
DMI32
Deep Memory 32-bit Digital I/O

PCI-DMI32

Software Development Kit
SDK 6.0.0 Reference Manual

Manual Revision: October 29, 2007

General Standards Corporation
8302A Whitesburg Drive

Huntsville, AL 35802
Phone: (256) 880-8787

Fax: (256) 880-8788
URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

DMI32, SDK 6.0.0 Reference Manual

2
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Preface
Copyright ©2005-2007, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation
8302A Whitesburg Dr.
Huntsville, Alabama 35802
Phone: (256) 880-8787
FAX: (256) 880-8788
URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Although extensive editing
and reviews are performed before release to ECO control, General Standards Corporation assumes no
responsibility for any errors that may exist in this document. No commitment is made to update or keep current the
information contained in this document.

General Standards Corporation does not assume any liability arising out of the application or use of any product
or circuit described herein, nor is any license conveyed under any patent rights or any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or
errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this product to improve
reliability, performance, function, or design.

ALL RIGHTS RESERVED.

The Purchaser of this software may use or modify in source form the subject software, but not to re-market or
distribute it to outside agencies or separate internal company divisions. The software, however, may be embedded in
the Purchaser’s distributed software. In the event the Purchaser’s customers require the software source code, then
they would have to purchase their own copy of the software.

General Standards Corporation makes no warranty of any kind with regard to this software, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose and makes this software
available solely on an “as-is” basis. General Standards Corporation reserves the right to make changes in this
software without reservation and without notification to its users.

The information in this document is subject to change without notice. This document may be copied or reproduced
provided it is in support of products from General Standards Corporation. For any other use, no part of this
document may be copied or reproduced in any form or by any means without prior written consent of General
Standards Corporation.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

3
General Standards Corporation, Phone: (256) 880-8787

http://www.generalstandards.com/
mailto:sales@generalstandards.com

DMI32, SDK 6.0.0 Reference Manual

Table of Contents
1. Introduction... 8

1.1. Purpose ..8
1.2. Acronyms...8
1.3. Definitions..8
1.4. Installation...8
1.5. Application Programming Interface ...9
1.6. Software Overview..9

1.6.1. Software Architecture...9
1.7. Hardware Overview..10
1.8. Code Samples ..10
1.9. Reference Material..10

2. Using the SDK ... 12
2.1. Compatibility...12
2.2. Limitations and Restrictions ..12
2.3. Multithreaded..12
2.4. Compile Time Use ...12
2.5. Link Time Use ...12
2.6. Run Time Use ..12

3. Macros.. 13
3.1. API Version Number ..13
3.2. Common Parameter Assignment Values ..13
3.3. Discrete Data Type Options ...14
3.4. I/O Status Fields..15
3.5. Maximum Number of Open Handles ..16
3.6. Parameter Access “Which” Bits ..16
3.7. Registers...17

3.7.1. GSC Registers ..17
3.7.2. PCI9080 PCI Configuration Registers..17
3.7.3. PLX PCI9080 Feature Set Registers...18

3.8. Version Data Selectors..20

4. Data Types ... 21
4.1. Discrete Data Types ..21
4.2. dmi32_callback_func_t...21
4.3. Status Values ...21

4
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

5. Functions.. 23
5.1. dmi32_api_status() ..23
5.2. dmi32_board_count() ...24
5.3. dmi32_close() ...25
5.4. dmi32_config()...25
5.5. dmi32_init() ...27
5.6. dmi32_io_wait()...28
5.7. dmi32_irq_wait()...29
5.8. dmi32_open() ...30
5.9. dmi32_read() ...31
5.10. dmi32_reg_mod() ..32
5.11. dmi32_reg_read()..33
5.12. dmi32_reg_write()...34
5.13. dmi32_reset() ...35
5.14. dmi32_seek()..36
5.15. dmi32_status_text()...37
5.16. dmi32_tell()..38
5.17. dmi32_version_get()..39
5.18. dmi32_write() ..40
5.19. dmi32_xfer_buf_get() ...42
5.20. dmi32_xfer_buf_set() ..43

6. Configuration Parameters.. 45
6.1. Parameter Macros ..45

6.1.1. Parameter Definitions ...45
6.1.2. Value Definitions..45
6.1.3. Service Definitions ...45

6.1.3.1. Device Handle: h..45
6.1.3.2. Which Bits: w ..46
6.1.3.3. Set Value: s ..46
6.1.3.4. Get Value: g ...46

6.2. Input/Output Parameters...46
6.2.1. I/O Parameter: Abort ..46
6.2.2. I/O Parameter: Aborted ..47
6.2.3. I/O Parameter: Buffer Pointer...47
6.2.4. I/O Parameter: Buffer Size ...48
6.2.5. I/O Parameter: Callback Argument ..48
6.2.6. I/O Parameter: Callback Function ..49
6.2.7. I/O Parameter: Mode ..49
6.2.8. I/O Parameter: Offset ...50
6.2.9. I/O Parameter: Overlap Enable...50
6.2.10. I/O Parameter: Status..51
6.2.11. I/O Parameter: Timeout ..51

5
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

6.3. Interrupt Parameters..52
6.3.1. Interrupt Parameter: Callback Argument..52
6.3.2. Interrupt Parameter: Callback Function..53
6.3.3. Interrupt Parameter: Enable..53
6.3.4. Interrupt Parameter: State...54

6.4. Miscellaneous Parameters..54
6.4.1. Miscellaneous Parameter: Board Jumpers..55
6.4.2. Miscellaneous Parameter: DRAM Capacity MB..55
6.4.3. Miscellaneous Parameter: DRAM Size MB...55
6.4.4. Miscellaneous Parameter: Features ..56
6.4.5. Miscellaneous Parameter: GSC Register Mapping...56
6.4.6. Miscellaneous Parameter: PLX Register Mapping...57
6.4.7. Miscellaneous Parameter: Strict Arguments...57
6.4.8. Miscellaneous Parameter: Strict Configuration..58
6.4.9. Miscellaneous Parameter: Strict DRAM Limits ...58

6.5. Transfer Parameters...59
6.5.1. Transfer Parameter: CLKIN Test ...59
6.5.2. Transfer Parameter: Direction ..60
6.5.3. Transfer Parameter: Enable ..60
6.5.4. Transfer Parameter: Internal Clock Speed..61
6.5.5. Transfer Parameter: Mode ..61
6.5.6. Transfer Parameter: Offset ...62
6.5.7. Transfer Parameter: Size ..62
6.5.8. Transfer Parameter: Start Word..63
6.5.9. Transfer Parameter: Start Word Direction..63
6.5.10. Transfer Parameter: State ...64
6.5.11. Transfer Parameter: State Rx..64
6.5.12. Transfer Parameter: State Tx..64
6.5.13. Transfer Parameter: Test Mode ..64

6.6. User I/O Parameters ...65
6.6.1. User I/O Parameter: Direction..65
6.6.2. User I/O Parameter: Input...66
6.6.3. User I/O Parameter: Output..66

7. Operation ... 68
7.1. Overview..68
7.2. Data Reception ..68

7.2.1. Overview ..68
7.2.2. Details...68

7.3. Data Transmission ..69
7.3.1. Overview ..69
7.3.2. Details...70

7.4. Data Transfer Issues ...71
7.4.1. I/O Abort Requests ...71
7.4.2. I/O Data Buffers ...71
7.4.3. I/O Timeout ..71
7.4.4. Blocking/Overlapped I/O ...72
7.4.5. I/O Modes...72
7.4.6. DMA Based I/O Requests ..72

7.5. Event Notification ...72
7.5.1. Event Callback..73

6
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

7.5.1.1. Interrupt Notification Callback ..73
7.5.1.2. I/O Completion Notification Callback ...73

7.5.2. Event Waiting...73
7.6. Clock Checks ...73

Document History ... 75

7
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

1. Introduction
This reference manual applies to release version 6.0.0 of the DMI32 SDK.

1.1. Purpose

The purpose of this document is to describe the Application Programming Interface to the DMI32 Software
Development Kit. This software provides the interface between “Application Software” and the DMI32 board. The
interface provided by the SDK is based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms used throughout this document.

Acronyms Description
API Application Programming Interface (This is sometimes used synonymously with SDK or API

Library.)
DMA Direct Memory Access
GSC General Standards Corporation
PCI Peripheral Component Interconnect
PIO Programmed I/O
SDK Software Development Kit (This is sometimes used synonymously with API or API Library.)

1.3. Definitions

The following is a list of commonly occurring terms used throughout this document.

Term Definition
API Buffer A physically contiguous block of memory allocated via the API.
API Library This refers to the library implementing the application level DMI32 interface. (This

is sometimes used synonymously with SDK or API.)
Application This refers to user mode processes.
Application Buffers These are memory buffers allocated and maintained entirely by the application

which are used for reading data from and writing data to the DMI32’s memory.
Device Driver This refers to the driver executable component of the DMI32 SDK.
DRAM This is a general reference to the DMI32’s onboard memory.
Driver This refers to the device driver, which runs under control of the operating system.
Rx For I/O operations this refers to reading data from the DMI32’s onboard memory.

Otherwise it refers to the reception of data over the cable interface, either into
memory or the User I/O ports.

Transfer Buffer This is what defines a DMI32 memory region to be involved in a cable based data
transfer. The buffer is defined by a zero based offset and a size. Both are defined in
bytes and are 32-bit aligned.

Tx For I/O operations this refers to writing data to the DMI32’s onboard memory.
Otherwise it refers to the transmission of data over the cable interface, either from
memory or the User I/O ports.

1.4. Installation

Installation instructions for the SDK are provided in separate, operating system specific setup guides.

8
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

1.5. Application Programming Interface

The SDK API is defined in the three header files listed below. These C language headers are C++ compatible. The
only header that need be included by DMI32 applications is dmi32_api.h. The API consists of macros, data
types, function calls and parameter definitions. These are described in other sections of this document. The headers
define numerous items in addition to those described in this document. These additional items are provided without
documentation. All software components of the API begin with a prefix of DMI32 or GSC (both appear with upper
and lower case letters). The table below indicates where to look for any particular item’s definition.

