16A012

16-Bit, 12 Channel High-Speed Analog Output Board

PMC-16A012

LINUX Device Driver
User Manual

Manual Revision: April 18, 2006

General Standards Corporation
8302A Whitesburg Drive
Huntsville, AL 35802
Phone: (256) 880-8787
Fax: (256) 880-8788
URL.: http://www.generalstandards.com
E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

PMC-16A012 LINUX Device Driver User’s Manual

Preface
Copyright ©2003-2006, General Standards Corporation
Additional copies of this manual or other literature may be obtained from:

General Standards Corporation
8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Although extensive editing
and reviews are performed before release to ECO control, General Standards Corporation assumes no
responsibility for any errors that may exist in this document. No commitment is made to update or keep current the
information contained in this document.

General Standards Corporation does not assume any liability arising out of the application or use of any product
or circuit described herein, nor is any license conveyed under any patent rights or any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or
errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this product to improve
reliability, performance, function, or design.

ALL RIGHTS RESERVED.

The Purchaser of this software may use or modify in source form the subject software, but not to re-market or
distribute it to outside agencies or separate internal company divisions. The software, however, may be embedded in
the Purchaser’s distributed software. In the event the Purchaser’s customers require the software source code, then
they would have to purchase their own copy of the software.

General Standards Corporation makes no warranty of any kind with regard to this software, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose and makes this software
available solely on an “as-is” basis. General Standards Corporation reserves the right to make changes in this
software without reservation and without notification to its users.

The information in this document is subject to change without notice. This document may be copied or reproduced
provided it is in support of products from General Standards Corporation. For any other use, no part of this
document may be copied or reproduced in any form or by any means without prior written consent of General
Standards Corporation.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

2
General Standards Corporation, Phone: (256) 880-8787

http://www.generalstandards.com/
mailto:sales@generalstandards.com

PMC-16A012 LINUX Device Driver User’s Manual

Table of Contents

IR T € 0o LU T 1 o] o RSP SOPROPPR 5
O U o[0T TS U PP UP PP URTTROTRTO 5
o] 0] 1)/ 0 OO P PR UPPPR 5
G I =) a1 o] TSSO PSSRSO 5
1.4, SOFEWAIE OVEIVIEWcviiviiieiiitiitetiete ettt sttt ettt et s s bt s bt s bt s b bR bt s e b et e st e b e st st et s e b et neann 5
1.5, HAPAWAIE OVEIVIBW.cuiiitiitiieeiiite ettt ettt sb et s bt b bbbt b et e bt et s e bt n e bt s et e b s e b et neann 5
1.6. REFEFENCE IMALETTAL......ocuiieiiii bbb b bbbt b ettt b et ans 5

P2 10151 = 1| =1 o] o [PPSR 6
2.1. CPU and KEINEI SUPPOIT ...ttt bbbt b bbbt e e e e e b e besbe b e e e enee e 6
P 3 L T SO SO U S UPTT 6

2.2.1. Installation on Target SYSTEMccvevuieriieciieieeieseeseeseete e sete st esteesseesbeesbessaesssesseesseessesssesssesseesseesseessenns 6
2.2.2. Building the driver and teSt aPPlICATION.cccveeierieriierieete et eteeterte et eteeteseaesseesseesseessesssesneesseesseeseenseans 6
2.2.3. MANUAL STATEUP ..eevveiieieeie et ete st et et et et e ttestte bt e seesseeaaesseesseanseanseanseessesssesseeseenseansesnsesnsesneesseanseenseans 6
2.2.4, AULOMALIC STATTUD ...evveenvieieeteetesiestieteesteeteeetesstesseesseenseessesnsesseesseanseenseanseassesssesssenseessennsesnsesnsesseesseenseensenns 7
2.2.5. Verification Of STATTUP.eecueiieiieeiiete ettt ettt ettt ettt et et et e et e sseeeseesbe e st enseemeesneeeneesseenseenseens 7
B Yo 1 (67 15 (o) « DS PRSI 7
2.2.7. REMOVAL...oeiiiieiiiiiee ettt ettt e st e sttt esbe e st eesabeessbeessbaessbeessseessseessseessseesssaessseaassaesssaesnsaessseensseensses 8
22,8, UNINSTALL ...ttt ettt ettt e te e te e beesbeesaeeaeesseesseesbeesseesseessesssesssesseesseessesasesssesseenseensenns 8

