24DSI32PLL

24-bit, 32 Channel Delta-Sigma A/D Board with Phase Locked Loop
Frequency Generation

GSC-24DSI32PLL

Linux Device Driver
User Manual

Manual Revision: February 19, 2007

General Standards Corporation
8302A Whitesburg Drive
Huntsville, AL 35802

Phone: (256) 880-8787
Fax: (256) 880-8788

URL.: http://www.generalstandards.com
E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

24DSI32 PLL Linux Device Driver User Manual

Preface
Copyright ©2004-2007, General Standards Corporation
Additional copies of this manual or other literature may be obtained from:

General Standards Corporation
8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Although extensive editing
and reviews are performed before release to ECO control, General Standards Corporation assumes no
responsibility for any errors that may exist in this document. No commitment is made to update or keep current the
information contained in this document.

General Standards Corporation does not assume any liability arising out of the application or use of any product
or circuit described herein, nor is any license conveyed under any patent rights or any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or
errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this product to improve
reliability, performance, function, or design.

ALL RIGHTS RESERVED.

The Purchaser of this software may use or modify in source form the subject software, but not to re-market or
distribute it to outside agencies or separate internal company divisions. The software, however, may be embedded in
the Purchaser’s distributed software. In the event the Purchaser’s customers require the software source code, then
they would have to purchase their own copy of the software.

General Standards Corporation makes no warranty of any kind with regard to this software, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose and makes this software
available solely on an “as-is” basis. General Standards Corporation reserves the right to make changes in this
software without reservation and without notification to its users.

The information in this document is subject to change without notice. This document may be copied or reproduced
provided it is in support of products from General Standards Corporation. For any other use, no part of this
document may be copied or reproduced in any form or by any means without prior written consent of General
Standards Corporation.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

2
General Standards Corporation, Phone: (256) 880-8787

http://www.generalstandards.com/
mailto:sales@generalstandards.com

24DSI32 PLL Linux Device Driver User Manual

Table of Contents

IO) € 0o [T o] o 5
O o 1 T SRS 5
1.2. Definitions nd ACIOMYIMSeecierrieerieiertereesteesteeseetesstesseesseesseessesssesssessaesseessesssesssesssesssessesssesssesssesssessesssees 5
1.3, SOTEWATE OVEIVIEW ...ttt eee e ettt e e et e e et e s e aaeeeseaaeeeeeaaeesenaeeesenaeeesansaeesensreeesenareeeaneees 5
1.4, HArAWATE OVETVIEWveeiinieiiiieeeeie ettt eeee e e et e ettt e e et e e et e s eeaaeeeeeaareeeeaeeessenaesesentseesensaeesansreeesanareeeaneees 5
1.5, REfEIENCE MALEIIAL........ccovviiieeeeee et e e e e e e e e e e e et e e e eeaaeeeeenteeeeensaeeeentteeeeenneeeeennees 6

2 N 1Sy v || =1 (o] o S 7
2.1. CPU and KEIMEI SUPPOTL ...cocuvieiiieeiieiiieeiieeiteette et e et e s steeeeteesbeeesbeesseeesseessseessseessseaessessnseesnsesssseeessessseenseenn 7
2.2. THE /PrOC FIle SYSEEIMeiiieiieietteieee ettt ettt et h et es et e et e st e e bt eaeebeemeenee s e beabeeseeseeneeneeneensenes 7
TR S 1 (S0 5 1] SRR 7
2.4. This section discusses unpacking, building, installing and running the driver.cccoccoovvevienievieceeieceenen, 7

o B 11 7:1 1 - o) WSSOt 7
o = 111 1 [« RSSOt 8
B B T v 1 4 10| o S TSP UPPROPPR 8
YA o A To%: 15 (o) s WO 9
YA) (o) s WSRO 10
24,6, SHULAOWIL.......eviiieeeie ettt e et e e e e e et e e e et e e s eaeeesaaeteeeenaaeeseaaeeesaneeeesaaesessenaeeesaaeeeaas 10
24T REMOVALoiiiiiieeee ettt ettt e e et e e e et et e s eaaa e e e ettt e e e naa e e e ettt eeeaateeeeaateeeaaareeeaaeeeaas 10
2.5, SAMPIE APPIICALION.ueiieiiitiiiietieieetee ettt ettt et e et e eteeebeesbeesbeetsests e teesseesseessesseesseesseenseesseassassseseesseesseennennns 10
B N R 1]) OO PPSRUPPRRTRPPRRPPRRN 11
TR Ui 11721 1 -5 1o) o TR 11
T TR = 111 1 1« SRR 11
R R I B =1 U LSRR 11
T T = 1110 V7Y EO SRR 11
I B L VLT gl L (] =TT TSR 12
R LY, F: T3 (oL RO 12
7 0 R (O 1O N IO PRRRPRRRN 12
B L2, REEISTEIS 1.uviuviieiietieeieete et et et e et e et e s bt e te e beestessteestesseesseesseesseesseassesaeseenseesseessesssesssaseesseenseenseessenssenseesens 12
I D 1 - T 1) o TSSO PRSPPI 13
TN TR oo T3 (<111 2SSOSR 13
3.2.2. dEVICE ICISLEI PATAIMScuveeueeeererieestieteeteetestesstessteseesseesseassesssessaesseeseensesssesnsesssesseenseenseensenssesssenseensees 13
3.2.3. GON_ASSIZIN PATAIMIScuveeuvieuereeeeetreneeesseeseeseesesssesseesseesseesseanseassesssesseenseensessesssesnsesssesseenseenseenseessesssessesnsees 13
I TR 01 4 15 (o) o < J RO 13
TG TR R0 o3 o USSR 14
T N (<. 1o [() USSR 14
333 WIIEE() teuveeereeiieeee ettt ettt ettt et e et et e s te e be et e e aaeeaaeeteeebe e be e b e eab e et b e ett e ta e te e beerbeenbeeraeeraeete e beenbeenbeesseeraeataereas 16
TR T e 011 () USSR 16
R (O O B BT (ol RSP 17
3.4.1. IOCTL NO_COMMANDoiiiiiiieitierieeit e ete et sttesteebeebeesbessbessaesseesseessesssesssesssesssesseesseessesssesssesseessees 18
3.4.2. IOCTL _READ REGISTERcoiiiiiieieitete ettt ettt ettt teesteebessaessaessaessaebaesseesseessesssessaensens 18
3.4.3. IOCTL_WRITE REGISTER.......ccciiitertieieeie ettt ettt ettt teesteeve e s aessaessa e saessaessesssesssessaensens 18
3.44. IOCTL_SET INPUT _RANGEoooteteteit ettt ettt ettt te et e aeseesseesseeseenseenseensessaensaenseas 18
3