File Name Description
dmi32_api.h This header contains the bulk of the API, including function calls, data types and numerous

macros. All items defined here include the prefix “DMI32” or “dmi32”.
gsc_common.h This header contains status definitions, a few data type definitions and a variety of macros.

All items defined here have a prefix of “GSC” or “gsc”.
gsc_pci9080.h This header contains register definitions for the PCI9080, which is the PCI interface chip

used on DMI32s. All items defined here have a prefix of “GSC” or “gsc” and include
“9080”.

1.6. Software Overview

The software interface to the DMI32 consists of a Device Driver and an API Library; the primary components of the
SDK. The Device Driver operates under control of the operating system and must be loaded and running in order to
access any installed DMI32 devices. The interface provided by the API Library is based on the board’s functionality
and is organized around the DMI32’s set of main hardware features. The general categories are as follows and
permit access to and manipulation of virtually every feature available on the board.

• General Access Services (API Status, Version Numbers, Board Count, Open, Close, …)

• Data I/O Configuration

• Data Transfer Configuration

• GPIO Configuration

• Other Miscellaneous Configuration

• Register read and write operations

All DMI32 features are individually accessible via a generalized configuration service. For each parameter, as
appropriate, the API includes a set of support macros. These include setting options (i.e. defaults and acceptable
values), quick access retrieval macros, and quick access manipulation macros. All are described later in this
document.

1.6.1. Software Architecture

An application communicates with a DMI32 using the driver and library described briefly above. Any number of
applications may make simultaneous use of the library and each use is totally independent, unless specifically
designed to do otherwise. Each instance provides access to at most 32 different DMI32 devices. The diagram below
describes the components and how they fit together.

9
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Application This is any application written to communicate with one or more DMI32 devices using the
driver and library provided in the SDK.

API Library This library presents a DMI32 feature based interface to applications wishing to communicate
with DMI32 devices.

Device Driver The driver provides access to DMI32 devices.

DMI32 This refers to any number of installed DMI32 devices.

NOTE: While multiple applications can gain access to the same device, this is discouraged since
the driver maintains resources and settings per device rather than per application or device handle.

1.7. Hardware Overview

The DMI32 is a high-capacity memory board with a 32-bit parallel digital I/O interface. The host side connection is
32-bit PCI based. The external I/O interface varies per model ordered. The board is capable of transmitting or
receiving data at up to 200 Mbytes per second over the external I/O interface, depending on the model ordered.
Onboard memory of up to 4GB (or 2GB, depending on the model) permits large volumes of data to be transmitted
from or recorded by the board. The DMI32 can transmit or receive single blocks up to the size of its memory.
Alternatively, it can transmit or receive these blocks continuously without host intervention.

The DMI32 offers a half-duplex external I/O interface. The board can either transmit or receive data, but it cannot
do both simultaneously. In addition to the 32 synchronous data I/O lines, the external interface includes a set of User
I/O signals that control initiation of data transfer. They may also be used as limited general purpose I/O. The board
accommodates a wide range of applications. This range extends from sending or receiving relatively small blocks of
data on demand, to sending or receiving large continuous streams of data indefinitely.

1.8. Code Samples

All of the code samples in this manual are included in the dmi32_dsl library along with their C source files. The
examples given are notably simplistic, but are provided to illustrate use rather than accomplishment of broader tasks.

1.9. Reference Material

The following reference material may be of particular benefit in using the DMI32 and this SDK. The specifications
provide the information necessary for an in-depth understanding of the specialized features implemented on this
board.

• The applicable DMI32 Setup Guide from General Standards Corporation. These are OS specific.

• The applicable DMI32 User Manual from General Standards Corporation.

• The PCI9080 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

PLX data books are available from PLX at the following location.

PLX Technology Inc.
870 Maude Avenue
Sunnyvale, California 94085 USA
Phone: 1-800-759-3735
WEB: http://www.plxtech.com

10
General Standards Corporation, Phone: (256) 880-8787

http://www.plxtech.com/

DMI32, SDK 6.0.0 Reference Manual

11
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

2. Using the SDK

2.1. Compatibility

The API Library interface presented in this version of the SDK is identical for identical for those operating systems
for which this version of the SDK has been ported. Compatibility is based on the individual numbers in the overall
version number. The first number changes when there are dramatic changes in the interface that will necessitate
application porting. The second number changes when there are minor changes to the interface, including additional
services. Applications should be able to use the updated driver as is. If not, the application may have to be
recompiled. Changes in the third number refer to changes in the release that have to do with the support file or other
issues.

2.2. Limitations and Restrictions

The SDK release for each supported operating systems may place limitations or restrictions on that implementation
of the SDK. Refer to the Setup Guide for the operation system in question.

2.3. Multithreaded

The API Library is multithreaded. This may require that applications and libraries using the API also be built for
multithreaded operation. Difficult to identify bugs may appear when the API Library is used with applications built
for single threaded only operation.

2.4. Compile Time Use

Using the SDK places compile time requirements on DMI32 application build procedures. The requirements are
generally the same for each operating system specific release, though the details vary from one OS to another and
among different tool sets. Refer to the documentation for the build tools you are using. Compile time use has three
requirements. First, include the header file dmi32_api.h in each C module referencing an API component.
Second, configure the compiler for multithreaded operation, as applicable. Third, expand the include file search path
to search the directories where the library header and its included files are located. Refer the SDK Setup Guide for
your operating system for additional information.

2.5. Link Time Use

Using the SDK places link time requirements on DMI32 application build procedures. The requirements are
generally the same for each operating system specific release, though the details vary from one OS to another and
among different tool sets. Refer to the documentation for the build tools you are using. Link time use has two
requirements. The first requirement is to insure that the API Library has been installed. This permits the library to be
automatically located by the linker. The second argument is to link the applications with both the API Library. Refer
the SDK Setup Guide for your operating system for additional information.

2.6. Run Time Use

Using the SDK places run time requirements on DMI32 applications. The requirements are generally the same for
each operating system specific release, though the details vary from one OS to another and the corresponding DSK
release. There are two run time requirements. The first is to insure that the driver has been built and loaded. The
second requirement is to insure that the API Library has been installed. Refer the SDK Setup Guide for your
operating system for additional information.

12
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

3. Macros
The DMI32 API includes the following macros. The headers also contain various other utility type macros, which
are provided without documentation. Parameter support macros are not presented in this subsection. These macros
are described in section 6 beginning on page 45.

3.1. API Version Number

This macro defines the version number of the API’s executable interface. It does not refer to the SDK version
number, the API Library version number or the Device Driver version number. Applications pass this value to the
function dmi32_api_status() (page 23), which is used to verify that the application and the library are
compatible.

Macros Description
DMI32_API_VERSION This is the API’s executable interface version number.

3.2. Common Parameter Assignment Values

The below macros define universal values understood by all parameters to have special meanings, as given below.
Any time a parameter assignment request is being carried out, use of these macros as the assignment value will
produce the results given here.

Macros Description
GSC_DEFAULT Set the parameter to its default state/value. This is equivalent to using the explicitly defined

default macro for the respective parameter.
GSC_NO_CHANGE Do not change the parameter’s state/value. Since parameter access follows a set-then-get

model, this value can be used to achieve a get only operation.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_tx_timeout_reset(void* handle, int verbose)
{
 U32 status;

 // Reset the Tx I/O timeout period to its default.
 status = dmi32_config(handle,
 DMI32_IO_TIMEOUT,
 DMI32_WHICH_TX,
 GSC_DEFAULT,
 NULL);

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_config() failure: %ld\n", (long) status);
 }
 else
 {

13
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

 printf("I/O Tx Timeout Reset\n");
 }

 return(status);
}

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_tx_timeout_get(
 void* handle,
 U32* timeout_secs,
 int verbose)
{
 U32 status;
 unsigned long value;

 // Retrieve the Tx I/O timeout period without changing it.
 status = dmi32_config(handle,
 DMI32_IO_TIMEOUT,
 DMI32_WHICH_TX,
 GSC_NO_CHANGE,
 &value);
 timeout_secs[0] = (U32) value;

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_config() failure: %ld\n", (long) status);
 }
 else
 {
 printf("I/O Tx Timeout Set: %ld seconds\n",
 (long) timeout_secs);
 }

 return(status);
}

3.3. Discrete Data Type Options

The below macros are defined by application code as needed to enable or disable declarations for and size validation
for the data types S8, U8, S16, U16, S32 and U32 (see page 21).

Macros Description
GSC_DATA_TYPES_CHECK If the API declares the data types and the application defines this macro,

then the data type sizes will be validated during the application’s build
process. This macro should only be defined if the compiler in use
supports the sizeof() macro during preprocessing.

GSC_DATA_TYPES_NOT_NEEDED Applications should define this macro before including dmi32_api.h

14
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

to disable the declarations for these data types.

3.4. I/O Status Fields

This set of macros applies to the 32-bit value reported when requesting the status of an I/O operation. The value
reported includes a direction bit, a status field and a count field. The completion status of the operation is obtained
by looking only at the GSC_IO_STATUS_MASK bits from the I/O status value. All other bits refer to other than the
completion status. The accompanying sample code illustrates how the I/O status could be utilized.

Fields Description
GSC_IO_STATUS_COUNT_MASK This macro applies to the count field, which covers the lower set of status

bits. The count is zero while the operation is in progress and, once ended,
indicates the number of bytes successfully transferred. This macro also
identifies the maximum number of bytes that can be transferred in a single
I/O request. The count is only guaranteed to be accurate when an operation
completes with all data being successfully transferred.

GSC_IO_STATUS_MASK This macro applies to the I/O completion status field. Apply this mask to
the I/O status value (bitwise AND) to get the completion status. Supported
completion status values are given in the below table.

GSC_IO_STATUS_TX If this bit is set then the operation was from a write request to the device. If
not set, then the operation was a read request from the device.

The following defines the I/O completion status options. These values are obtained by performing a bitwise AND of
the overall status with the I/O completion status mask above.

Macros Description
GSC_IO_STATUS_ABORTED This indicates that the operation ended due to an abort request. This arises

either from an application’s explicit abort request, or from a reset or
initialization request. The count field may be inaccurate when this status is
reported.