SIS U g1 o] (30N o] o] [ToF 1 o] o SRS 9

B g YT gl L] (=] =T T TR ROPPRSRRS 10
I =T 1 =] OO STV URUSUTRPN 10

4111, GSC REZISLEIS ...eeutientieiieeiie ittt ettt ettt et e bttt et s bt e s bt e sb e et e st e ee e ebeeab e e bt embeemtesateseeenbeenteenteenteeneenbeennees 10
4.1.2. PLX PCI 9080 REZISIEIS.uvecvierierieiietesieesieesteesteestesstesseesseesseessesssesssesseessesssesssesssesssessessseessesssesssessssssees 10
A D - L= Wl Y/ o[- PSPPSR PRSP 10
4.2.1. I6AO12 REGISTER PARAMSottt ettt ettt ettt et ettt e s e e at e e aaeetbeessaeessseenasessseenssennns 10
R - Vo [OSSR 11
Y - OSSR 11
TR T o1 o SR 12
4.5.1. TOCTL NO_COMMANDoitmieeeeeeeeeeeeeeeee e eeeeeeee e ee oo s s ss e se e ee e se e s es e se s 12
4.52. TOCTL_READ REGISTER ...ttt ettt ettt ettt et st e e st ettt e eneeeneesneennean 13
4.5.3. IOCTL_WRITE REGISTER.......iiittittiiiiieiietee ettt ettt ettt st be ettt et eeeesbeenbeas 13
4.54. TOCTL_INIT BOARDoooimioeieeeeeeeeeeeeeee e es e 13
4.55. TOCTL_SET DMA MODBEcoooimiomieoieoeeeeeeeeeeeeeeee oo ee e es e 13
4.5.6. IOCTL_GET DEVICE ERRORc.oomieiieeieeeeeeeeeeeeeeeeeeeseeeeeseeeseseees e ee s seee s ss s sse s es s 14
4.5.7. IOCTL _AUTOCALIBRATE ..ottt ettt ettt ettt ve e tteessaeestteessaeessteenssesnsseenssesnns 14
4.5.8. TOCTL_ PROGRAM RATE GENco.oimiuiieiieeeeeeeeeeeeeeeeeeeeeeeeeseseeee e ee e esee s eseee e ssees s 14
4.5.9. IOCTL_CHANNEL ENABLE........oiiittiittiittee ettt ettt ettt et e ba e et e e bteesabeesbaeenaeeenne 14
4.5.10. IOCTL_SET OUT BUFFER _SIZE.......cocoittiitiititt ettt ettt ettt ettt e sbae e e 15
4.5.11. IOCTL_GET_BUFFER _STATUSottt ettt ettt ettt s bt e e satessbeeesaneenne 15
4.5.12. TOCTL _ENABLE CLKootttiitiiteiteieeiesteeste ettt ettt ste ettt eetees e ssee bt eseeeesmteeneesseenseenseenseeneesseennean 16
4.5.13. IOCTL _DISABLE CLK ..ottt ettt ettt sttt et e teestess e sbe e et eteemeeeseessee st enteenseeneesseennean 16
4.5.14. IOCTL_SELECT DATA FORMATeiiiiiiie ettt ettt ettt eneesneenneas 16
3