General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

3.4.5. IOCTL _SET INPUT MODE......ccciiititiiiiiiiiiettetete ettt ettt st eit ettt be st ebe et enneeens 19
3.4.6. IOCTL _SET SW_SYNCH ...ttt ettt b et bt et e bbbt b ebe et enteneens 19
347 . TOCTL AUTO CAL ..ottt ettt sttt ettt ettt b e st eae et e b et e b sbesbeeaeeaneneens 19
3.4.8. IOCTL INITIALIZEooiiiitiiiiieiteteteese ettt sttt ettt ettt st eb et e nb et besbe bt et ennenaens 19
3.4.9. IOCTL _SET DATA FORMATcoctetiirtintenteeit ettt sttt ettt ettt st ettt sae bbbt et eaneneens 19
3.4.10. IOCTL_SET INITIATOR MODEcoooiiiiieiieieieieieeie ettt ettt sttt est e e e ssessessesseeseeneansensans 20
3.4.11.IOCTL_SET BUFFER _THRESHOLD..........ccteitiieiiieeeie ettt sae st esaeneensennans 20
3.4.12. IOCTL_CLEAR _BUFFERc.ociiiiiiieeie ettt sttt ettt ettt st st e aessessesseeseeseeneansensans 20
3.4.13. IOCTL_SET ACQUIRE MODE........cootiiiiiiitiiieieee ettt ettt ae e ettt aeeee e eneeeens 20
3.4.14. IOCTL_SET RATE DIVISOR.......ooiiiii ittt ettt se et see sttt saeeseeneenseeens 21
3.4.15. IOCTL_ASSIGN _RATE GROUPoooiiiiiiieieieee ettt ettt eee et eneeeen 21
3.4.16. IOCTL _SET NREF ..ottt b e st eb et nbe bbbt bt et enneneens 22
3417 . TOCTL _SET INVECO ...ttt ettt b ettt b e s bt bt et e et et e e b e sbeebeeneenneneens 22
3.4.18. IOCTL_GET REF FREQUENCYooiiiiiiiirimiiteititerene sttt ettt ettt ettt ettt eens 22
3.4.19. IOCTL _SET TIMEOUTooiiiiiiitiietitine sttt ettt ettt ettt sttt be st ebe et eaneneens 22
3.4.20. IOCTL _SET DMA STATE......oot ittt ettt sttt sttt sae st st ebe et aens 22
3.421. IOCTL_FILL BUFFERcci ittt ettt ettt ettt b et e e se st eseeneensessessessesseeseeneansensans 23
3.422. TOCTL_SYNCHRONIZE SCAN. ...ttt eieiteieiesiese ettt et etestessesteese st esteseessessessessesseeseansansesans 23
3.4.23. IOCTL_CLEAR _BUFFER _SYNCciiiititiieieieieiee ettt ettt sttt esteneeaessessesseeseeseensansensans 23
3.4.24. IOCTL_SET OVERFLOW CHECKccecotttitiieiiiiese sttt eeeeneeneenens 23
3.4.25.I0CTL_SELECT IMAGE FILTER ...coiiiiiiiiiieeee ettt 24
3.4.26. IOCTL _SET DATA WIDTHcoiiiiiiiit ettt ettt ei ettt be e bt et eaneeens 24
3.4.27.I0CTL_SET RANGE FILTERccocoiiiiiiiiiiiieteeee ettt 24
@ o 1= -1 o] o ISR 25
O B O 1o 05153 1) TSRS 25
T B Y T 1T o () BTSSR 25
4.3, Data TranSTer OPLIONS.....ccueeeiieeieeriieeteeeteesiteesteesteessreesteessseessseessseesseessseessseessseessseessseessseessseesssesssseesssesssses 25
G T R (0 LTSS 25
4.3.2. StANAArd DIMAooiieiieie ettt ettt et et ettt s te b e et e tb e e tbeate e te e beerbeeraeereeeteebeenbeetreessearaenteas 25
4.3.3. Demand MOde DIMAccooiiiieiieieeeeee ettt ettt st e s te e b e et e esbeesbesseesbaesseesbeessesseesseesseenseesseessensaenrees 25
4.4, DAta CONVEISION. . .ecviiiiieiertiestieteeteesesseesteesseesesssesssesseasseesseassesssessseseessesssesssesssesssesseessesssesssesssesseessesssesssesnes 26
DOCUMENT HISTONY ...ttt sttt e st et e e sae st e sbeeneeaneenreeneeaneenneans 28
4

General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

1. Introduction

1.1. Purpose
The purpose of this document is to describe the interface to the 24DSI32PLL Linux device driver. The driver
software provides the interface between “Application Software” and the 24DSI32PLL board. The designation

“24DSI32PLL” is used throughout the document to refer to any member of the board family, including the PCI-
24DSI32PLL and cPCI6U-24DSI32R.

1.2. Definitions and Acronyms

The following is a list of commonly occurring terms used throughout this document.

Term Definition
Driver Driver means the kernel mode device driver, which runs in the kernel space with kernel mode
privileges.

Application | Application means the user mode process, which runs in the user space with user mode privileges.