GSC_IO_STATUS_ACTIVE This indicates that the operation is still in progress. If the status is other than
this value, then the I/O operation is no longer in progress.

GSC_IO_STATUS_ERROR This indicates that the operation ended due to an error condition, which can
arise for any number of reasons. The count field may be inaccurate when this
status is reported.

GSC_IO_STATUS_SUCCESS This indicates that the operation completed successfully. The count field is
accurate when this status is reported.

GSC_IO_STATUS_TIMEOUT This indicates that the operation ended because the timeout period lapsed. The
count field may be inaccurate when this status is reported.

Example

#include "dmi32_api.h"
#include "dmi32_dsl.h"

long dmi32_dsl_io_status_evaluate(U32 io_status)
{
 long bytes;
 U32 status = io_status & GSC_IO_STATUS_MASK;

 if (status == GSC_IO_STATUS_ACTIVE)
 {
 // The operation is still active.
 bytes = 0;
 }

15
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

 else if (status == GSC_IO_STATUS_SUCCESS)
 {
 // The operation has completed.
 bytes = (long) (io_status & GSC_IO_STATUS_COUNT_MASK);
 }
 else if (status == GSC_IO_STATUS_TIMEOUT)
 {
 // The timeout period lapsed.
 // The count may not be accurate.
 bytes = -1;
 }
 else if (status == GSC_IO_STATUS_ERROR)
 {
 // There was an error.
 // The count may not be accurate.
 bytes = -1;
 }
 else if (status == GSC_IO_STATUS_ABORTED)
 {
 // The operation was aborted.
 // The count may not be accurate.
 bytes = -1;
 }
 else
 {
 // Unknown status.
 bytes = -1;
 }

 return(bytes);
}

3.5. Maximum Number of Open Handles

This macro defines the maximum number of device handles that can be opened at any one time. All open handles
are unique even if they refer to the same device, though handles are reused once closed.

Macros Description
GSC_PROCESS_OPEN_MAX This defines the maximum number of open handles.

3.6. Parameter Access “Which” Bits

The table below lists the set of selection bits that may be set when a configuration parameter is modified or
accessed. They are referred to as “which” bits in that they specify the object or objects which the parameter is to
access. When appropriate, bits within the same category may be bitwise or’d in order to apply the action to multiple
objects.

Macros Description
DMI32_WHICH_IRQ_ALL This refers to all of the interrupts.
DMI32_WHICH_IRQ_BE This specifies the Buffer End interrupt. *
DMI32_WHICH_IRQ_BS This specifies the Buffer Start interrupt. *
DMI32_WHICH_IRQ_MBUR This specifies the Multi-Buffer Under Run interrupt. *
DMI32_WHICH_IRQ_UIOA This specifies the User I/O A Input interrupt. *
DMI32_WHICH_IRQ_UIOB This specifies the User I/O B Input interrupt. *
DMI32_WHICH_RX This refers to I/O based read parameters. *

16
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

DMI32_WHICH_TX This refers to I/O based write parameters. *
DMI32_WHICH_USER_IO_A This refers to the User I/O A port. *
DMI32_WHICH_USER_IO_B This refers to the User I/O B port. *
DMI32_WHICH_USER_IO_CURRENT This refers to the User I/O port currently configured as an input or

output, as applicable to the respective parameters.

* Other macros are also defined that include various logical combinations of some bits.

3.7. Registers

The following tables give the complete set of DMI32 registers. The tables are divided by register categories. There
are PCI registers, PLX feature set registers, and there are GSC firmware based registers. The PCI registers and the
PLX registers are provided by the PCI interface chips used on the DMI32. Applications have read access to all
registers, but write access only to the GSC firmware registers.

3.7.1. GSC Registers

The following table gives the complete set of GSC specific DMI32 registers. For detailed definitions of these
registers refer to the applicable DMI32 User Manual.

Macros Description
DMI32_BCR Board Control Register (BCR)
DMI32_BSR Board Status Register (BSR)
DMI32_FR Features Register (FR)
DMI32_FRR Firmware Revision Register (FRR)
DMI32_ICR Interrupt Control Register (ICR)
DMI32_ISR Interrupt Status Register (ISR)
DMI32_LMBR Local Memory Bank Register (LMBR)
DMI32_TBBAR Transfer Buffer Base Address Register (TBBAR)
DMI32_TBSR Transfer Buffer Size Register (TBSR)
DMI32_TSWR Transfer Start Word Register (TSWR)

3.7.2. PCI9080 PCI Configuration Registers

The following table gives the set of PCI Configuration Registers. For detailed definitions of these registers refer to
the PCI9080 Data Book.

Macros Description
GSC_PCI_9080_BAR0 PCI Base Address Register for Memory Accesses to Local, Runtime, and DMA

Registers (PCIBAR0)
GSC_PCI_9080_BAR1 PCI Base Address Register for I/O Accesses to Local, Runtime, and DMA Registers

(PCIBAR1)
GSC_PCI_9080_BAR2 PCI Base Address Register for Memory Accesses to Local Address Space 0

(PCIBAR2)
GSC_PCI_9080_BAR3 PCI Base Address Register for Memory Accesses to Local Address Space 1

(PCIBAR3)
GSC_PCI_9080_BAR4 Unused Base Address Register (PCIBAR4)
GSC_PCI_9080_BAR5 Unused Base Address Register (PCIBAR5)
GSC_PCI_9080_BISTR PCI Built-In Self Test Register (PCIBISTR)
GSC_PCI_9080_CCR PCI Class Code Register (PCICCR)
GSC_PCI_9080_CIS PCI Cardbus CIS Pointer Register (PCICIS)
GSC_PCI_9080_CLSR PCI Cache Line Size Register (PCICLSR)
GSC_PCI_9080_CR PCI Command Register (PCICR)
GSC_PCI_9080_DIDR PCI Device ID Register (PCIDIDR)

17
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

GSC_PCI_9080_ERBAR PCI Expansion ROM Base Address (PCIERBAR)
GSC_PCI_9080_HTR PCI Header Type Register (PCIHTR)
GSC_PCI_9080_ILR PCI Interrupt Line Register (PCIILR)
GSC_PCI_9080_IPR PCI Interrupt Pin Register (PCIIPR)
GSC_PCI_9080_LTR PCI Latency Timer Register (PCILTR)
GSC_PCI_9080_MGR PCI Min_Gnt Register (PCIMGR)
GSC_PCI_9080_MLR PCI Max_Lat Register (PCIMLR)
GSC_PCI_9080_REV PCI Revision ID Register (PCIREV)
GSC_PCI_9080_SID PCI Subsystem ID Register (PCISID)
GSC_PCI_9080_SR PCI Status Register (PCISR)
GSC_PCI_9080_SVID PCI Subsystem Vendor ID Register (PCISVID)
GSC_PCI_9080_VIDR PCI Vendor ID Register (PCIVIDR)

NOTE: The following table gives register identification information for DMI32 boards.

Register Value Description
GSC_PCI_9080_VIDR 0x10B5 The PCI interface chip is a PLX device.
GSC_PCI_9080_DIDR 0x9080 The PCI interface chip is a PLX PCI9080.
GSC_PCI_9080_SVID 0x10B5 The below register value has been assigned by PLX.
GSC_PCI_9080_SID 0x2707 The device is a DMI32 family product.

3.7.3. PLX PCI9080 Feature Set Registers

The following tables give the set of PLX feature set registers.

Local Configuration Registers

The following table gives the set of PLX Local Configuration Registers. For detailed definitions of these registers
refer to the PCI9080 Data Book.

Macros Description
GSC_PLX_9080_BIGEND Big/Little Endian Descriptor Register (BIGEND)
GSC_PLX_9080_DMCFGA PCI Configuration Address Register for Direct Master to PCI IO/CFG (DMCFGA)
GSC_PLX_9080_DMLBAM Local Bus Base Address Register for Direct Master to PCI Memory (DMLBAM)
GSC_PLX_9080_DMLBAI Local Bus Base Address Register for Direct Master to PCI IO/CFG (DMLBAI)
GSC_PLX_9080_DMPBAM PCI Base Address Register for Direct Master to PCI Memory (DMPBAM)
GSC_PLX_9080_DMRR Local Range Register for Direct Master to PCI (DMRR)
GSC_PLX_9080_EROMBA Expansion ROM Local Base Address Register (EROMBA)
GSC_PLX_9080_EROMRR Expansion ROM Range Register (EROMRR)
GSC_PLX_9080_LAS0BA Local Address Space 0 Local Base Address Register (LASOBA)
GSC_PLX_9080_LAS0RR Local Address Space 0 Range Register for PCI-to-Local Bus (LASORR)
GSC_PLX_9080_LAS1BA Local Address Space 1 Local Base Address Register (LAS1BA)
GSC_PLX_9080_LAS1RR Local Address Space 1 Range Register for PCI-to-Local Bus (LAS1RR)
GSC_PLX_9080_LBRD0 Local Address Space 0/Expansion ROM Bus Region Descriptor Register (LBRD0)
GSC_PLX_9080_LBRD1 Local Address Space 1 Bus Region Descriptor Register (LBRD1)
GSC_PLX_9080_MARBR Mode Arbitration Register (MARBR)

Runtime Registers

The following table gives the set of PLX Runtime Registers. For detailed definitions of these registers refer to the
PCI9080 Data Book.

18
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Macros Description
GSC_PLX_9080_CNTRL Serial EEPROM Control, CPI Command Codes, User I/O, Init Control Register

(CNTRL)
GSC_PLX_9080_INTCSR Interrupt Control/Status Register (INTCSR)
GSC_PLX_9080_L2PDBELL Local-to-PCI Doorbell Register (L2PDBELL)
GSC_PLX_9080_MBOX0 Mailbox Register 0 (MBOX0)
GSC_PLX_9080_MBOX1 Mailbox Register 1 (MBOX1)
GSC_PLX_9080_MBOX2 Mailbox Register 2 (MBOX2)
GSC_PLX_9080_MBOX3 Mailbox Register 3 (MBOX3)
GSC_PLX_9080_MBOX4 Mailbox Register 4 (MBOX4)
GSC_PLX_9080_MBOX5 Mailbox Register 5 (MBOX5)
GSC_PLX_9080_MBOX6 Mailbox Register 6 (MBOX6)
GSC_PLX_9080_MBOX7 Mailbox Register 7 (MBOX7)
GSC_PLX_9080_P2LDBELL PCI-to-Local Doorbell Register (P2LDBELL)
GSC_PLX_9080_PCIHIDR PCI Permanent Configuration ID Register (PCIHIDR)
GSC_PLX_9080_PCIHREV PCI Permanent Revision ID Register (PCIHREV)

DMA Registers

The following table gives the set of PLX DMA Registers. For detailed definitions of these registers refer to the
PCI9080 Data Book.