General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

4.5.15. IOCTL_SELECT_SAMPLING_MODBEccocstiutiimriiritermmeiieseieseseessssssssssesssssssssssassssssssessseees 16
4.5.16. IOCTL_GET_BURSTING_STATUScetuuurummiumiimieiieiserssesssessssesssesss s ssesssesssessssssssssssessseees 17
4.5.17. IOCTL_BURST_TRIGGERc.ooootrimiiimriimrimneeisseisesesesesesss st ssesss ettt sssssssessssesssneees 17
4.5.18. I0CTL_ENABLE_REMOTE_GND_SENSE........eooritiirirerimrrimriieresessssesssssesssessssssssssssesssessseees 17
4.5.19. I0CTL_DISABLE_LOCAL_GND_SENSE.......c.ccstutmtitriirmmrrimriiesesessssessesssesssessssssssssssesssessseees 17
4.5.20. IOCTL_SELECT_OUT_CLKING_MODEccoocstiiiiuriireiiniieisseesessseesssessesssees s 18
4.521. TOCTL_SELECT _CLK_SOURCEccoooiiutiiimmiimiineeseeiseses st sesss st 18
4.5.22. TOCTL_GET_CLK_STATUS.....ouiiuiiteiieeiseesseesseeese st essse st sss st 18
4.5.23. TOCTL_SINGLE_OUTPUT_CLK_EVENT.......oocestiiiiiiiirmiieiisisseeseessesssesssesssss s sseseseees 18
4.5.24. TOCTL_SELECT BUF_CONFIGccesouuiiumiimmeiseeiseeises s sssssesss s sss s 19
4.5.25. TOCTL_LOAD_ACCESS_REQccvuuiiumiiimiimneeiseessesisesesesssessssessss s s ssessssss s ssssssssss s ssseees 19
4.5.26. IOCTL_GET_CIR_BUF_STATUSccocoottuirummrmmiiimrisseeesesssesssesssssssessssssses st sses s ssssssssssssessseees 19
4.5.27. IOCTL_CLEAR_BUFFERcotvuuiiiiiiiiieiiieeiseeiseses sttt 19
4.5.28. IOCTL_GET_DEVICE_TYPEstriiitiiirimeeiseessessses st st sessesssesss st ssessses s ssssssssesssnesssneees 20
4.5.29. IOCTL_SET_TIMEOUT w...covtuumiimiiimriirtisnesisesssesssesssses st ssss st sssssssses sttt ssssssssssesssesssnenes 20
DOCUMENT HISTOIY ...ttt bbbttt 20
4

General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

1. Introduction

1.1. Purpose

The purpose of this document is to describe the interface to the 16A012 LINUX device driver. This software
provides the interface between application software and the 16A012 board.

1.2. Acronyms

The following is a list of commonly occurring acronyms used throughout this document.

Acronyms | Description
DMA Direct Memory Access
PCI Peripheral Component Interconnect

1.3. Definitions

The following is a list of commonly occurring terms used throughout this document.

Term Definition

Driver Driver means the kernel mode device driver, which runs in the kernel space with kernel mode
privileges.

Application | Application means the user mode process, which runs in the user space with user mode privileges.

1.4. Software Overview

The 16A012 driver software executes under control of the Linux operating system. The device driver allows the
user to open and close one or more 16A012 boards, then read and write data to the registers on the hardware.

1.5. Hardware Overview

The 16A012 is a 16-Bit, 12 channel high-speed analog output board. See the hardware manual for a detailed
description of the hardware features.

1.6. Reference Material

The following reference material may be of particular benefit in using the 16A012 and this driver. The
specifications provide the information necessary for an in depth understanding of the specialized features
implemented on this board.

e The applicable 16A012 Reference Manual from General Standards Corporation.
e The PCI9080 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA
Phone: 1-800-759-3735

WEB: http://www.plxtech.com

5
General Standards Corporation, Phone: (256) 880-8787

http://www.plxtech.com/

2. Installation

PMC-16A012 LINUX Device Driver User’s Manual

2.1. CPU and Kernel Support

The driver is a Linux kernel-mode module. The driver has been tested on a PC system with dual Intel x86
processors running kernel 2.4.18-14SMP, and 2.6.8-1.521smp. Support for the 2.2 kernel has been left in the driver,
but has not been built or tested. The driver will have to be rebuilt for the version of the kernel running on the target

machine.

2.2. The Driver

This driver and its related files are:

File Description
*.C The driver source files.
pIx_regs.h Defines for the PLX chip, used internally by the driver.
README . TXT Revision history and late-breaking news.