DMA Direct Memory Access

GSC General Standards Corporation
PCI Peripheral Component Interconnect
PMC PCI Mezzanine Card

1.3. Software Overview
The 24DSI32PLL driver software executes under control of the Linux operating system and runs in Kernel Mode as
a Kernel Mode device driver. The 24DSI32PLL device driver is implemented as a standard dynamically loadable

Linux device driver written in the C programming language. The driver allows user applications to: open, close,
read, and perform I/O control operations. Data write to the hardware is not supported.

1.4. Hardware Overview

See the hardware manual for the board version for details on the hardware. Current board manual PDF files may be
found at:

http://www.generalstandards.com/

Look under the “device user manuals” heading and select your board model.

5
General Standards Corporation, Phone: (256) 880-8787

http://www.generalstandards.com/

24DSI32 PLL Linux Device Driver User Manual

1.5. Reference Material

The following reference material may be of particular benefit in using the 24DSI32PLL and this driver. The
specifications provide the information necessary for an in depth understanding of the specialized features
implemented on this board.

e The applicable 24DSI32PLL or 24DSI12User Manual from General Standards Corporation.
e The PCI9080 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA
Phone: 1-800-759-3735

WEB: http://www.plxtech.com

6
General Standards Corporation, Phone: (256) 880-8787

http://www.plxtech.com/

24DSI32 PLL Linux Device Driver User Manual

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 2.4 and 2.6 running on a PC system with Intel x86
processor(s). Testing was performed under Red Hat Linux with kernel versions 2.4.18-14 and 2.6.xsmp on a PC
system with dual Intel x86 processors. Support for version 2.2 of the kernel has been left in the driver, but has not

been tested.
NOTES:

e The driver may have to be rebuilt before being used due to kernel version differences between the
GSC build host and the customer’s target host.

e The driver has not been tested with a non-versioned kernel.

e The driver has only been tested on an SMP host. SMP testing is much more rigorous than single
CPU systems, and helps to ensure reliability on single CPU systems.

2.2. The /proc File System

While the driver is installed, the text file /proc/gsc24dsi32pl1 can be read to obtain information about the
driver. Each file entry includes an entry name followed immediately by a colon, a space character, and the entry
value. Below is an example of what appears in the file, followed by descriptions of each entry. Note that with a
debug build, there may be more information in the file.

version: 1.0.4
built: June 13 2006, 09:08:07

boards: 1

Entry Description

Version | The driver version number in the form X . XX.

Built The drivers build date and time as a string. It is given in the C form of printf("%s, %s",

__DATE__, _ TIME_).

Boards The total number of boards the driver detected.

2.3. File List

See the README.TXT file in the release tar for the latest file list.

2.4. This section discusses unpacking, building, installing and running the driver.

2.4.1. Installation
Install the driver and its related files following the below listed steps.

1. Create and change to the directory where you would like to install the driver source, such as
/usr/src/linux/drivers.

2. Copy the gsc_24DS132_tar .gz file into the current directory. The actual name of the file will be
different depending on the release version.

7
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

3. Issue the following command to decompress and extract the files from the provided archive. This
creates the directory gsc_24DS132PLL_release in the current directory, and then copies all of
the archive’s files into this new directory.

tar —xzvFf gsc 24DSI32PLLDriver.tar.gz

2.4.2. Build
To build the driver:

1. Change to the directory where the driver and its sources were installed in the previous step. Remove
all existing build targets by issuing the below command.

make clean

2. Edit Makefile to ensure that the KERNEL DIR environment variable points to the correct root of the
source tree for your version on Linux. The driver build uses different header versions than an
application build, which is why this step is necessary. The default should be correct for 2.4 and newer
kernels.

3. Build the driver by issuing the below command.
make

NOTE: Due to the differences between the many Linux distributions some build errors may

occur. The most likely cause is not having the kernel sources installed properly. See the

documentation for your release of Linux for instructions on how to install the kernel sources.

To build the test applications:

1. Type the command:

make —F app.mak

2.4.3. Startup

The startup script used in this procedure is designed to ensure that the driver module in the install directory
is the module that is loaded. This is accomplished by making sure that an already loaded module is first
unloaded before attempting to load the module from the disk drive. In addition, the script also deletes and
recreates the device nodes. This is done to insure that the device nodes in use have the same major number
as assigned dynamically to the driver by the kernel, and so that the number of device nodes corresponds to
the number of boards identified by the driver.

2.4.3.1. Manual Driver Startup Procedures

Start the driver manually by following the below listed steps.

1. Login as root user, as some of the steps require root privileges.

2. Change to the directory where the driver was installed. In this example, this would be
/usr/src/linux/drivers/gsc_24DSI32PLL_release.

3. Type:

8
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

./gsc_start
The script assumes that the driver be installed in the same directory as the script, and that the
driver filename has not been changed from that specified in Makefile. The above step must be

repeated each time the host is rebooted. It is possible to have the script run at system startup. See
below for instructions on automatically starting the driver.

NOTE: The kernel assigns the 24DSI32PLL device node major number dynamically. The
minor numbers and the device node suffix numbers are index numbers beginning with zero,
and increase by one for each additional board installed.

4. Verify that the device module has been loaded by issuing the below command and examining the
output. The module name gsc24dsi32p1 1 should be included in the output.

Ismod

5. Verify that the device nodes have been created by issuing the below command and examining the
output. The output should include one node for each installed board.

Is —1 /dev/gsc24dsi32pll*
2.4.3.2. Automatic Driver Startup Procedures
Start the driver automatically with each system reboot by following the below listed steps.

1. Locate and edit the system startup script rc. local, which should be in the Zetc/rc.d directory.
Modify the file by adding the below line so that it is executed with every reboot.

/usr/src/linux/drivers/gsc_24DS132PLL_release/gsc_start

NOTE: The script assumes the driver is in the same directory as the script.
2. Load the driver and create the required device nodes by rebooting the system.
3. Verify that the driver is loaded and that the device nodes have been created. Do this by following the
verification steps given in the manual startup procedures.
2.4.4. Verification
To verify that the hardware and driver are installed properly and working, the steps are:
1. Install the sample applications, if they were not installed as part of the driver install.
2. Change to the directory where the sample application testapp was installed.