Macros Description
GSC_PLX_9080_DMAARB DMA Arbitration Register (DMAARB)
GSC_PLX_9080_DMACSR0 DMA Channel 0 Command/Status Register (DMACSR0)
GSC_PLX_9080_DMACSR1 DMA Channel 1 Command/Status Register (DMACSR1)
GSC_PLX_9080_DMADPR0 DMA Channel 0 Descriptor Pointer Register (DMADPR0)
GSC_PLX_9080_DMADPR1 DMA Channel 1 Descriptor Pointer Register (DMADPR1)
GSC_PLX_9080_DMALADR0 DMA Channel 0 Local Address Register (DMALADR0)
GSC_PLX_9080_DMALADR1 DMA Channel 1 Local Address Register (DMALADR1)
GSC_PLX_9080_DMAMODE0 DMA Channel 0 Mode Register (DMAMODE0)
GSC_PLX_9080_DMAMODE1 DMA Channel 1 Mode Register (DMAMODE1)
GSC_PLX_9080_DMAPADR0 DMA Channel 0 PCI Address Register (DMAPADR0)
GSC_PLX_9080_DMAPADR1 DMA Channel 1 PCI Address Register (DMAPADR1)
GSC_PLX_9080_DMASIZ0 DMA Channel 0 Transfer Size Register (DMASIZ0)
GSC_PLX_9080_DMASIZ1 DMA Channel 1 Transfer Size Register (DMASIZ1)
GSC_PLX_9080_DMATHR DMA Threshold Register (DMATHR)

Message Queue Registers

The following table gives the set of PLX Messaging Queue Registers. For detailed definitions of these registers refer
to the PCI9080 Data Book.

Macros Description
GSC_PLX_9080_IFHPR Inbound Free Head Pointer Register (IFHPR)
GSC_PLX_9080_IFTPR Inbound Free Tail Pointer Register (IFTPR)
GSC_PLX_9080_IPHPR Inbound Post Head Pointer Register (IPHPR)
GSC_PLX_9080_IPTPR Inbound Post Tail Pointer Register (IPTPR)
GSC_PLX_9080_IQP Inbound Queue Port Register (IQP)
GSC_PLX_9080_MQCR Messaging Queue Configuration Register (MQCR)
GSC_PLX_9080_OFHPR Outbound Free Head Pointer Register (OFHPR)
GSC_PLX_9080_OFTPR Outbound Free Tail Pointer Register (OFTPR)
GSC_PLX_9080_OPHPR Outbound Post Head Pointer Register (OPHPR)
GSC_PLX_9080_OPLFIM Outbound Post List FIFO Interrupt Mask Register (OPLFIM)

19
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

GSC_PLX_9080_OPLFIS Outbound Post List FIFO Interrupt Status Register (OPLFIS)
GSC_PLX_9080_OPTPR Outbound Post Tail Pointer Register (OPTPR)
GSC_PLX_9080_OQP Outbound Queue Port Register (OQP)
GSC_PLX_9080_QBAR Queue Base Address Register (QBAR)
GSC_PLX_9080_QSR Queue Status/Control Register (QSR)

3.8. Version Data Selectors

This set of macros is used when requesting a version number and indicates which version number is desired. The
macros are passed as the id argument to the dmi32_version_get() function (see page 39). The second table
below lists utility macros used to retrieve each of the respective version numbers. In the second table, the argument
h refers to the handle used to access the device, the b refers to an application buffer where the version string is
recorded, and the s is the size of that buffer.

Macros (Values) Description
GSC_VERSION_LIBRARY This requests the library’s version number.
GSC_VERSION_DRIVER This requests the driver’s version number.

Macro (Services) Description
DMI32_VERSION_GET_LIBRARY(h,b,s) This requests the version number for the API Library.
DMI32_VERSION_GET_DRIVER(h,b,s) This requests the version number for the Device Driver.

20
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

4. Data Types
The interface includes the following data types.

4.1. Discrete Data Types

The following discrete data types are defined and used by the API. If a DMI32 application includes other headers
which also define these types, then the API can be directed to omit these definitions. This is done by defining the
macro GSC_DATA_TYPES_NOT_NEEDED before including the API header. The alternate definitions must
however define these types as listed in the below table.

Data Type Description
S8 This is an 8-bit signed integer.
U8 This is an 8-bit unsigned integer.
S16 This is a 16-bit signed integer.
U16 This is a 16-bit unsigned integer.
S32 This is a 32-bit signed integer.
U32 This is a 32-bit unsigned integer.

4.2. dmi32_callback_func_t

This is the data type required for all event notification callback functions. This applies both to Interrupt Notification
callbacks and I/O Completion callbacks.

Definition

typedef void (*dmi32_callback_func_t)(U32 arg1, U32 arg2, U32 arg3);

Arguments Description
arg1 This is the device handle cast to a U32 data type.
arg2 For Interrupt Notification this is the DMI32_WHICH_XXX bit for the respective interrupt.

For I/O Completion Notification this is the applicable GSC_IO_STATUS_XXX status
components.

arg3 This is any arbitrary application supplied data value.

4.3. Status Values

This unnamed enumerated data type lists all possible status values returnable from API service calls. The
enumerated values represent common definitions used by this and other GSC SDKs. Many values will never be
encountered when using the DMI32 SDK. The table below gives brief descriptions for many values and omits those
that should never be seen. The most common value encountered is GSC_SUCCESS and indicates that the request
was completed successfully.

Definition

typedef enum
{
 …
};

Values Description
GSC_ABORTED An I/O operation was aborted due to a user’s explicit or

implicit request.

21
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

GSC_ACCESS_DENIED The operation failed because access to a device, service
or system resource or service was denied.

GSC_FAILED An operation failed in a non-specific manner.
GSC_INIT_FAILURE API Library initialization failed.
GSC_INSUFFICIENT_RESOURCES An operation failed because insufficient OS resources

were available.
GSC_INVALID_API_HANDLE An operation failed because the application supplied an

invalid device handle. API device handles are API
specific resources and are of no meaning to the OS.

GSC_INVALID_DATA An operation failed because invalid data was provided.
GSC_INVALID_VERSION_API API Library initialization failed because the API

Library version was incompatible. This refers either to
the API’s version number or the GSC revision level.
The version data can still be retrieved when this status
is seen.

GSC_INVALID_VERSION_DRIVER API Library initialization failed because the Device
Driver version was incompatible. This refers either to
the driver’s version number or the GSC revision level.
The version data can still be retrieved when this status
is seen.

GSC_NULL_PARAM An operation failed because an argument was NULL.
GSC_SUCCESS An operation completed successfully.
GSC_THREAD_FAILURE An operation (dmi32_open()) failed because a

support thread could not be started.
GSC_TOO_MANY_OPEN_HANDLES An operation (dmi32_open()) failed because the

application attempted too many simultaneous device
accesses.

GSC_UNSUPPORTED_FUNCTION An operation failed because the application requested a
service that is unsupported or unimplemented.

GSC_WAIT_TIMEOUT An operation completed because a timeout period
lapsed.

GSC_WAIT_CANCELED An operation waiting for an event ended prematurely.
This usually means the application was terminated
while waiting for the event.

22
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

5. Functions
The DMI32 API includes the following functions. The SDK interface also includes a number of function style
macro definitions. These macros are described in section 6 beginning on page 45.

5.1. dmi32_api_status()

This function is the entry point to determine the status of the API Library. This must be the very first call into the
API and determines the usability of the API Library and the Device Driver. If the initial status obtained is other than
GSC_SUCCESS, then only a limited portion of the API is functional. If not fully usable, then both values returned
may be useful in resolving the situation. Thereafter, the status obtained might vary if the API encounters irregular
circumstances. The below table lists macros associated with this service.

Macro (Services) Description
DMI32_API_STATUS(s,a) Retrieve the status information without having to explicitly enter the macro for

the current API version.

Prototype

U32 dmi32_api_status(U32* stat, U32* arg, U32 api_ver);

Argument Description
stat The API records the current API status here, which can change during use. The pointer

must not be NULL. If an error status is returned, then the API must not be used.
arg The API records auxiliary status information here, which can change during use. This

value should be related to the above reported status. The pointer must not be NULL.
api_ver This must be the version number of the API the application was written for. The API will

evaluate this argument with respect to the library’s own version to determine the library’s
suitability for the applications. If the API differs in any way that would cause problems,
then the stat argument will reflect an error condition.

Return Value Description
GSC_SUCCESS The operation succeeded (the status was retrieved).
Otherwise … A GSC_XXX error status reflecting the problem encountered. The API should not be

used in this case.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_api_status(int verbose)
{
 U32 arg;
 U32 stat;
 U32 status;

 status = dmi32_api_status(&stat, &arg, DMI32_API_VERSION);

 if (!verbose)
 {
 }

23
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_api_status() failure: %ld\n", (long) status);
 }
 else
 {
 printf("API Status:\n");
 printf(" Status: 0x%lX\n", (long) stat);
 printf(" Argument: 0x%lX\n", (long) arg);
 }

 status = (status == GSC_SUCCESS) ? stat : status;
 return(status);
}

5.2. dmi32_board_count()

This function is the entry point to determine the number of DMI32 boards installed in the system and accessible to
the API. This service can be called without requiring access to any particular device.

Prototype

U32 dmi32_board_count(U8* count);

Argument Description
count The API records the number of boards at this location. This pointer must not be NULL.

