disabled. †

Rx Ready

This is a hardware flow control signal driven by the receiver. The receiver drives the signal high to

enable data transmission and drives it low to inhibit data transmission. The source of the signal is

the Rx FIFO Almost Full status. The signal is driven when the receiver is enabled and is tristated

when the receiver is disabled.

† If this signal is not enabled, then it is not used to quality reception of data. If none of these signals are enabled,

then there is no means of distinguishing between valid data and indeterminate data.

8.6.2. Receiver Cable Signals - continuous unstructured data stream

The HPDI32 receiver supports two basic data organization schemes; a structured stream of frames divided into lines,

and an unstructured continuous data stream. The structured format divides the overall data stream into a series of

data frames, with each frame further divided into a series of data lines. In the unstructured format, data is captured

without regard to such boundaries. By far, most HPDI32 applications have employed an unstructured data stream.

For this reason, the cable signal descriptions that follow assume the use of an unstructured data stream.

For continuous unstructured data streams, some cable signals are required and some can be ignored or used for

GPIO. The Rx Clock and Rx Data signals are always required. The Frame Valid signal is virtually always required

while the Line Valid and Status valid signals can be ignored or used for GPIO. If the remote device can be paused,

then the Rx Ready signal may be used as the Remote Throttle output. Otherwise, the Rx Ready signal can be

ignored or used as GPIO.

The simplest configuration usable for a continuous unstructured data stream is illustrated in Figure 12. This

configuration uses the Rx Clock, Rx Data and Frame Valid signals, while all of the other receiver signals are

unused. Even in this simplest configuration the unused signals must be configured, even if simply configured so that

HPDI32, API Library Reference Manual

62

General Standards Corporation, Phone: (256) 880-8787

they are unused by the receiver. The easiest way to do this is to configure the unused signals as general-purpose

inputs.

Rx Ready

Status Valid

Frame Valid

Line Valid

Rx Enabled

Rx Clock

Rx Data

optional

unused

unused

optional

Remote throttling output.

Figure 12 A simple continuous unstructured data stream cable configuration.

8.6.2.1. Rx Clock

The Rx Clock input signal is the clock that synchronizes the receiver logic and which clocks data in from the cable

interface. This signal is required in order for the receiver to capture data presented to the cable interface. This signal

must be driven by the transmitting device. If not, then the receiver cannot capture input data. The input is ignored

when the receiver is disabled and must be driver when the receiver is enabled.

8.6.2.2. Rx Data

The Rx Data input signals are synchronized with the Rx Clock to capture 32-bits of parallel data. As inputs from the

cable interface, the receiver responds to the signals only when the receiver is enabled. When the receiver is disabled,

the receiver ignores the signals. These signals must be driven by the transmitting device or the receiver cannot

capture input data. The receiver clocks in data on Rx Clock’s falling edge. See Figure 13. It is expected that the

transmitting device clocks data out on the clock’s rising edge. The receiver hardware has a 32-bit data path,

including the FIFOs and the cable transceivers, though the source data width is configurable (section 4.7.22, page

31). When the source data is less than 32-bits wide, it is aligned with the D0 bit and passed through the receiver as

full 32-bit data words. When the source data is 8-bits wide it appears on cable signals D0 through D7. The upper 24

data signals are recorded, but can be ignored. When the source data is 16-bits wide it appears on cable signals D0

through D15. The upper 16 data signals are recorded, but can be ignored.

Rx Clock

Rx Data

The receiver clocks data

in on the falling edge.

Figure 13 Rx Data is synchronized with Rx Clock.

When not used for data reception, the data lines can be used as a 32-bit wide discrete digital input port, when

supported by firmware (see HPDI32_IOCTL_GPIO_D32_OUTPUT, section 4.7.8, page 24). When used in

this way, the port input is obtained by reading the GPIO Input Register. No action is required to make use of the

discrete input as the receiver and the GPIO input port can be used simultaneously. Thus, an application may choose

to designate some lines for clocked input and others for discrete input.