3. Start the sample application by issuing the below command. The argument identifies which board to
access. The argument is the zero based index of the board to access.

./testapp <board>

So for a single-board installation, type:

9
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

./ testapp O

The test application is described in greater detail in a later section.

2.4.5. Version

The driver version number can be obtained in a variety of ways. It is appended to the system log when the driver is
loaded or unloaded. It is recorded in the text file /proc/gsc24dsi32pll. It is also in the driver source header
file gsc24dsi32pll .h,.

2.4.6. Shutdown

Shutdown the driver following the below listed steps.

1.

2.

Login as root user, as some of the steps require root privileges.
If the driver is currently loaded then issue the below command to unload the driver.
rmmod gsc24dsi32pll

Verify that the driver module has been unloaded by issuing the below command. The module name
gsc24dsi32pl 1 should not be in the list.

Ismod

2.4.7. Removal

Follow the below steps to remove the driver.

1.

2.

Shutdown the driver as described in the previous paragraphs.

Change to the directory where the driver archive was installed. This should be
/usr/src/linux/drivers.

Issue the below command to remove the driver archive and all of the installed driver files.

rm —rf gsc24dsi32plIDriver.tar.gz gsc 24DSI32PLL_release

Issue the below command to remove all of the installed device nodes.

rm —F /dev/gsc24dsi32pll*

If the automated startup procedure was adopted, then edit the system startup script rc. local and

remove the line that invokes the gsc_start script. The file rc. local should be located in the
/etc/rc.d directory.

2.5. Sample Application

The archive file contains a sample application. The test application is a Linux user mode application whose purpose
is to demonstrate the functionality of the driver with an installed board. They are delivered undocumented and

10
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

unsupported. They can however be used as a starting point for developing applications on top of the Linux driver
and to help ease the learning curve. The principle application is described in the following paragraphs.

2.5.1. testapp

This sample application provides a command line driven Linux application that tests the functionality of the driver
and a user specified 24DSI32PLL board. It can be used as the starting point for application development on top of
the 24DSI32PLL Linux device driver. The application performs an automated test of the driver features. The
application includes the below listed files.

File Description

testapp.-cC | The test application source file.

testapp The pre-built sample application.

app -mak The build script for the sample application.

2.5.2. Installation

The test application is normally installed as part of the driver install, in the same directory as the driver.

2.5.3. Build
Follow the below steps to build/rebuild the sample application.
1. Change to the directory where the sample application was installed.
2. Remove all existing build targets by issuing the below command.
make —F app.mak clean
3. Build the sample applications by issuing the below command.
Make —F app.mak

NOTE: The build procedure assumes the driver header files are located in the current directory.

2.5.4. Execute
Follow the below steps to execute the sample application.
1. Change to the directory where the sample application was installed.

2. Start the sample application by issuing the command given below. The argument specifies the index of
the board to access. Use 0 (zero) if only one board is installed.

/testapp O

2.5.5. Removal

The sample application is removed when the driver is removed.

11
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

3. Driver Interface

The 24DSI32PLL driver conforms to the device driver standards required by the Linux Operating System and
contains the standard driver entry points. The device driver provides a uniform driver interface to the 24DSI32PLL
family of boards for Linux applications. The interface includes various macros, data types and functions, all of
which are described in the following paragraphs. The 24DSI32PLL specific portion of the driver interface is defined
in the header file gsc24dsi32pll.h, portions of which are described in this section. The header defines
numerous items in addition to those described here.

NOTE: Contact General Standards Corporation if additional driver functionality is required.

3.1. Macros

The driver interface includes the following macros, which are defined in gsc24dsi32pll_ioctl . h. The header also
contains various other utility type macros, which are provided without documentation.

3.1.1. IOCTL

The IOCTL macros are documented following the function call descriptions.

3.1.2. Registers

The following tables give the complete set of 24DSI32PLL registers. The tables are divided by register categories.
Unless otherwise stated, all registers are accessed as 32-bits. The only exception is the PCICCR register, which is
24-bits wide but accessed as if it were 32-bits wide. In this instance the upper eight-bits are to be ignored. Register
values are passed as 32-bit entities and bits outside the register’s native size are ignored.

3.1.2.1. GSC Registers

The following table gives the complete set of GSC specific 24DSI32PLL registers. For detailed definitions of these
registers refer to the relevant 24DSI32PLL User Manual. The macro defines of the registers are located in
gsc24dsi32pll_ioctl.h. Note that the hardware manual defines the register address in 8-bit address space. The driver
maps the registers in 32-bit space. For example, the BUFFER CONTROL register has local address 0x20 as
defined in the hardware manual. The driver accesses this register at local address 8 (0x20/4). All this should be
transparent to the user program is the #defines in the gsc24dsi32_ioctl .h file are used.

BOARD_CTRL_REG
NREF_PLL_CONTROL_REG
NVCO_PLL_CONTROL_REG
RATE_ASSIGN_REG
RATE_DIVISORS_REG
RESERVED_1
PLL_REF_FREQ REG
RANGE_FILTER_CONTROL
BUFFER_CONTROL_REG
BOARD_CONFIG_REG
BUFFER_SIZE_REG
AUTOCAL_VALUES_REG
INPUT_DATA_BUFFER_REG

12
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

3.1.2.2. PCI Configuration Registers

The driver does not allow access to the PLX registers. There is generally no need to modify the PLX registers.

3.2. Data Types

This driver interface includes the following data types, which are defined in gsc24dsi32pl1_ioctl .h.

3.2.1. board_entry

3.2.2. device_register_params

This structure is used to transfer register data. The IOCTL_GSC_READ REGISTER and

IOCTL_GSC_WRITE REGISTER use this structure to read and write a user selected register. 'ulRegister' stores the
index of the register, range 0-LAST REG, and ‘ulValue’ stores the register value being written or read. The
absolute range for ‘ulValue’ is 0x0-0xFFFFFFFF, and the actual range depends on the register accessed.