Internals.h

Internal defines for the driver.

gscl6aol2_ioctl.h

Defines common to the driver and the application. This is the only header file that
needs to be included in the application.

sysdep.h Compatibility file for 2.2, 2.4 and 2.6 kernels.

gsc_start Script to detect how many 16A012 boards are installed, and create a node for each of
the cards.

app -mak Makefile for the test application. Invoked as ‘make —f app.mak’

Makefile Makefile for the driver. Invoked as simply ‘make’ or ‘make —f Makefile’

2.2.1. Installation on Target System

To install the driver:

1. Power down the target computer and install the 16AO12 hardware card(s).

2. Power up the system.

3. Decompress the distribution tar file in a convenient directory. To decompress the archive, use a

command like:

tar —xzvFf gsc_l6aoDriver_v1.9.2.tar.gz

2.2.2. Building the driver and test application

To build the driver, change to the directory containing the driver source. Then:

1. Type make to build the driver. The driver should build without errors or warnings. If there are warnings
or errors, ensure that the current kernel source is located at /usr/src/linux-2.4, or whatever settings are
required for other versions of the kernel.

2. Type make —F app.-mak to build the test application.

2.2.3. Manual Startup

Login as root. Type ./gsc_start to start the driver. The script will display:

6
General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

Loading module 16A012 ...

2.2.4. Automatic startup

The 16A012 driver may also be started automatically upon reboot. For auto-start using the 2.4 kernel, edit the file
/etc/rc.d/rc.local and add the line /<path>/gsc_start where <path> is the path to where the driver
and startup script are installed. Note that the startup script must be in the same directory as the driver for the startup
script to work.

2.2.5. Verification of startup

There are three ways to verify that the driver has started. The first is to type:

Is /dev/16a012*

The operating system will list an entry for each board installed, such as:

/dev/16A0120

The number appended to the name (0,1,...) is the index of the card. When multiple devices are present in the
system, this is how the application specifies which device to open.

The second method is to check the /proc file system. The 16A012 driver creates an entry in the /proc file system to
report the number of boards found and the build date of the driver. Typing:

cat /proc/16A012

Returns a result similar to:

version: 1.9.1

built: Jan 26 2006, 11:06:29

If the driver is a debug build, additional statistics are reported in the proc file.

The third method is to check the loaded modules by typing:

Ismod

The 16A012 will be listed as one of the installed modules.

2.2.6. Verification
The distribution includes a test application and source called testapp. Run this application to
verify that the installation was successful. The board will be opened, reset and the configuration
register will be read. To run the application, type:

/testapp O

Where 0 is the index for the first (or only) 16A012 board installed in the system. Testapp will
display a result similar to:

about to open /dev/gsc_16a0120
before reset: BCR is 0x10
board reset OK

7
General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

after reset: BCR is 0x10
auto calibration OK
before P10 write
after PIO write
before DMA write
after DMA write
2.2.7. Removal
Follow the below steps to remove the driver.
1. Type:
rmmod
2. Verify that the driver has been removed by typing:
Ismod

And verifying that the driver is no longer listed.

2.2.8. Uninstall

First remove the driver as described above. Remove the auto-start entry in /etc/rc.d/rc.local. Delete the
directory containing the driver, startup script and source.

8
General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

3. Sample Application

The sample application demonstrates opening the driver, and reading and writing registers using the IOCTL service.
Data may be written to and read from the other registers on the hardware using similar code.

9
General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

4. Driver Interface

The 16A012 driver conforms to the device driver standards required by the LINUX driver model. The device driver
provides a standard driver interface to the GSC 16A012 board for Linux applications. The interface includes various
macros, data types and functions, all of which are described in the following paragraphs. The 16A012 specific
portion of the driver interface is defined in the header file gsc16a012_ioctl .h, portions of which are described
in this section. The header defines numerous items in addition to those described here.

NOTE: Contact General Standards Corporation if additional driver functionality is required.

4.1. Registers

The following table gives the complete set of 16A012 registers. The tables are divided by register categories. All
registers are accessed as 32-bits.

4.1.1. GSC Registers

The following table gives the complete set of GSC specific 16A012 registers. For detailed definitions of these
registers refer to the 16A012 Reference Manual. The macro fields are defined to simplify access to the registers.

Macro Description

BOARD_CTRL_REG Board Control Register (BCR)
CHANNEL_SELECTION_REG | Channel Select Register (CSR)
RATE_CTRL_REG Sample Rate Register (SCR)
BUFFER_OPS_REG Buffer Operations Register (BOR)
RESERVED_1 Not Used

RESERVED_2 Not Used

OUTPUT_BUF_REG Output Buffer Register (ODB)
ADJUSTABLE_CLOCK Clock Control Register (ACR) (Optional)

4.1.2. PLX PCI 9080 Registers

For detailed definitions of these registers refer to the PCI9080 Data Book. There is rarely any need to examine the
PLX registers; they are mentioned here for completeness.