HPDI32, API Library Reference Manual

63

General Standards Corporation, Phone: (256) 880-8787

8.6.2.3. Rx Enabled

The Rx Enabled output signal reflects the enabled state of the receiver. The signal is normally driven on the cable

interface to indicate that the receiver is enabled or disabled, but can be tristated when the receiver is disabled. This

signal is not required for Flow Control of continuous, unstructured data streams. The Rx Enabled signal is driven

high when the receiver is enabled and is driven low when disabled. See Figure 14. However, to avoid possible

contention with other devices, the signal can be configured to become tristated when the receiver is disabled (section

4.7.30, page 34). Signal state changes are not synchronized with the Rx Clock.

Rx Enabled

DisabledReceiver Enabled Disabled

Figure 14 The Rx Enabled signal reflects the receiver enable state.

The Rx Enabled signal is the default functionality of the cable pin identified in the board user manual as Cable

Command 6 (CC6). This default behavior can be negated by configuring the pin as a general purpose I/O signal (see

section 4.7.1, page 21). In this configuration the signal is identified as GPIO 5. When the pin is not used it is

recommended that it be configured as a GPIO input.

8.6.2.4. Frame Valid

The Frame Valid input signal reflects the availability of data at the cable interface for capture by the receiver. As an

input from the cable interface, the receiver responds to the signal only when the receiver is enabled. When the

receiver is disabled, the receiver ignores the signal. This signal is not required for Flow Control of continuous,

unstructured data streams. The signal is driven high by the transmitting device to indicate that valid data is present to

be clocked in at the cable interface and is driven low otherwise. See Figure 15. The signal is synchronized with the

Rx Clock such that state changes are clocked in on the clock’s falling edge. It is expected that the transmitting

device clocks Frame Valid changes out on the clock’s rising edge.

Frame Valid

IdleReceiver Active Idle

Rx Clock

Figure 15 The Frame Valid signal reflects the data reception process.

The Frame Valid signal is the default functionality of the cable pin identified in the board user manual as Cable

Command 0 (CC0). This default behavior can be negated by configuring the pin as a general purpose I/O signal (see

section 4.7.1, page 21). In this configuration the signal is identified as GPIO 6. When the pin is not used it is

recommended that it be configured as a GPIO input.

NOTE: Technically, it is possible to receive data without using the Frame Valid signal. In this

case reception is governed by whatever other flow control signals are configured for use. If none

are, then data is received at the rate of the Rx Clock signal. With no flow control signaling in use,

this configuration can only control data reception by gating the Rx Clock. That is, the Rx Clock

remains idle when no data is present at the cable interface, and it is active when valid data is

present. Using an ungated Rx Clock is a means to performs tests at the board’s maximum

reception rate.

HPDI32, API Library Reference Manual

64

General Standards Corporation, Phone: (256) 880-8787

8.6.2.5. Line Valid

The Line Valid input signal reflects the availability of line data at the cable interface for capture by the receiver. As

an input from the cable interface, the receiver responds to the signal only when the receiver is enabled. When the

receiver is disabled, the receiver ignores the signal. This signal is not required for Flow Control of a continuous

unstructured data streams. The signal is driven high by the transmitting device to indicate that valid data is present to

be clocked in at the cable interface and is driven low otherwise. See Figure 16. The signal is synchronized with the

Rx Clock such that state changes are clocked in on the clock’s falling edge. It is expected that the transmitting

device clocks Line Valid changes out on the clock’s rising edge.

Line Valid

NoReceive Data Yes No

Rx Clock

Figure 16 The Line Valid signal reflects valid transmit data being presented at the cable interface.

The Line Valid signal is the default functionality of the cable pin identified in the board user manual as Cable

Command 1 (CC1). This default behavior can be negated by configuring the pin as a general purpose I/O signal (see

section 4.7.1, page 21). In this configuration the signal is identified as GPIO 0. When the pin is not used it is

recommended that it be configured as a GPIO input.

8.6.2.6. Status Valid

The Status Valid input signal reflects the availability of status data at the cable interface for capture by the receiver.