Definition

typedef struct device register_params {
unsigned int ulRegister;
unsigned long ulValue;
} DEVICE_REGISTER_PARAMS, *PDEVICE_REGISTER_PARAMS;

Fields Description
ulRegister | Register to read or write. See gsc24dsi32pl1_ioctl .h for register definitions.
ulvalue Value read from, or written to above register.

3.2.3. gen_assign_params

The IOCTL_GSC_ASSIGN _GEN _TO_GROUP IOCTL command uses this structure to assign a channel group to a
specified generator. 'eGroup' contains the channel group, and 'eGenAssign' specifies which generator.

Definition

typedef struct gen_assign_params {
unsigned int eGroup;
unsigned int eGenAssign;

} GEN_ASSIGN_PARAMS, *PGEN_ASSIGN_PARAMS;

Fields Description
eGroup The group of channels to use with the selected generator.

eGenAssign | The selected generator.

3.3. Functions

This driver interface supports the following functions.

13
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

3.3.1. open()

This function is the entry point to open a handle to a 24DSI32PLL board. The pathname is “/dev/gsc24dsi32plin”
when ‘n’ is the numerical board index [0, 1, 2...]. For a single board install, the pathname would be
“/dev/gsc24dsi32pll0” to access the board.

Prototype

int open(const char* pathname, int flags);

Argument | Description
pathname | This is the name of the device to open.
flags This is the desired read/write access. Use O_RDWR.

NOTE: Another form of the open() function has a mode argument. This form is not displayed
here as the mode argument is ignored when opening an existing file/device.

Return Value | Description
-1 An error occurred. Consult errno.
else A valid file descriptor.

Example

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include “gsc24dsi32pll_ioctl.h”

int 24DS132PLL_open(unsignhed int board)

{
int fd;
char name[80] ;
sprintf(name, "'/dev/gsc24dsi32pll%u’, board);
fd = open(name, O_RDWR);
if (fd == -1)

printf("'open() failure on %s, errno = %d\n', name, errno);

return(fd);

}

3.3.2. read()

The read() function is used to retrieve data from the driver. The application passes down the handle of the driver
instance (returned from open()), a pointer to a buffer and the size of the buffer. The size field portion of the request
is passed to the read () function as a number of bytes, and the number of bytes read is returned by the function.

Depending on how much data is available and what the read mode is, you may receive back less data than requested.
The Linux standards only require that at least one byte be returned for a read to be successful.

How the buffer is filled is dependant on what DMA setting is active:

14
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

No DMA: This is called programmed I/O or PIO. The driver will read data from the data register until
either the buffer is full, or there is no more data in the input buffer, whichever comes first.

Regular DMA: For a regular DMA transaction, the driver needs to determine how much data to transfer.
The driver is set up to only do a DMA operation when the input buffer contains at least
BUFFER THRESHOLD samples in the buffer. So if the flags indicate that there is greater than
BUFFER _THRESHOLD samples available, the driver immediately initiates a DMA transfer between the
hardware and a system buffer. The driver sets an interrupt and sleeps until the DMA finished interrupt is
received, and then copies the data into the user buffer and returns.

If the flags indicate that there is not enough data in the buffer, the driver sets up for an interrupt when the
BUFFER_THRESHOLD is reached and sleeps. When the interrupt is received, the driver then sets up a
DMA transfer as described above.

Demand mode DMA: The byte count passed in the read() is converted to words and written to the
DMA hardware. The driver sets an interrupt for DMA finished and goes to sleep. The DMA hardware
then transfers the requested number of words into the system (intermediate) buffer and generates an
interrupt.

The difference between regular and demand mode has to do with when the transaction is started. A
demand mode transaction may be initiated at any buffer data level. The regular DMA transaction is only
started when there is sufficient data.

DMA always uses an intermediate system buffer then copies the resulting data into the user buffer. It is not

currently possible with (version 2.4) Linux to DMA directly into a user buffer. Instead, the data must pass through

an intermediate DMA-capable buffer. The size of the intermediate buffer is determined by the #define

SG_BUFFER_K_SAMPLES in the gsc24dsi32pll.h file. The driver allocated as many pages as is required to hold
the selected number of samples. The driver uses scatter-gather DMA, which means that the system does not have to

allocate the entire buffer as a contiguous block.

Prototype

int read(int fd, void *buf, size_ t count);

Argument | Description

fd This is the file descriptor of the device to access.

buf Pointer to the user data buffer.

count Requested number of bytes to read. This must be a multiple of four (4).
Return Value Description

Less than O An error occurred. Consult errno.

Greater than O | The operation succeeded. For blocking I/O a return value less than count
indicates that the request timed out. For non-blocking I/O a return value less than
count indicates that the operation ended prematurely when the receive FIFO
became empty during the request.

15
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

Example:

#include <errno.h>
#include <stddef.h>
#include <stdio.h>
#include <unistd.h>
#include 'gsc24dsi32pll_ioctl.h"

int 24DSI132PLL_read(int fd, _ u32 *buf, size t samples)
{

size_t bytes;

int status;

bytes = samples * 4;
status = read(fd, buf, bytes);
if (status == -1)
printf('read() failure, errno = %d\n'", errno);
else
status /= 4;

return(status);

3.3.3. write()

This service is not implemented, as the 24DSI32PLL has no destination to which to transfer a block of data. This
function will therefore always return an error.

3.3.4. close()
Close the handle to the device.
Prototype

int close(int fd);

Argument | Description

Fd This is the file descriptor of the device to be closed.
Return Value | Description

-1 An error occurred. Consult errno.

0 The operation succeeded.

Example

#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include “gsc24dsi32pll_ioctl.h”

int 24DSI132PLL_close(int fd)

16
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

A
int status;
status = close(fd);
if (status == -1)
printF('close() failure, errno = %d\n", errno);
return(status);
}

3.4. I0CTL Services

This function is the entry point to performing setup and control operations on a 24DSI32PLL board. This function
should only be called after a successful open of the device. The general form of the ioctl call is:

int ioctl(int fd, unsigned long command);
or:
int ioct(int fd, unsigned long command, arg*);

where:

fd File handle for the driver. Returned from the open() function.

command | The command to be performed.

arg* (optional) pointer to parameters for the command. Commands that have no parameters (such as
IOCTL_DEVICE _NO_COMMAND) will omit this parameter, and use the first form of the call.