4.2. Data Types
This driver interface includes the following data types, which are defined in gsc16a012_ioctl .h.
4.2.1. 16A0O12_REGISTER_PARAMS
This is the data structure used to move data back and forth between the application and the 16A012 registers.
Definition
typedef struct REGISTER_PARAMS
ULONG eRegister;

ULONG ulValue;
} REGISTER_PARAMS, *REGISTER_PARAMS;

Field Description

eRegister | The register to read or write. This is the 32-bit address, not the 8-bit address shown in the

10
General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

hardware documentation. The register macros are 32-bit addresses

ulvalue The value to be written to the register on write, or the value read from the register on read.

4.3. read()

The 16A012 does not support a read operation, as the board has neither data storage nor synchronous data reception
capability. Reading data from the appropriate registers is done using the ioctl function.

4.4. write()

The write() function is used to transfer data from the user buffer to the hardware output buffer. The hardware
output buffer drives the D/A output circuits.

The driver only checks one thing about the state of the output buffer: Whether the “low quarter” bit is set in Board
Control Register. To avoid overrunning the buffer, the driver will only write to the buffer if the status flag indicates
that the buffer level is below the threshold. If the buffer level is greater than the threshold, the driver will set and
interrupt and sleep until the level drops below the threshold.

Prototype

int write(int fd, void *buf, size t count);

Argument | Description

fd This is the file descriptor of the device to access.

buf Pointer to the user data buffer.

count Requested number of bytes to write. This must be a multiple of four (4).
Return Value Description

Less than O An error occurred. Consult errno.

Greater than O | The operation succeeded. Return value is bytes written.

Example:

#include <errno.h>
#include <stddef.h>
#include <stdio.h>
#include <unistd.h>
#include "gscl6aol?2_ioctl_h"

int 16a012 write(int fd, _ u32 *buf, size_t samples)

{
size_t Dbytes;
int status;
bytes = samples * 4;
status = write(fd, buf, bytes);
if (status == -1)
printf(C'write() failure, errno = %d\n', errno);
else

status /= 4; // convert bytes to words

return(status);

11
General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

4.5. ioctl()

This function is the entry point to performing setup and control operations on a 16 A0O12 board. This function should
only be called after a successful open of the device. The general form of the ioctl call is:

int ifoctl(int fd, int command);

or
int ioct(int fd, int command, arg*);

where:

fd File handle for the driver. Returned from the open() function.

command | The command to be performed.

arg* (optional) pointer to parameters for the command. Commands that have no parameters (such as
IOCTL_GSC_NO_COMMAND) will omit this parameter, and use the first form of the call.

The specific operation performed varies according to the command argument. The command argument also
governs the use and interpretation of any additional arguments. The set of supported ioctl services is defined in the
following sections.

Usage of all IOCTL calls is similar. Below is an example of a call using IOCTL_READ_REGISTER to read the
contents of the board control register (BCR):

#include 'gscl6aol?2_ioctl_h"

int ReadTest(int fd)

{
device_register_params RegPar;
int res;

regdata.eRegister = BOARD_CTRL_REG;
regdata.ulValue = 0x0000; // to make sure it changes.
res = ioctl(fd, (unsigned long)
IOCTL_READ_REGISTER, ®data);
if (res <0) {
printf('%s: ioctl I0CTL_READ_REGISTER failed\n', argv[0]);
}

return (res);

4.5.1. I0OCTL_NO_COMMAND

This is an empty driver entry point. This ioctl may be given to verify that the driver is correctly installed and that a
16A012 device has been successfully opened. If an error status is returned verify that the driver was opened

properly.

12
General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

Usage

ioctl () Argument | Description
Operation 10CTL_NO_COMMAND
Arg None

4.5.2. I0OCTL_READ_REGISTER

This operation reads the selected register and returns the value. Refer to gsc16a012_ioctl _h for a complete list
of the accessible registers.