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_board_count(U8* count, int verbose)
{
 U32 status;

 status = dmi32_board_count(count);

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_board_count() failure: %ld\n", (long) status);
 }
 else
 {
 printf("DMI32 Board Count: %d\n", (int) count[0]);
 }

24
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

 return(status);
}

5.3. dmi32_close()

This function is the entry point to close a connection to an open DMI32 board. The function should only be called
after a successful open of the respective device via dmi32_open() and must not be used after being closed.
Before returning, the API returns the device to the same state produced when originally opened.

Prototype

U32 dmi32_close(void* handle);

Argument Description
handle This is an API device handle obtained via dmi32_open().

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_close(void* handle, int verbose)
{
 U32 status;

 status = dmi32_close(handle);

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_close() failure: %ld\n", (long) status);
 }
 else
 {
 printf("Device Closed: 0x%lX\n", (long) handle);
 }

 return(status);
}

5.4. dmi32_config()

This function is the entry point to accessing an individual parameter where all pertinent data is given as separate
arguments. This is the API’s primary entry point to managing device parameters. The function should only be called
after a successful open of the respective device via dmi32_open().

25
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Prototype

U32 dmi32_config(
 void* handle,
 U32 parm,
 U32 which,
 unsigned long set,
 unsigned long* get);

Argument Description
handle This is an API device handle obtained via dmi32_open().
parm This specifies the parameter to be accessed.
which This is any number or combination of parameter specific DMI32_WHICH_XXX bits that

specify the object(s) the parameter is applied to. Many parameters ignore this argument.
When it is used, a value of zero is acceptable, and merely specifies to access none of the
corresponding objects.

set This is the value to apply to the parameter being accessed. The universal value
GSC_NO_CHANGE specifies that the parameter not be altered and must be used when the
purpose of the access is merely to get the current setting. Some parameters are read-only,
in which case this argument is ignored.

get After applying any changes to the parameter, its current setting is recorded here. When the
“which” argument specifies multiple objects, only the last accessed is recorded here. This
argument may be NULL, in which case the current setting is not retrieved.

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_tx_timeout_set(
 void* handle,
 U32 timeout_s,
 int verbose)
{
 unsigned long get;
 U32 status;

 status = dmi32_config(handle,
 DMI32_IO_TIMEOUT,
 DMI32_WHICH_TX,
 timeout_s,
 &get);

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_config() failure: 0x%lX\n", (long) status);

26
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

 }
 else
 {
 printf("Tx (write) Timeout:\n");
 printf(" Set: 0x%lX\n", (long) timeout_s);
 printf(" Get: 0x%lX\n", get);
 }

 return(status);
}

5.5. dmi32_init()

This function is the entry point to return a device and all parameters to the state produced when the device was first
opened. In doing this, any I/O operations in progress are aborted. This function should only be called after a
successful open of the respective device via dmi32_open().

Prototype

U32 dmi32_init(void* handle);

Argument Description
handle This is an API device handle obtained via dmi32_open().

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_init(void* handle, int verbose)
{
 U32 status;

 status = dmi32_init(handle);

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_init() failure: %ld\n", (long) status);
 }
 else
 {
 printf("Device Initialized: 0x%lX\n", (long) handle);
 }

 return(status);
}

27
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

5.6. dmi32_io_wait()

This function is the entry point to pause thread execution until an I/O operation completes. The function should only
be called after a successful open of the respective device via dmi32_open(). When called, the current thread will
block until a referenced I/O operation completes. The waiting will occur if no I/O operations are currently active, or
if an I/O operation is active in either blocking or overlapped mode. The call will return as soon as the time period
expires, or when the first referenced operation completes, whether by an abort request, a failed I/O request, a
timeout or successful data transfer, whichever occurs first. There is no limit to the number of threads that may
simultaneously utilize this service or on the combination of operations that may be referenced.

Prototype

U32 dmi32_io_wait(void* handle, U32 which, U32 timeout_ms);

Argument Description
handle This is an API device handle obtained via dmi32_open().
which This is any bitwise or’d combination of DMI32_WHICH_TX or DMI32_WHICH_RX.

Set DMI32_WHICH_TX to wait on a write operation. Set DMI32_WHICH_RX to wait
on a read operation. If neither is set the function returns immediately with
GSC_SUCCESS.

timeout_ms This is the timeout limit is milliseconds. If an I/O operation does not complete within
this time period, then the call returns at the end of the period. The timeout period will
be at least the amount of time specified, but may be longer depending on the OS.

Return Value Description
GSC_SUCCESS Either no I/O operation was referenced or one of the referenced operations

completed. No indication is given to indicate which event, if any, caused the
call to return.

GSC_WAIT_TIMEOUT The timeout period expired before completion of a referenced I/O operation.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_tx_wait(void* handle, U32 timeout_ms, int verbose)
{
 U32 status;

 status = dmi32_io_wait(handle, DMI32_WHICH_TX, timeout_ms);

 if (!verbose)
 {
 }
 else if (status == GSC_SUCCESS)
 {
 printf("Tx Wait: write operation completed.\n");
 }
 else if (status == GSC_WAIT_TIMEOUT)
 {
 printf("Tx Wait: timeout after %ld milliseconds\n",

28
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

 (long) timeout_ms);
 }
 else
 {
 printf("dmi32_io_wait() failure: %ld\n", (long) status);
 }

 return(status);
}

5.7. dmi32_irq_wait()

This function is the entry point to pause thread execution until an interrupt occurs. The function should only be
called after a successful open of the respective device via dmi32_open(). When called, the current thread will
block until any one of a specified set of interrupts occurs. The call will return as soon as the time period expires, or
when the first referenced interrupt occurs, whichever occurs first. There is no limit to the number of threads that may
simultaneously utilize this service or on the combination of interrupts that may be referenced.

Prototype

U32 dmi32_irq_wait(void* handle, U32 which, U32 timeout_ms);

Argument Description
handle This is an API device handle obtained via dmi32_open().
which This is any bitwise or’d combination of DMI32_WHICH_IRQ_XXX bits. Set the bits

according to the interrupt(s) of interest. Unreferenced interrupts will have no impact. If
none are set the function returns immediately with GSC_SUCCESS.

timeout_ms This is the timeout limit is milliseconds. If an interrupt does not occur within this time
period, then the call returns at the end of the period. The timeout period will be at least
the amount of time specified, but may be longer depending on the OS.

Return Value Description
GSC_SUCCESS Either no interrupts were referenced or one of the referenced interrupts

occurred. No indication is given to indicate which interrupt, if any, caused the
call to return.

GSC_WAIT_TIMEOUT The timeout period expired before a referenced interrupt occurred.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_multi_buffer_under_run_wait(
 void* handle,
 U32 timeout_ms,
 int verbose)
{
 U32 status;

 status = dmi32_irq_wait(handle,
 DMI32_WHICH_IRQ_MBUR,
 timeout_ms);

29
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

 if (!verbose)
 {
 }
 else if (status == GSC_SUCCESS)
 {
 printf("Under Run Wait: interrupt occurred.\n");
 }
 else if (status == GSC_WAIT_TIMEOUT)
 {
 printf("Under Run Wait: "
 "timeout after %ld milliseconds\n",
 (long) timeout_ms);
 }
 else
 {
 printf("dmi32_irq_wait() failure: %ld\n", (long) status);
 }

 return(status);
}

5.8. dmi32_open()

This function is the entry point to open a connection to a DMI32 board. This function must be called before any
other device access functions may be called. If successful, the device and all parameters are initialized to default
settings. Multiple requests can be made to access the same device, and each can succeed. However, care must be
taken when doing this as device access via one handle is likely to interfere with the device state maintained by the
other. Additionally, one handle may configure the device in a way that conflicts with the configuration established
by the other.

Prototype

U32 dmi32_open(U8 index, void** handle);

Argument Description
index This is the zero based index of the board to access.
handle If the request succeeds, the API records at this address the handle to be used for subsequent

access to the respective device. This pointer must not be NULL. The pointer returned will
be NULL if the request fails and non-NULL otherwise.

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_open(U8 index, void** handle, int verbose)
{
 U32 status;

30
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

 status = dmi32_open(index, handle);

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_open() failure: %ld\n", (long) status);
 }
 else
 {
 printf("Device Opened:\n");
 printf(" Index: 0x%lX\n", (long) index);
 printf(" Handle: 0x%lX\n", (long) handle);
 }

 return(status);
}

5.9. dmi32_read()

This function is the entry point to reading DRAM data from a DMI32. The function should only be called after a
successful open of the respective device via dmi32_open(). The operation will be carried out according to the
current set of read side I/O Parameters. If the Overlap Enable option is disabled, then the function will block and
return either when the requested amount of data has been read or when the timeout period has lapsed, whichever
occurs first. If the Overlap Enable option is enabled, the function will return immediately and the operation will be
carried out in the background. In this case the application must either use I/O Completion Notification or query the
read side I/O Status parameters to determine when the operation completes and how much data was read. The
service reads up to the requested number of bytes, which must be a multiple of four bytes (only full 32-bit data
values are retrieved). Only a single read operation can be active at a time. If a request is made while a read operation
is in progress, then the new request will fail. If overlapped I/O is requested and the function returns an error status,
the overlapped operation may not have been initiated. In most cases, no matter how an I/O operation ends though,
even if it could not be started, an I/O completion event will be triggered if at all possible.

NOTE: The API automatically advances the read side I/O Offset parameter according to the
amount of data read. The advancement corresponds to the “count” amount reported by this
service.

NOTE: Only a single PIO based I/O request can be active at a time. If a PIO write request is
active when a PIO read request is made, then the read request will fail.

NOTE: Thoroughly examine the various I/O Parameters to determine the settings required for
each application.

Prototype

U32 dmi32_read(void* handle, void* buffer, U32 bytes, U32* count);

Argument Description
handle This is an API device handle obtained via dmi32_open().
buffer This is where the retrieved data is stored. It must be large enough to store all of the data

requested and it must remain accessible by the API until the operation completes. The
pointer must not be NULL. The buffer can be an application allocated buffer or either of
the API Buffers.