The specific operation performed varies according to the command argument. The command argument also
governs the use and interpretation of any additional arguments. The set of supported IOCTL services is defined in
the following sections.

Usage of all IOCTL calls is similar. Below is an example of a call using 10CTL_DEVICE_READ_REGISTER to
read the contents of the board control register (BCR):

#include "gsc24dsi32pll_ioctl._h"

int ReadTest(int fd)

{
device_register_params RegPar;
unsigned long dwTransferSize;
int res;

regdata.ulRegister = BOARD_CTRL_REG;

regdata.ulvValue = 0x0000; // to make sure it changes.

res = ioctl(fd, (unsigned long)
I0CTL_DEVICE_READ_REGISTER, ®data);

17
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

if (res <0) {
printfF(""%s: 1octl 10CTL_READ REGISTER failed\n', argv[0]);
}

return (res);

3.4.1. IOCTL_NO_COMMAND

NO-OP call. IOCTL GSC NO COMMAND dumps an image of the board register to the debug log. This is
helpful for remote debugging.

Usage

ioctl () Argument | Description
Request I10CTL_GSC_NO_COMMAND

3.4.2. I0CTL_READ_REGISTER

This service reads the value of a 24DSI32PLL register. This includes only the GSC specific registers. Refer to
gsc24dsi32plI_ioctl .h for a complete list of the accessible registers.

Usage

ioctl () Argument | Description
Request I0CTL_GSC_READ_REGISTER
Arg device_register_params*

3.4.3. IOCTL_WRITE_REGISTER

This service writes a value to a 24DSI32PLL register. This includes only the GSC specific registers. Refer to
gsc24dsi32pll_ioctl _h for a complete list of the accessible registers.

Usage

ioctl () Argument | Description
Request I0OCTL_GSC_WRITE_REGISTER
Arg device_register_params*

3.4.4. 10CTL_SET_INPUT_RANGE
Set the input voltage range. Possible values are:
RANGE_2p5V

RANGE_5V
RANGE_10V

Usage

ioctl () Argument | Description
request I0CTL_GSC_SET_INPUT_RANGE

18
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

| arg | unsigned long* |

3.4.5. IOCTL_SET_INPUT_MODE
Set the input mode. Possible values are:
MODE_DIFFERENT IAL

MODE_ZERO_TEST
MODE_VREF_TEST

Usage

ioctl () Argument | Description
request I0CTL_GSC_SET_INPUT_MODE
arg unsigned long *

3.4.6. IOCTL_SET_SW_SYNCH
Initiate an ADC SYNCH operation. Also generates the external sync output if the board is in initiator mode.

Usage

ioctl () Argument | Description
request I0CTL_GSC_SET_SW_SYNCH

3.4.7. 10CTL_AUTO_CAL

Initiate an auto-calibration cycle. Check the hardware manual for what settings should be make before running an
autocalibration cycle.

Usage

ioctl () Argument | Description
request 10CTL_GSC_AUTO_CAL

3.4.8. IOCTL_INITIALIZE

Initialize the board to a known state. The initialize operation sets all hardware settings to their defaults. The driver
waits for an interrupt from the hardware indicating that the initialization cycle is complete.

Usage

ioctl () Argument | Description
request IOCTL_GSC_INITIALIZE

3.4.9. IOCTL_SET_DATA_FORMAT
Set the digital data output format. Options are:

FORMAT_TWOS_COMPLEMENT
FORMAT_OFFSET_BINARY

19
General Standards Corporation, Phone: (256) 880-8787

Usage

24DSI32 PLL Linux Device Driver User Manual

ioctl () Argument | Description
request I0OCTL_GSC_SET_DATA_FORMAT
arg Unsigned long *

3.4.10. IOCTL_SET_INITIATOR_MODE

Set this board as the initiator for synchronized acquisition. Options are:

Usage

TARGET_MODE
INITIATOR_MODE

ioctl () Argument

Description

request

10CTL_GSC_SET_INITIATOR_MODE

arg

unsigned long *

3.4.11. IOCTL_SET_BUFFER_THRESHOLD

Set the data buffer threshold register. The threshold value is used to allow the driver to sleep while waiting for
sufficient data for a transfer to the user buffer. Range is 0x0-0x3FFFF (INPUT_BUFFER_SIZE).

Usage

ioctl () Argument

Description

request

10CTL_GSC_SET_BUFFER_THRESHOLD

arg

unsigned long *

3.4.12. IOCTL_CLEAR_BUFFER

Clear any residual data from the data buffer. This command does not halt sampling. For the most consistent results,
use IOCTL_GSC_SET_ACQUIRE_MODE to halt sampling before clearing the buffer.

Usage

ioctl () Argument

Description

request

I10CTL_GSC_CLEAR_BUFFER

3.4.13. 10CTL_SET_ACQUIRE_MODE

Set the hardware to either start or stop acquiring data. Possible values are:

START_ACQUIRE
STOP_ACQUIRE

20

General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

Usage

ioctl () Argument | Description
request I0CTL_GSC_SET_ACQUIRE_MODE
arg unsigned long *

3.4.14. IOCTL_SET_RATE_DIVISOR

Set the value that divides the assigned rate generator frequency (Ndiv). Possible range for Ndiv is NDIV_MIN to
NDIV_MAX (0-0xff).