As an input from the cable interface, the receiver responds to the signal only when the receiver is enabled. When the

receiver is disabled, the receiver ignores the signal. This signal is not required for Flow Control of a continuous

unstructured data streams. The signal is driven high by the transmitting device to indicate that status data is present

to be clocked in at the cable interface and is driven low otherwise. See Figure 17. The signal is synchronized with

the Rx Clock such that state changes are clocked in on the clock’s falling edge. It is expected that the transmitting

device clocks Status Valid changes out on the clock’s rising edge.

NOTE: Status Data is data clocked in while the Status Valid signal is asserted. Refer to the board

user manual for additional information.

Status Valid

NoStatus Data Yes No

Rx Clock

Figure 17 The Status Valid signal reflects valid status data being presented at the cable interface.

The Status Valid signal is the default functionality of the cable pin identified in the board user manual as Cable

Command 2 (CC2). This default behavior can be negated by configuring the pin as a general purpose I/O signal (see

section 4.7.1, page 21). In this configuration the signal is identified as GPIO 1. When the pin is not used it is

recommended that it be configured as a GPIO input.

8.6.2.7. Rx Ready

The Rx Ready output signal may be used by the receiver to pause the flow of data from the remote transmitting

device. The signal is driven on the cable interface only when the receiver is enabled. When the receiver is disabled,

the signal is not driven by the HPDI32. This signal is not required for Flow Control of continuous, unstructured data

HPDI32, API Library Reference Manual

65

General Standards Corporation, Phone: (256) 880-8787

streams. The Rx Ready signal is driven high by the receiver to permit data flow and is driven low to pause data flow.

See Figure 18. The signal reflects the Rx FIFO Almost Full Status. The signal is not synchronized with Rx Clock

and changes state as the Rx FIFO fill level changes. Data flow neither pauses nor resumes instantaneously. It may

take several Rx Clock cycles for the remote transmit device to pause or resume.

Rx Ready

PauseRx FIFO Flow Pause

Figure 18 The receiver drives the Tx Ready signal to control data flow.

The Rx Ready signal is the default functionality of the cable pin identified in the board user manual as Cable

Command 3 (CC3). This default behavior can be negated by configuring the pin as a general purpose I/O signal (see

section 4.7.1, page 21). In this configuration the signal is identified as GPIO 2. When the pin is not used it is

recommended that it be configured as a GPIO input.

8.6.3. Receiver Operation Settings

The following is a general description of the receiver operation settings.

Setting Description

Rx Auto Start

If this setting is enabled, then the hpdi32_read() service enables the receiver

before initiating data reception. This setting should usually be enabled. (See section

4.7.12, page 28.)

Rx Enable
This is the master setting that enables or disables the receiver. (See section 4.7.13, page

28.)

Rx FIFO Almost Empty

During data transfer, the receiver slows or pauses DMDMA data movement from the

Rx FIFO if its fill level falls to this setting. This is done to prevent the receiver pipeline

from reading from an empty Rx FIFO. Applications can adjust this threshold and can

use the state as an interrupt source. The level should never be reduced below the

default. (See section 4.7.14, page 28.)

Rx FIFO Almost Full

During data transfer, the receiver attempts to slow or pause the remote transmitter

when the Rx FIFO fill level rises to this fill level. The attempt is made via the Rx

Ready cable signal, which is driven via the Rx FIFO Almost Full status. This is the

remote transmitter’s Remote Throttle input. This is done to prevent the receiver

pipeline from writing to a full Rx FIFO. Applications can adjust this threshold and can

use the state as an interrupt source. The level should never be reduced below the

default. (See section 4.7.15, page 29.)

Rx FIFO Overrun
This setting allows applications to query for, and clear, an Rx FIFO Overrun. (See

section 4.7.16, page 29.)

Rx FIFO Underrun
This setting allows applications to query for, and clear, an Rx FIFO Underrun. During

normal operation the driver prevents underruns. (See section 4.7.19, page 30.)