31
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

bytes This is the desired number of bytes to retrieve. The API will limit this to the value
specified by the macro GSC_IO_STATUS_COUNT_MASK and will round it down to an
integral multiple of four bytes.

count The API records the number of bytes actually transferred here. The value recorded may be
less than the amount requested due to various factors; request limits, timeout, abort or an
error.

Return Value Description
GSC_SUCCESS The operation succeeded.
GSC_WAIT_TIMEOUT The operation timed out before the requested amount of data was received.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_read(
 void* handle,
 void* buffer,
 U32 bytes,
 U32* count,
 int verbose)
{
 U32 status;

 status = dmi32_read(handle, buffer, bytes, count);

 if (!verbose)
 {
 }
 else
 {
 printf("I/O Read Operation:\n");
 printf(" Status: 0x%lX\n", (long) status);
 printf(" Requested: 0x%lX\n", (long) bytes);
 printf(" Received: 0x%lX\n", (long) count[0]);
 }

 return(status);
}

5.10. dmi32_reg_mod()

This function is the entry point to performing a read-modify-write on a register. The function should only be called
after a successful open of the respective device via dmi32_open(). Only the DMI32 firmware registers (those
defined inside dmi32_api.h) may be modified. All PCI and PLX registers are read-only.

Prototype

U32 dmi32_reg_mod(void* handle, U32 reg, U32 value, U32 mask);

32
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Argument Description
handle This is an API device handle obtained via dmi32_open().
reg This is the register to access. PCI and PLX registers are read-only.
value This is the desired value to apply. Bits not referenced by the mask are ignored.
mask This specifies the “value” bits to modify. If a bit is set here, then the corresponding

“value” bit will be applied. The remaining “value” bits are ignored.

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_bcr_mod(
 void* handle,
 U32 value,
 U32 mask,
 int verbose)
{
 U32 status;

 status = dmi32_reg_mod(handle, DMI32_BCR, value, mask);

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_reg_mod() failure: %ld\n", (long) status);
 }
 else
 {
 printf("BCR Modify:\n");
 printf(" Value: 0x%lX\n", (long) value);
 printf(" Mask: 0x%lX\n", (long) mask);
 }

 return(status);
}

5.11. dmi32_reg_read()

This function is the entry point to reading the value from a DMI32 register. The function should only be called after
a successful open of the respective device via dmi32_open(). All DMI32 registers may be read.

Prototype

U32 dmi32_reg_read(void* handle, U32 reg, U32* value);

33
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Argument Description
handle This is an API device handle obtained via dmi32_open().
reg This is the register to access.
value The value read is recorded here. If this is NULL then no action is taken.

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_bcr_read(void* handle, U32* value, int verbose)
{
 U32 status;

 status = dmi32_reg_read(handle, DMI32_BCR, value);

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_reg_read() failure: %ld\n", (long) status);
 }
 else
 {
 printf("BCR Read: 0x%lX\n", (long) value[0]);
 }

 return(status);
}

5.12. dmi32_reg_write()

This function is the entry point to writing to a register. The function should only be called after a successful open of
the respective device via dmi32_open(). Only the DMI32 firmware registers (those defined inside
dmi32_api.h) may be modified. All PCI and PLX registers are read-only.

Prototype

U32 dmi32_reg_write(void* handle, U32 reg, U32 value);

Argument Description
handle This is an API device handle obtained via dmi32_open().
reg This is the register to access.
value The value to write to the register.

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

34
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_bcr_write(void* handle, U32 value, int verbose)
{
 U32 status;

 status = dmi32_reg_write(handle, DMI32_BCR, value);

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_reg_write() failure: %ld\n", (long) status);
 }
 else
 {
 printf("BCR Write: 0x%lX\n", (long) value);
 }

 return(status);
}

5.13. dmi32_reset()

This function is the entry point to perform a device hardware reset. The function should only be called after a
successful open of the respective device via dmi32_open(). In doing this, any I/O operations in progress are
aborted.

WARNING: The API performs a variety of actions during this call that are in addition to the
hardware reset. This is necessary for proper API operation. If an application initiates a hardware
reset by writing to the Board Control Register the results may be data loss or corruption.

Prototype

U32 dmi32_reset(void* handle);

Argument Description
handle This is an API device handle obtained via dmi32_open().

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

35
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

U32 dmi32_dsl_reset(void* handle, int verbose)
{
 U32 status;

 status = dmi32_reset(handle);

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_reset() failure: %ld\n", (long) status);
 }
 else
 {
 printf("Device Reset: 0x%lX\n", (long) handle);
 }

 return(status);
}

5.14. dmi32_seek()

This function is the entry point to changing the I/O Offset parameter for subsequent read and/or write service calls.
The function should only be called after a successful open of the respective device via dmi32_open(). This
service is similar to the ANSI fseek() call available for files as the offset is similar to a file pointer. The read and
write services each maintain their own, independent logical file pointer. The following table lists macros associated
with this service.

NOTE: Using this service is equivalent to accessing the I/O Offset parameters.

Macro (Services) Description
DMI32_SEEK_RX(h,s) This sets the logical file pointer for read operations.
DMI32_SEEK_TX(h,s) This sets the logical file pointer for write operations.
DMI32_SEEK_TX_RX(h,s) This sets the logical file pointer for read and write operations.

Prototype

U32 dmi32_seek(void* handle, U32 which, U32 offset);

Argument Description
handle This is an API device handle obtained via dmi32_open().
which This is any bitwise or’d combination of DMI32_WHICH_IO_XXX bits. Set the bits

according to the read or write side to be affected. If none are set then no action is taken.
offset This is the offset in bytes from the beginning of DRAM. This must be on a four byte

boundary and should not go beyond the end of memory. The actual offset applied may
differ depending on the request, the amount of installed DRAM and other parameter
settings.

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

36
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

This service is also accompanied by a small set of utility macros designed to enhance use of this API service. These
are given in the table below. In the table, the argument “h” refers to the device handle used to access the device, the
argument “s” refers to the application’s desired offset and the argument “w” refers to any bitwise or’d combination
of the DMI32_WHICH_IO_RX and DMI32_WHICH_IO_TX macros.

Macro (Services) Description
DMI32_SEEK(h,w,s) This requests a seek for the referenced I/O direction.
DMI32_SEEK_RX(h,s) This requests a seek for the I/O read direction.
DMI32_SEEK_TX(h,s) This requests a seek for the I/O write direction.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_rx_seek(void* handle, U32 offset, int verbose)
{
 U32 status;

 status = dmi32_seek(handle, DMI32_WHICH_RX, offset);

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_seek() failure: %ld\n", (long) status);
 }
 else
 {
 printf("I/O Read Offset set to 0x%lX:\n", (long) offset);
 }

 return(status);
}

5.15. dmi32_status_text()

This function is the entry point to retrieving a text based description of the status values supported by the SDK.

Prototype

U32 dmi32_status_text(U32 status, char* text, size_t size);

Argument Description
status This is the status value whose description is desired.
text The descriptive text is recorded here.
size This gives the size of the above buffer.

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

37
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_status_text(U32 stat, int verbose)
{
 char buf[128];
 U32 status;

 status = dmi32_status_text(stat, buf, sizeof(buf));

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_status_text() failure: 0x%lX\n", (long) status);
 }
 else
 {
 printf("Status: 0x%lX: %s\n", (long) stat, buf);
 }

 return(status);
}

5.16. dmi32_tell()

This function is the entry point to retrieving the I/O Offset parameter used by the read and write services. The
function should only be called after a successful open of the respective device via dmi32_open(). This service is
similar to the ANSI ftell() call available for files as the offset is similar to a file pointer. The read and write
services each maintain their own, independent logical file pointer. The following table lists macros associated with
this service.

NOTE: Using this service is equivalent to accessing the I/O Offset parameters.

Macro (Services) Description
DMI32_TELL_RX(h,g) This retrieves the logical file pointer for read operations.
DMI32_TELL_TX(h,g) This retrieves the logical file pointer for write operations.

Prototype

U32 dmi32_tell(void* handle, U32 which, unsigned long* offset);

Argument Description
handle This is an API device handle obtained via dmi32_open().
which This is any bitwise or’d combination of DMI32_WHICH_IO_XXX bits. Set the bits

according to the read or write side to be affected. If none are set then no action is taken.
offset The current offset is recorded here. If NULL the offset is not reported.

Return Value Description
GSC_SUCCESS The operation succeeded.

38
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Otherwise … A GSC_XXX error status reflecting the problem encountered.

This service is also accompanied by a small set of utility macros designed to enhance use of this API service. These
are given in the table below. In the table, the argument “h” refers to the device handle used to access the device, the
argument “g” is a U32* where the retrieved offset is recorded and the argument “w” refers to any bitwise or’d
combination of the DMI32_WHICH_IO_RX and DMI32_WHICH_IO_TX macros. If the “which” bits reference
both I/O directions, then any data returned will refer to the Rx side as it is processed last. If the pointer is NULL
then nothing is retrieved.

Macro (Services) Description
DMI32_TELL(h,w,g) This requests the offset for the referenced I/O direction.
DMI32_TELL_RX(h,g) This requests the offset for the I/O read direction.
DMI32_TELL_TX(h,g) This requests the offset for the I/O write direction.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_rx_tell(void* handle, U32* offset, int verbose)
{
 U32 status;
 unsigned long value;

 status = dmi32_tell(handle, DMI32_WHICH_RX, &value);
 offset[0] = (U32) value;

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_tell() failure: %ld\n", (long) status);
 }
 else
 {
 printf("I/O Read Offset is 0x%lX:\n", (long) offset[0]);
 }

 return(status);
}

5.17. dmi32_version_get()

This function is the entry point to retrieving version numbers. Without a valid device handle, only the API Library
version number is accessible. Access to the Device Driver’s version number requires a valid device handle. The
following table lists macros associated with this service.

Macro (Services) Description
DMI32_VERSION_GET_DRIVER(h,b,s) This retrieves the driver version string.
DMI32_VERSION_GET_LIBRARY(h,b,s) This retrieves the API Library version string.