Usage

ioctl () Argument | Description
request IOCTL_SET_RATE_DIVISOR
arg unsigned long *

3.4.15. IOCTL_ASSIGN_RATE_GROUP

This ioctl is used to assign a generator to a group consisting of four channels. The group assignments are passed in
the structure:

typedef struct gen_assign_params {
__u32 eGroup; /* Range: 0-3, see codes below */
__u32 eGenAssign; /* Range: 0-6, see codes below */
} GEN_ASSIGN_PARAMS, *PGEN_ASSIGN_PARAMS;

Possible values for eGroup are:

GRP_O
GRP_1
GRP_2
GRP_3

Possible values for eGenAssign are:

ASN_RATE_INTERNAL
ASN_EXTERNAL
ASN_DIRECT_EXTERNAL
ASN_DISABLED

ASN_LAST
Usage
ioctl () Argument | Description
request I0CTL_ASSIGN_RATE_GROUP
arg struct gen_assign_params *
21

General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

3.4.16. IOCTL_SET_NREF

This ioctl is used to set the value of the PLL Nref register. The range is NREF_MIN to NREF_MAX (30-1000).

Usage

ioctl () Argument | Description
request I0CTL_GSC_SET_NREF
arg Unsigned long *

3.4.17. IOCTL_SET_NVCO

This ioctl is used to set the value of the PLL voltage controlled oscillator (Nvco) register. The range is NVCO_MIN
to NVCO_MAX (30-1000).

Usage

ioctl () Argument | Description
request I0CTL_GSC_SET_NVCO
arg Unsigned long *

3.4.18. I0CTL_GET_REF_FREQUENCY

This IOCTL Returns the contents of the PLL frequency reference register. See the hardware manual for the usage
of this register.

Usage

ioctl () Argument | Description
request I0CTL_GSC_GET_REF_FREQUENCY
arg Unsigned long *

3.4.19. IOCTL_SET_TIMEOUT
Set the wait timeout for reading a data buffer, in seconds. Default is five seconds.

Usage

ioctl () Argument | Description
request I0CTL_GSC_SET_TIMEOUT
arg unsigned long *

3.4.20. IOCTL_SET DMA_STATE
Enable or disable DMA for read. Possible values are:
DMA_DISABLE

DMA_ENABLE
DMA_DEMAND_MODE

22
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

For most systems DMA is the preferred choice. Default is DMA_DISABLE.

Usage

ioctl () Argument | Description
request I0CTL_GSC_SET_DMA_ENABLE
arg unsigned long *

3.4.21. IOCTL_FILL_BUFFER
This IOCTL is used to instruct the driver to fill the user buffer before returning. If set TRUE, the driver will make
one or more read transfers from the hardware to satisfy the user request. If the state is set to FALSE, the driver will

return one or more samples per the Linux convention. Default is FALSE.

Usage

ioctl () Argument | Description
request I0CTL_GSC_FILL_BUFFER
arg unsigned long *

3.4.22. IOCTL_SYNCHRONIZE_SCAN

This IOCTL is used to set the hardware to synchronize scan mode. If set TRUE, the hardware will use synchronize
scan mode. If FALSE, the hardware will not use synchronize scan mode. Default is FALSE.

Usage

ioctl () Argument | Description
Request I0CTL_GSC_SYNCRONIZE_SCAN
Arg unsigned long *

3.4.23. IOCTL_CLEAR_BUFFER_SYNC

This ioctl is used to set the context of the software synch control bit. When TRUE, the software synch control bit
becomes "clear buffer."

Usage

ioctl () Argument | Description
Request I10CTL_CLEAR_BUFFER_SYNC
Arg unsigned long *

3.4.24. IOCTL_SET_OVERFLOW_CHECK

This IOCTL is used to enable or disable buffer overflow checking. When TRUE, the driver will check to see if the
overflow threshold has been exceeded and fail the read call if it has. If FALSE, the driver ignores the overflow level.

Usage

ioctl () Argument | Description
Request I0CTL_GSC_SET_OVERFLOW_CHECK

23
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

| Arg | unsigned long * |

3.4.25. IOCTL_SELECT_IMAGE_FILTER

This IOCTL is used to select low or high frequency image filtering. Default is high frequency filtering. Possible
values are:

IMAGE_FILTER_LO_FREQ
IMAGE_FILTER_HI_FREQ

Usage

ioctl () Argument | Description
Request I0CTL_GSC_SELECT IMAGE_FILTER
Arg unsigned long *

3.4.26. IOCTL_SET _DATA_WIDTH

This IOCTL is used to set the bit-width of the output data. Possible values are:
DATA_WIDTH_16
DATA_WIDTH_18

DATA_WIDTH_20
DATA_WIDTH_24

Usage

ioctl () Argument | Description
Request I0CTL_GSC_SET_DATA_ WIDTH
Arg unsigned long *

3.4.27. 10CTL_SET_RANGE_FILTER

This ioctl is used to set the individual channel group low image filter and gain. The entire register is written as a
single bit mask.

NOTE: This register is not available on all boards. Check your hardware manual for details.

Usage
ioctl () Argument | Description
request IOCTL_GSC_SET_RANGE_FILTER
arg Unsigned long *
24

General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

4. Operation

This section explains some operational procedures using the driver. This is in no way intended to be a
comprehensive guide on using the 24DSI32PLL. This is simply to address a few issues relating to using the
24DSI32PLL.

4.1. Read Operations

Before performing read() requests the device I/O parameters should be configured via the appropriate
IOCTL services.

4.2. Data Reception

Data reception is essentially a three-step process; configure the 24DSI32PLL, initiate data conversion and read the
converted data. A simplified version of this process is illustrated in the steps outlined below.

1. Perform a board reset to put the 24DSI32PLL in a known state.
2. Perform the steps required for any desired input voltage range, number of channels, scan rate settings, etc.
3. Initiate a date conversion cycle.

4. Use the read() service to retrieve the data from the board.

4.3. Data Transfer Options
4.3.1. PIO

This mode uses repetitive register accesses in performing data transfers and is most applicable for low
throughput requirements.

4.3.2. Standard DMA

This mode is intended for data transfers that do not exceed the size of the 24DSI32PLL data buffer. In this mode, all
data transfer between the PCI interface and the data buffers is done in burst mode. The data must be in the hardware
buffer before the DMA transfer will start.