Usage

ioctl () Argument | Description
Operation I0CTL_READ_REGISTER
Arg REGISTER_PARAMS*

4.5.3. IOCTL_WRITE_REGISTER
This service writes a value to a 16A012 register. The accessible registers are listed in gsc16a012_ioctl . h.

Usage

ioctl () Argument | Description
request IOCTL_WRITE_REGISTER
Arg REGISTER_PARAMS*

4.5.4. IOCTL_INIT_BOARD
This service initializes the hardware to a known state.

Usage

ioctl () Argument | Description
request I0CTL_INIT_BOARD
Arg None

4.5.5.I0CTL_SET_DMA_MODE

This service selects the mode for writing data to the output buffer, either DMA or PIO (Programmed 1/O). Possible
choices are:

DMA_DISABLE

DMA_ENABLE
Usage
ioctl () Argument | Description
Request I0CTL_SET_DMA_ MODE
Arg Unsigned long*
13

General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

4.5.6. IOCTL_GET_DEVICE_ERROR
This service returns the most recent error detected by the hardware. Possible return values are:

DEVICE_SUCCESS
DEVICE_INVALID_PARAMETER
DEVICE_INVALID_BUFFER_SIZE
DEVICE_PI10O_TIMEOUT
DEVICE_DMA_TIMEOUT
DEVICE_IOCTL_TIMEOUT
DEVICE_OPERATION_CANCELLED
DEVICE_RESOURCE_ALLOCATION_ERROR
DEVICE_INVALID_REQUEST
DEVICE_AUTOCAL_FAILED

Usage
ioctl () Argument | Description
request IOCTL_GET_DEVICE_ERROR
Arg Unsigned long*

4.5.7. I0CTL_AUTOCALIBRATE

This service performs an autocalibration service on the hardware. The IOCTL waits for the “done” interrupt before
returning.

Usage
ioctl () Argument | Description
request 10CTL_AUTOCALIBRATE
Arg None

4.5.8. IOCTL_PROGRAM_RATE_GEN

This service writes the passed value to the rate generator register. See the hardware manual for a description of how
to select a value for the rate generator.

Usage
ioctl () Argument | Description
request I10CTL_PROGRAM_RATE_GEN
Arg Unsigned long*

4.5.9. IOCTL_CHANNEL_ENABLE

This service selects what channels will be written during a write cycle. Individual channel masks should be OR-ed
together. Possible values are:

CHAN_O_ENABLE
CHAN_1_ENABLE

14
General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

CHAN_2_ENABLE
CHAN_3_ENABLE
CHAN_4_ENABLE
CHAN_5_ENABLE
CHAN_6_ENABLE
CHAN_7_ENABLE
CHAN_8_ENABLE
CHAN_9_ENABLE
CHAN_10_ENABLE
CHAN_11_ENABLE
CHAN_ALL_ENABLE

Usage

ioctl () Argument | Description
Request 10CTL_CHANNEL_ENABLE
Arg Unsigned long*

4.5.10. IOCTL_SET _OUT_BUFFER_SIZE
This service sets the size of the virtual output buffer. Possible values are:

OUT_BUFFER_SIZE_4
OUT_BUFFER_SIZE_8
OUT_BUFFER_SIZE_16
OUT_BUFFER_SIZE_32
OUT_BUFFER_SIZE_64
OUT_BUFFER_SIZE_128
OUT_BUFFER_SIZE_256
OUT_BUFFER_SIZE_512
OUT_BUFFER_SIZE_1024
OUT_BUFFER_SIZE_2048
OUT_BUFFER_SIZE_4096
OUT_BUFFER_SIZE_8192
OUT_BUFFER_SIZE_16384
OUT_BUFFER_SIZE_32768
OUT_BUFFER_SIZE_65536

Usage

ioctl () Argument | Description
Request I0CTL_SET_OUT_BUFFER_SIZE
Arg Unsigned long*

4.5.11. IOCTL_GET_BUFFER_STATUS
This service reads the status of the output buffer register. Possible return values are:
OUTPUT_EMPTY

OUTPUT_LOW_QTR
OUTPUT_HIGH_QTR

15
General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

Usage

ioctl () Argument | Description
Request I0CTL_GET_BUFFER_STATUS
Arg Unsigned long*