39
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Prototype

U32 dmi32_version_get(void* handle, U8 id, char* version, size_t size);

Argument Description
handle This is an API device handle obtained via dmi32_open(). This is ignored except when

accessing the Device Driver’s version data.
id This indicates the version number desired. It should be either GSC_VERSION_LIBRARY

or GSC_VERSION_DRIVER.
version This is a buffer where the version string is recorded.
size This is the size of the above buffer.

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_version_get(void* handle, U8 id, int verbose)
{
 U32 status;
 char ver[32];

 status = dmi32_version_get(handle, id, ver, sizeof(ver));

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_version_get() failure: %ld\n", (long) status);
 }
 else
 {
 printf("Version: %s\n", ver);
 }

 return(status);
}

5.18. dmi32_write()

This function is the entry point to writing DRAM data to a DMI32. The function should only be called after a
successful open of the respective device via dmi32_open(). The operation will be carried out according to the
current set of write side I/O Parameters. If the Overlap Enable option is disabled, then the function will block and
return either when the requested amount of data has been written or when the timeout period has lapsed, which ever
occurs first. If the Overlap Enable option is enabled, then function will return immediately and the operation will be
carried out in the background. In this case the application must either use I/O Completion Notification or query the
write side I/O Status parameters to determine when the operation completes and how much data was written. The
service writes up to the requested number of bytes, which must be a multiple of four bytes (only full 32-bit data

40
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

values are written). Only a single write operation can be active at a time. If a request is made while a write operation
is in progress, then the new request will fail. If overlapped I/O is requested and the function returns an error status,
the overlapped operation may not have been initiated. In most cases, no matter how an I/O operation ends though,
even if it could not be started, an I/O completion event will be triggered if at all possible.

NOTE: The API automatically advances the write side I/O Offset parameter according to the
amount of data written. The advancement corresponds to the “count” amount reported by this
service.

NOTE: Only a single PIO based I/O request can be active at a time. If a PIO read request is active
when a PIO write request is made, then the write request will fail.

NOTE: Thoroughly examine the various I/O Parameters to determine the settings required for
each application.

Prototype

U32 dmi32_write(
 void* handle,
 const void* buffer,
 U32 bytes,
 U32* count);

Argument Description
handle This is an API device handle obtained via dmi32_open().
buffer This is the source for the data to send. It must remain accessible by the API until the

operation completes. The pointer must not be NULL. The buffer can be an application
allocated buffer or either of the API Buffers.

bytes This is the desired number of bytes to write. The API will limit this to the value specified
by the macro GSC_IO_STATUS_COUNT_MASK and will round it down to an integral
multiple of four bytes.

count The API records the number of bytes actually transferred here. The value recorded may be
less than the amount requested due to various factors; request limits, timeout, abort or other
errors.

Return Value Description
GSC_SUCCESS The operation succeeded.
GSC_WAIT_TIMEOUT The operation timed out before the requested amount of data was written.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_write(
 void* handle,
 const void* buffer,
 U32 bytes,
 U32* count,
 int verbose)
{
 U32 status;

41
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

 status = dmi32_write(handle, buffer, bytes, count);

 if (!verbose)
 {
 }
 else
 {
 printf("I/O Write Operation:\n");
 printf(" Status: 0x%lX\n", (long) status);
 printf(" Requested: 0x%lX\n", (long) bytes);
 printf(" Received: 0x%lX\n", (long) count[0]);
 }

 return(status);
}

5.19. dmi32_xfer_buf_get()

This function is the entry point to retrieving the current Transfer Buffer definition. The function should only be
called after a successful open of the respective device via dmi32_open(). This service is an alternate and simpler
method of obtaining the Transfer Buffer definition as it accesses both the Transfer Offset and Transfer Size
parameters via a single call.

Prototype

U32 dmi32_xfer_buf_get(void* handle, U32* offset, U32* size);

Argument Description
handle This is an API device handle obtained via dmi32_open().
offset The current Transfer Buffer offset is recorded here. If NULL the offset is not reported.
size The current Transfer Buffer size is recorded here. If NULL the size is not reported.

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_xfer_buf_report(void* handle, int verbose)
{
 U32 offset;
 U32 size;
 U32 status;

 status = dmi32_xfer_buf_get(handle, &offset, &size);

 if (!verbose)
 {
 }

42
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_xfer_buf_get() failure: %ld\n", (long) status);
 }
 else
 {
 printf("Transfer Buffer:\n");
 printf(" Offset: 0x%lX\n", (long) offset);
 printf(" Size: ");

 if (size == DMI32_XFER_SIZE_4GB)
 printf("4GB\n");
 else
 printf("0x%lX\n", (long) size);
 }

 return(status);
}

5.20. dmi32_xfer_buf_set()

This function is the entry point to updating the Transfer Buffer definition. The function should only be called after a
successful open of the respective device via dmi32_open(). This service is an alternate and simpler method of
updating the Transfer Buffer definition as it accesses both the Transfer Offset and Transfer Size parameters via a
single call.

Prototype

U32 dmi32_xfer_buf_set(void* handle, U32 offset, U32 size);

Argument Description
handle This is an API device handle obtained via dmi32_open().
offset This is the desired Transfer Buffer offset. The actual offset applied may differ depending

on the request, the amount of installed DRAM and other parameter settings.
size This is the desired Transfer Buffer size. The actual size applied may differ depending on

the request, the amount of installed DRAM and other parameter settings.

Return Value Description
GSC_SUCCESS The operation succeeded.
Otherwise … A GSC_XXX error status reflecting the problem encountered.

Example

#include <stdio.h>

#include "dmi32_api.h"
#include "dmi32_dsl.h"

U32 dmi32_dsl_xfer_buf_update(
 void* handle,
 U32 offset,
 U32 size,
 int verbose)
{
 U32 status;

43
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

 status = dmi32_xfer_buf_set(handle, offset, size);

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 printf("dmi32_xfer_buf_set() failure: %ld\n", (long) status);
 }
 else
 {
 printf("Transfer Buffer Requested:\n");
 printf(" Offset: 0x%lX\n", (long) offset);
 printf(" Size: ");

 if (size == DMI32_XFER_SIZE_4GB)
 printf("4GB\n");
 else
 printf("0x%lX\n", (long) size);
 }

 return(status);
}

44
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

6. Configuration Parameters
The DMI32 and the API Library include a number of configurable features. These features are refered to by the API
as Configuration Parameters. This section describes all of the DMI32 Configuration Parameters.

6.1. Parameter Macros

The Configuration Parameters are grouped according to their functional categories. Within each category each
parameter is described (in this section) along with the set of utility macros designed to facilitate configuration of and
access to the respective parameters. Parameter macros fall into three groups, which are described in the following
paragraphs. All macros are described in the following pages in association with their respective parameters. The
parameter categories are as given in the below table.

Parameter Categories Description
DMI32_IO_XXX These refer to the Input/Output Parameters. These pertain to data transfer between the

host and the DMI32 DRAM memory.
DMI32_IRQ_XXX These refer to the Interrupt Parameters.
DMI32_MISC_XXX These refer to the Miscellaneous Parameters.
DMI32_USER_IO_XXX These refer to the User Input/Output Parameters.
DMI32_XFER_XXX These refer to the Transfer Parameters. These refer to data transfer across the cable

interface.

6.1.1. Parameter Definitions

The first group of macros includes the parameter definitions. These are used to identify the specific parameter to be
accessed. These macros begin with “DMI32_” and are followed immediately by upper case letters identifying the
parameter category. For example “DMI32_MISC_” prefaces all Miscellaneous Parameter identifiers. These macros
end with upper case letters indicating the name of the specific parameter. For example
“DMI32_MISC_STRICT_ARGUMENTS” identifies the Miscellaneous Strict Arguments parameter.

6.1.2. Value Definitions

The second group of macros identifies predefined values associated with the respective parameters. These macros
begin with the Parameter Definition and are followed by a single underscore (“_”) then upper case letters that reflect
the meaning of the respective values. For example the macro “DMI32_MISC_STRICT_ARGUMENTS_DISABLE”
is the value that represents the parameter’s disabled setting.

6.1.3. Service Definitions

The third group of macros performs operations on parameters. These are utility macros that retrieve parameter
settings and states or assign parameter values. These macros include the Parameter Definition followed by a double
underscore (“__”) then upper case letters that reflect the action to perform. For example
“DMI32_MISC_STRICT_ARGUMENTS__GET()” retrieves the current setting of the Miscellaneous Strict
Arguments parameter. These macros include arguments, which are described as follows.

6.1.3.1. Device Handle: h

In the service macros, the argument h refers to the device handle used to access the respective device. This handle is
obtained by calling dmi32_open(). This argument must not be NULL.

45
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

6.1.3.2. Which Bits: w

In the service macros, the argument w refers to any combination of the DMI32_WHICH_XXX bits. Refer to
paragraph 3.6 on page 16. With some parameters this argument is unused or is specified inside the macro’s
replacement text. In those cases the w is not included as a macro argument.

6.1.3.3. Set Value: s

In the service macros, the argument s refers to the value to be applied to the referenced parameter. With some
parameters the value can be arbitrarily assigned by the application. With most parameters this argument should be
one of the predefined value definitions. The s is not included as a macro argument for those cases where either a
value is not being applied or the value applied is specified inside the macro replacement text.

6.1.3.4. Get Value: g

In the service macros, the argument g refers to the address of the variable to receive the parameter’s current setting.
In cases where the current setting is not being read, this argument has been omitted from the service macro. In all
cases, this argument can be NULL, in which case the current value is not retrieved.

6.2. Input/Output Parameters

The purpose of the I/O Parameters is to permit access to and control of read (Rx) and write (Tx) I/O operations. All
I/O Parameters are put in a default state when the device is opened and are returned to that state via the
dmi32_init() service. The configuration of the I/O Parameters is retained entirely within the API and cannot be
altered by any DMI32 registers. When accessing the I/O Parameters any number or combination of
DMI32_WHICH_TX or DMI32_WHICH_RX may be used, even none. The write side I/O Parameters will be
accessed only if the transmit bit is set and the read side I/O Parameters will be accessed only if the receive bit is set.
If neither is set, then no action will be taken. The following table summarizes the I/O Parameters.