4.3.3. Demand Mode DMA

The byte count passed in the read() is converted to words and written to the DMA hardware. The driver sets an
interrupt for DMA finished and goes to sleep. The DMA hardware transfers the requested number of words into the
system (intermediate) buffer and generates an interrupt.

The difference between regular and demand mode has to do with when the transaction is started. A demand mode
transaction may be initiated at any buffer data level. The regular DMA transaction is only started when there is
sufficient data.

Note that due to limitations of the Linux operating system, the driver cannot copy directly from the hardware to the
user buffer. Instead, the data must pass through an intermediate DMA-capable buffer. The size of the intermediate
buffer is determined by the #define DMA ORDER in the gsc24dsi32pll.h file. The driver attempts to allocate
2"DMA_ORDER pages. On larger systems, this number can be increased, reducing the number of operations
required to transfer the data. Demand mode DMA transfers are also limited to the capacity of the intermediate
buffer.

25
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

4.4. Data Conversion

The GSC line of data acquisition products uses a somewhat non-standard data encoding scheme. Because a channel
tag is included as part of the sample data, the most significant bit cannot be sign-extended to fill the data word.

For example, the hardware may return a data stream like:

000027AB
O1FFFFO6
020023FB
O3FFEQC3
O4FFF902
O5FFF8DA
06000273
07001B9E
O8000C9A
09001999
OAFFDE1B
OBFFEEED
OCFFEDBF
ODFFFD58
OEFFF4BD
OFFFED8F
10001679
11FFFAB7
12FFF5D1
13FFE799
14FFED94
150005B2
16FFF4D5

In the sequence above, the first two digits are the channel number and the rest is the data value. The channel
number must be masked off before conversion.

The next factor is the data resolution. For 16 bit resolution, there is 65535 bits full scale.

The voltage-per-bit depends on the full-scale input range. For the +/-10 volt range, the full scale voltage is 20 volts.
So the volts-per-bit would be 20/65535 = 0.30518mV per bit.

Next, the data format must be taken into account. For offset binary, zero would be 0x8000; for two’s complement it
would be 0x0000.

For offset-binary:

26
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

if Reading >= 0x8000
Voltage = Reading - 0x8000 * .00030518 else

-Voltage = 0x8000 - Reading * .00030518

For 2's Compliment:
if Reading >= 0x8000
-Voltage = -10V + ((Reading - 0x8000) * .00030518) else

Voltage = Reading * .00030518

The algorithm is similar for 18, 20 and 24 bit resolution. For a more complete conversion formula that takes into
account all variables, refer to the test application.

27
General Standards Corporation, Phone: (256) 880-8787

24DSI32 PLL Linux Device Driver User Manual

Document History

Revision

Description

January 18, 2004

Initial draft.

February 23, 2004

Added new IOCTLs, corrected typographical errors.

July 13, 2004

Added IOCTLs to set buffer overfill level, and enable/disable checking.

August 9, 2004

Added reference to supporting and testing on the 2.6 kernels.

July 7, 2005

Added support for the PMC-24DSI12 and several new IOCTLs.

September 20, 2005

Corrected number of channels reference for the 24DSI12 board from 32 to 12.

February 16, 2007

Updated for PLL devices.

28
General Standards Corporation, Phone: (256) 880-8787

	24DSI32PLL
	24-bit, 32 Channel Delta-Sigma A/D Board with Phase Locked L
	GSC-24DSI32PLL
	Linux Device Driver
	User Manual

	Introduction
	Purpose
	Definitions and Acronyms
	Software Overview
	Hardware Overview
	Reference Material

	Installation
	CPU and Kernel Support
	The /proc File System
	File List
	This section discusses unpacking, building, installing and r
	Installation
	Build
	Startup
	Manual Driver Startup Procedures
	Automatic Driver Startup Procedures

	Verification
	Version
	Shutdown
	Removal

	Sample Application
	testapp
	Installation
	Build
	Execute
	Removal

	Driver Interface
	Macros
	IOCTL
	Registers
	GSC Registers
	PCI Configuration Registers

	Data Types
	board_entry
	device_register_params
	Definition

	gen_assign_params
	Definition

	Functions
	open()
	Prototype
	Example

	read()
	Prototype

	write()
	close()
	Prototype
	Example

	IOCTL Services
	IOCTL_NO_COMMAND
	Usage

	IOCTL_READ_REGISTER
	Usage

	IOCTL_WRITE_REGISTER
	Usage

	IOCTL_SET_INPUT_RANGE
	Usage

	IOCTL_SET_INPUT_MODE
	Usage

	IOCTL_SET_SW_SYNCH
	Usage

	IOCTL_AUTO_CAL
	Usage

	IOCTL_INITIALIZE
	Usage

	IOCTL_SET_DATA_FORMAT
	Usage

	IOCTL_SET_INITIATOR_MODE
	Usage

	IOCTL_SET_BUFFER_THRESHOLD
	Usage

	IOCTL_CLEAR_BUFFER
	Usage

	IOCTL_SET_ACQUIRE_MODE
	Usage

	IOCTL_SET_RATE_DIVISOR
	Usage

	IOCTL_ASSIGN_RATE_GROUP
	Usage

	IOCTL_SET_NREF
	Usage

	IOCTL_SET_NVCO
	Usage

	IOCTL_GET_REF_FREQUENCY
	Usage

	IOCTL_SET_TIMEOUT
	Usage

	IOCTL_SET_DMA_STATE
	Usage

	IOCTL_FILL_BUFFER
	Usage

	IOCTL_SYNCHRONIZE_SCAN
	Usage

	IOCTL_CLEAR_BUFFER_SYNC
	Usage

	IOCTL_SET_OVERFLOW_CHECK
	Usage

	IOCTL_SELECT_IMAGE_FILTER
	Usage

	IOCTL_SET_DATA_WIDTH
	Usage

	IOCTL_SET_RANGE_FILTER
	Usage

	Operation
	Read Operations
	Data Reception
	Data Transfer Options
	PIO
	Standard DMA
	Demand Mode DMA

	Data Conversion

	Document History