8.6.4. Receiver I/O Settings

The following is a general description of the receiver I/O settings, which are the settings affecting the operation of

the hpdi32_read() service.

Setting Description

Rx I/O Data Size

This setting specifies the size of each data item transferred over the cable interface. The

options are 8-bits, 16-bits and 32-bits. This setting affects only the transfer of data from

the device to the host as the Rx FIFO does not perform data packing and the cable

interface always receives all 32 data bits. Data alignment is such that data bit D0 always

corresponds to cable data signal D0. (See section 4.7.21, page 31.)

HPDI32, API Library Reference Manual

66

General Standards Corporation, Phone: (256) 880-8787

Rx I/O Mode

This service selects the method the driver uses to transfer data from the device to the

host. The options are PIO, Block Mode DMA and Demand Mode DMA. For mode

descriptions refer to section 8.1.3, page 51. (See section 4.7.23, page 32.)

Rx I/O Overrun

This setting configures the hpdi32_read() service’s response to Rx FIFO overruns.

If the check option is selected, the default, then the service checks for an Rx FIFO

overrun before the service starts transferring data from the device. If the ignore option

is selected, then the check is not performed. During normal operation the driver

prevents overruns. (See section 4.7.24, page 32.)

Rx I/O DMA Threshold

This setting limits the size of the smallest individual DMA transfers. This is done to

help improve efficiency. The BMDMA default exceeds the equivalent PIO Threshold

default to limit the use of PIO to those instances where it is required to complete I/O

requests. (See section 4.7.21, page 31.)

Rx I/O PIO Threshold

For very small data transfers the driver automatically changes DMA requests to PIO.

This is done because PIO is more efficient for very small read requests. This service

configures the threshold at which that change takes place. The default is 32 data values.

(See section 4.7.25, page 33.)

Rx I/O Timeout
This setting specifies the maximum duration of each hpdi32_read() request. (See

section 4.7.26, page 33.)

Rx I/O Underrun

This setting configures the hpdi32_read() service’s response to Rx FIFO

underruns. If the check option is selected, the default, then the service checks for an Rx

FIFO underrun before the service starts transferring data from the device. If the ignore

option is selected, then the check is not performed. During normal operation the driver

prevents underruns. (See section 4.7.27, page 33.)

Tx/Rx Enable Tristate

This setting controls the operation of the Tx Enabled and Rx Enabled cable signals

when either the transmitter or the receiver is enabled, respectively. With the No setting,

each signal is driven when enabled. With the Yes settings each signal is tristated rather

than being driven. (See section 4.7.30, page 34.)

HPDI32, API Library Reference Manual

67

General Standards Corporation, Phone: (256) 880-8787

9. Sample Applications

For information on the sample applications refer to this same section number in the OS specific HPDI32 driver user

manual.

HPDI32, API Library Reference Manual

68

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

July 12, 2023
Updated to version 3.12.104.x.x. Numerous, minor editorial changes. Updated the Rx and

Tx Reset FIFO services.

December 20, 2022

Updated to version 3.11.101.x.x. Minor editorial changes. Corrected the description of the

Clock Divider feature. Added details on the operation of the transmitter and receiver cable

signals. Expanded Tx and Rx signal information in section 8. Added Tx and Rx DMA

Threshold information to section 8.

October 5, 2022
Updated to version 3.10.101.x.x. Updated the information for the open and close calls.

Discontinued the SDK. Minor editorial updates.

March 25, 2021
Updated to version 3.9.93.x.x. Various minor editorial changes. Updated the debugging aids

content.

November 3, 2020
Updated to version 3.9.91.x.x. Various minor editorial changes. Added support for

HPDI32B model boards.

October 23, 2020
Version 3.8.91.x.x. Added the HPDI32_IOCTL_GPIO_D32_OUTPUT IOCTL

service.

October 1, 2020
Version 3.7.91.x.x. Minor editorial changes. Added error code information. Removed some

SDK information.

April 22, 2020 Version 3.7.91.x.x. Minor editorial changes.

March 1, 2020 Initial release. Version 3.7.91.x.0.