4.5.12. I0OCTL_ENABLE_CLK
This service enables the output clock.

Usage

ioctl () Argument | Description
request I0CTL_ENABLE_CLK
Arg None

4.5.13. IOCTL_DISABLE_CLK
This service disables the output clock.

Usage

ioctl () Argument | Description
request I0CTL_DISABLE_CLK
Arg None

4.5.14. IOCTL_SELECT_DATA_FORMAT
This service selects the format of the data written to the output buffer. Possible values are:

TWOS_COMP
OFFSET_BINARY

Usage

ioctl () Argument | Description
Request IOCTL_SELET_DATA_FORMAT
Arg Unsigned long*

4.5.15. I0OCTL_SELECT_SAMPLING_MODE
This service selects whether the hardware will sample in continuous mode or burst mode. Possible values are:

CONT_MODE
BURST_MODE

16
General Standards Corporation, Phone: (256) 880-8787

Usage

PMC-16A012 LINUX Device Driver User’s Manual

ioctl () Argument

Description

Request

10CTL_SELECT_SAMPLING_MODE

Arg

Unsigned long*

4.5.16. IOCTL_GET_BURSTING_STATUS

This service returns the burst status of the output buffer. Possible return values are:

Usage

BURST_NOT_READY
BURST_READY

ioctl () Argument

Description

Request

I0CTL_GET_BURSTING_STATUS

Arg

Unsigned long*

4.5.17. I0CTL_BURST_TRIGGER

This service starts a burst-mode transfer of data from the output buffer to the active output channels.

Usage

4.5.18. IOCTL_ENABLE_REMOTE_GND_SENSE

ioctl () Argument | Description
request I0CTL_BURST_TRIGGER
Arg none

This service sets the hardware to use the remote ground sense feature.

Usage

ioctl () Argument | Description
request I0CTL_ENABLE_LOCAL_GND_SENSE
Arg None

4.5.19. |0CTL_DISABLE_LOCAL_GND_SENSE

This service disables the hardware remote ground sense and uses the internal ground sense.

Usage

ioctl () Argument | Description
request IOCTL_DISABLE_LOCAL_GND_SENSE
Arg None

17

General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

4.5.20. IOCTL_SELECT_OUT_CLKING_MODE
This service selects the mode for the output clock. Possible values are:

SEQUENTIAL
SIMULTANEOUS

Usage

ioctl () Argument | Description
Request I0CTL_SELECT_OUT_CLKING_MODE
Arg Unsigned long*

4.5.21. I0CTL_SELECT_CLK_SOURCE
This service selects the source for the output clock. Possible values are:

INTERNAL
EXTERNAL

Usage

ioctl () Argument | Description
Request I10CTL_SELECT_CLK_SOURCE
Arg Unsigned long*

4.5.22. I0OCTL_GET_CLK_STATUS
This service returns the current clock status. Possible values are:

CLOCK_NOT_READY
CLOCK_READY BOR_CLOCK_READY

Usage
ioctl () Argument | Description
request IOCTL_GET_CLK_STATUS
Arg Unsigned long*

4.5.23. IOCTL_SINGLE_OUTPUT_CLK_EVENT

This service generates a clock strobe.

Usage
ioctl () Argument | Description
request IOCTL_SINGLE_OUTPUT_CLK_EVENT
Arg None

18
General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

4.5.24. I0CTL_SELECT_BUF_CONFIG
This service selects whether the output buffer is closed (circular) or open. Possible values are:

OPEN_BUF
CIRCULAR_BUF

Usage

ioctl () Argument
request
Arg

Description
I0CTL_SELECT_BUF_CONFIG
Unsigned long*

4.5.25. |0CTL_LOAD_ACCESS_REQ

This service requests access to the circular buffer when it is closed.

Usage
ioctl () Argument | Description
request I0CTL_LOAD_ACCESS_REQ
Arg None

4.5.26. IOCTL_GET_CIR_BUF_STATUS
This service requests the current status of the circular buffer. Possible return values are:

CIR_BUF_NOT_READY
CIR_BUF_READY

Usage

ioctl () Argument | Description
request I0CTL_GET_CIR_BUF_STATUS
Arg Unsigned long*

45.27. I0CTL_CLEAR_BUFFER

This service empties all residual data from the output buffer.

Usage

ioctl () Argument | Description
request I0CTL_CLEAR_BUFFER
Arg None

19

General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

4.5.28. IOCTL_GET_DEVICE_TYPE

This service returns an enumeration indicating what member of the 16 A0 family is attached. Possible return values
are:

GSC_16A0_12
GSC_16A0_2

Usage

ioctl () Argument | Description
Request I0CTL_GET_DEVICE_TYPE
Arg Unsigned long*

4.5.29. IOCTL_SET_TIMEOUT

This service sets the timeout for initializing, auto-calibration and write operations. Value passed is in seconds.

Usage

ioctl () Argument | Description
Request I0CTL_SET_TIMEOUT
Arg Unsigned long*

4.5.30. IOCTL_SET_BIG_ENDIAN

Tells the driver that the system is big endian or little endian. Default is little endian. Currently setting to big endian
only causes byte swapping during DMA. Possible values are:

TRUE: Use big endian swapping.
FALSE: Use little endian mode (no swapping, default).

Usage
ioctl () Argument | Description
Request IOCTL_SET_TIMEOUT
Arg Unsigned long*
20

General Standards Corporation, Phone: (256) 880-8787

PMC-16A012 LINUX Device Driver User’s Manual

Document History

Revision Description
December 1, 2004 | Initial release.
March 17, 2005 Corrected description of ‘write” operation.

February 16, 2006 | Removed GET DEVICE TYPE IOCTL. Corrected IOCTL header file name.

February 24, 2006 | Corrected some typos.

21
General Standards Corporation, Phone: (256) 880-8787

	16AO12
	16-Bit, 12 Channel High-Speed Analog Output Board
	PMC-16AO12
	LINUX Device Driver
	User Manual

	Introduction
	Purpose
	Acronyms
	Definitions
	Software Overview
	Hardware Overview
	Reference Material

	Installation
	CPU and Kernel Support
	The Driver
	Installation on Target System
	Building the driver and test application
	Manual Startup
	Automatic startup
	Verification of startup
	Verification
	Removal
	Uninstall

	Sample Application
	Driver Interface
	Registers
	GSC Registers
	PLX PCI 9080 Registers

	Data Types
	16AO12_REGISTER_PARAMS
	Definition

	read()
	write()
	Prototype

	ioctl()
	IOCTL_NO_COMMAND
	Usage

	IOCTL_READ_REGISTER
	Usage

	IOCTL_WRITE_REGISTER
	Usage

	IOCTL_INIT_BOARD
	Usage

	IOCTL_SET_DMA_MODE
	Usage

	IOCTL_GET_DEVICE_ERROR
	Usage

	IOCTL_AUTOCALIBRATE
	Usage

	IOCTL_PROGRAM_RATE_GEN
	Usage

	IOCTL_CHANNEL_ENABLE
	Usage

	IOCTL_SET_OUT_BUFFER_SIZE
	Usage

	IOCTL_GET_BUFFER_STATUS
	Usage

	IOCTL_ENABLE_CLK
	Usage

	IOCTL_DISABLE_CLK
	Usage

	IOCTL_SELECT_DATA_FORMAT
	Usage

	IOCTL_SELECT_SAMPLING_MODE
	Usage

	IOCTL_GET_BURSTING_STATUS
	Usage

	IOCTL_BURST_TRIGGER
	Usage

	IOCTL_ENABLE_REMOTE_GND_SENSE
	Usage

	IOCTL_DISABLE_LOCAL_GND_SENSE
	Usage

	IOCTL_SELECT_OUT_CLKING_MODE
	Usage

	IOCTL_SELECT_CLK_SOURCE
	Usage

	IOCTL_GET_CLK_STATUS
	Usage

	IOCTL_SINGLE_OUTPUT_CLK_EVENT
	Usage

	IOCTL_SELECT_BUF_CONFIG
	Usage

	IOCTL_LOAD_ACCESS_REQ
	Usage

	IOCTL_GET_CIR_BUF_STATUS
	Usage

	IOCTL_CLEAR_BUFFER
	Usage

	IOCTL_GET_DEVICE_TYPE
	Usage

	IOCTL_SET_TIMEOUT
	Usage

	IOCTL_SET_BIG_ENDIAN
	Usage

	Document History