Parameter Macros Description
DMI32_IO_ABORT This refers to aborting an active I/O operation.
DMI32_IO_ABORTED This refers to a previous I/O abort request.
DMI32_IO_BUFFER_POINTER This refers to a pointer to an API Buffers.
DMI32_IO_BUFFER_SIZE This refers to the size of an API Buffer.
DMI32_IO_CALLBACK_ARG This refers to an arbitrary, application supplied callback argument.
DMI32_IO_CALLBACK_FUNC This refers to an application supplied callback function.
DMI32_IO_MODE This refers to the I/O data transfer mode (PIO or DMA).
DMI32_IO_OFFSET This refers to the starting offset of a data transfer operation.
DMI32_IO_OVERLAP_ENABLE This refers to the use of overlapping or blocking I/O operations.
DMI32_IO_STATUS This refers to the status of the most recent I/O operation.
DMI32_IO_TIMEOUT This refers to the I/O Timeout period in seconds.

6.2.1. I/O Parameter: Abort

The purpose of this parameter is to abort an ongoing I/O operation. This parameter is applicable to active I/O
requests only. No action occurs if none are active at the time an abort request is made. There is also no affect on
future I/O requests. The following tables describe the macros associated with this parameter.

Macro (Parameter) Description
DMI32_IO_ABORT This is the identifier for this parameter.

Macro (Values) Description
DMI32_IO_ABORT_DEFAULT This is the default action to take, which is to do nothing.
DMI32_IO_ABORT_NO As a “set” option this means do not perform an abort. As a “get” option it

46
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

means that an abort did not occur.
DMI32_IO_ABORT_YES As a “set” option this requests an abort. This value is never returned as a “get”

option as the parameter auto clears after an abort request.

Macro (Services) Description
DMI32_IO_ABORT__GET(h,w,g) This requests if an abort has been requested.
DMI32_IO_ABORT__RX_GET(h,g) This requests if an Rx abort has been requested.
DMI32_IO_ABORT__RX_SET(h,s) This applies an option to an Rx I/O operation.
DMI32_IO_ABORT__RX_YES(h) This aborts an Rx operation.
DMI32_IO_ABORT__SET(h,w,s) This applies an option to an I/O operation.
DMI32_IO_ABORT__TX_GET(h,g) This requests if a Tx abort has been requested.
DMI32_IO_ABORT__TX_SET(h,s) This applies an option to a Tx I/O operation.
DMI32_IO_ABORT__TX_YES(h) This aborts a Tx operation.
DMI32_IO_ABORT__YES(h,w) This aborts an Rx and/or Tx operation.

6.2.2. I/O Parameter: Aborted

The purpose of this read-only parameter is to determine if an I/O abort has occurred. This is applied against the I/O
status that exists at the time, and will reference the status from the last operation concluded, if applicable, or an
ongoing operation, if one is active. Only the most recent or current status is available. The status of previous
operations is not available. The following tables describe the macros associated with this parameter.

Macro (Parameter) Description
DMI32_IO_ABORTED This is the identifier for this parameter.

Macro (Values) Description
DMI32_IO_ABORTED_NO This means that an I/O operation was not aborted.
DMI32_IO_ABORTED_YES This means that an I/O operation was aborted.

Macro (Services) Description
DMI32_IO_ABORTED__GET(h,w,g) This retrieves the status of an operation.
DMI32_IO_ABORTED__RX_GET(h,g) This retrieves the status of an Rx operation.
DMI32_IO_ABORTED__TX_GET(h,g) This retrieves the status of a Tx operation.

6.2.3. I/O Parameter: Buffer Pointer

The purpose of this read-only parameter is to retrieve the pointer to the respective API Buffer. If the application has
not configured the size of the respective buffer, then the pointer returned will be NULL. The following tables
describe the macros associated with this parameter.

NOTE: Applications must obtain a fresh pointer each time a change is made to the API Buffer
size. Refer to the I/O Buffer Size parameter in the next subsection.

Macro (Parameter) Description
DMI32_IO_BUFFER_POINTER This is the identifier for this parameter.

Macro (Services) Description
DMI32_IO_BUFFER_POINTER__GET(h,w,g) This retrieves an API Buffer pointer.
DMI32_IO_BUFFER_POINTER__RX_GET(h,g) This retrieves the Rx API Buffer pointer.
DMI32_IO_BUFFER_POINTER__TX_GET(h,g) This retrieves the Tx API Buffer pointer.

47
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

6.2.4. I/O Parameter: Buffer Size

The purpose of this parameter is to adjust and retrieve the size of the respective API Buffer. Requesting a size of
zero essentially frees any existing buffer. The following tables describe the macros associated with this parameter.

NOTE: The API has no control over the amount of memory the OS will grant in response to an
API Buffer allocation request. Each of the API Buffers is a contiguous block of memory requested
of the OS by the Device Driver. The OS manages these types of resources differently than
application memory resources so the size of the API Buffer obtained may be significantly less then
requested by the application. Applications must therefore examine this parameter after it is
adjusted to guard against memory protection faults.

NOTE: Each time the application requests an API Buffer size change, the pointer used to access
the buffer is likely to also change. Applications must therefore obtain a fresh pointer following a
size change request. Refer to the I/O Buffer Pointer parameter description in the previous section.

Macro (Parameter) Description
DMI32_IO_BUFFER_SIZE This is the identifier for this parameter.

Macro (Values) Description
DMI32_IO_BUFFER_SIZE_DEFAULT This is the default size, which is zero.
DMI32_IO_BUFFER_SIZE_MASK This is a mask of the valid bits that may be used.

Macro (Services) Description
DMI32_IO_BUFFER_SIZE__GET(h,w,g) This retrieves a current size setting.
DMI32_IO_BUFFER_SIZE__RESET(h,w) This requests a size change to zero.
DMI32_IO_BUFFER_SIZE__RX_GET(h,g) This retrieves the current Rx size setting.
DMI32_IO_BUFFER_SIZE__RX_RESET(h) This requests an Rx size change to zero.
DMI32_IO_BUFFER_SIZE__RX_SET(h,s,g) This requests an Rx size change and retrieves the results.
DMI32_IO_BUFFER_SIZE__SET(h,w,s,g) This requests a size change and retrieves the results.
DMI32_IO_BUFFER_SIZE__TX_GET(h,g) This retrieves the current Tx size setting.
DMI32_IO_BUFFER_SIZE__TX_RESET(h) This requests a Tx size change to zero.
DMI32_IO_BUFFER_SIZE__TX_SET(h,s,g) This requests a Tx size change and retrieves the results.

6.2.5. I/O Parameter: Callback Argument

The purpose of this parameter is to modify and report the application provided argument that it receives as “arg3”
for an I/O completion callback event. Applications are free to assign virtually any arbitrary value desired. The
following tables describe the macros associated with this parameter.

NOTE: Applications must remember that the macros GSC_NO_CHANGE and GSC_DEFAULT
have special meaning when applying parameter modifications. If the application specific value
being supplied for this parameter happens to equal either of these values, then the results will be
according to the API’s use of these special values rather than the application’s intent.

NOTE: This parameter can be accessed and altered during the callback, but the callback must
return before subsequent callbacks can be made on the same I/O transfer direction.

Macro (Parameter) Description
DMI32_IO_CALLBACK_ARG This is the identifier for this parameter.

Macro (Values) Description
DMI32_IO_CALLBACK_ARG_DEFAULT This is the default, which is zero.

48
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Macro (Services) Description
DMI32_IO_CALLBACK_ARG__GET(h,w,g) This retrieves a current setting.
DMI32_IO_CALLBACK_ARG__RESET(h,w) This requests a setting change to the default.
DMI32_IO_CALLBACK_ARG__RX_GET(h,g) This retrieves the current Rx setting.
DMI32_IO_CALLBACK_ARG__RX_RESET(h) This requests an Rx setting change to the default.
DMI32_IO_CALLBACK_ARG__RX_SET(h,s) This requests an Rx setting change.
DMI32_IO_CALLBACK_ARG__SET(h,w,s) This requests a setting change.
DMI32_IO_CALLBACK_ARG__TX_GET(h,g) This retrieves the current Tx setting.
DMI32_IO_CALLBACK_ARG__TX_RESET(h) This requests a Tx setting change to the default.
DMI32_IO_CALLBACK_ARG__TX_SET(h,s) This requests a Tx setting change.

6.2.6. I/O Parameter: Callback Function

The purpose of this parameter is to modify and report the application provided function pointer for I/O completion
events. The specified callback function must be of the type dmi32_callback_func_t (page 21). The given
function is called for each completed I/O operation, regardless of how the operation completes. The following tables
describe the macros associated with this parameter.

NOTE: This parameter can be accessed and altered during the callback, but the callback must
return before subsequent callbacks can be made on the same I/O transfer direction.

Macro (Parameter) Description
DMI32_IO_CALLBACK_FUNC This is the identifier for this parameter.

Macro (Values) Description
DMI32_IO_CALLBACK_FUNC_DEFAULT This is the default, which is NULL. This disables the callback

feature.

Macro (Services) Description
DMI32_IO_CALLBACK_FUNC__GET(h,w,g) This retrieves a current function pointer.
DMI32_IO_CALLBACK_FUNC__RESET(h,w) This requests a setting change to the default, which

disables the callback feature.
DMI32_IO_CALLBACK_FUNC__RX_GET(h,g) This retrieves the current Rx function pointer.
DMI32_IO_CALLBACK_FUNC__RX_RESET(h) This requests an Rx setting change to the default, which

disables the callback feature.
DMI32_IO_CALLBACK_FUNC__RX_SET(h,s) This requests an Rx function pointer change.
DMI32_IO_CALLBACK_FUNC__SET(h,w,s) This requests a function pointer change.
DMI32_IO_CALLBACK_FUNC__TX_GET(h,g) This retrieves the current Tx function pointer.
DMI32_IO_CALLBACK_FUNC__TX_RESET(h) This requests a Tx setting change to the default, which

disables the callback feature.
DMI32_IO_CALLBACK_FUNC__TX_SET(h,s) This requests a Tx function pointer change.

6.2.7. I/O Parameter: Mode

The purpose of this parameter is to modify and report the data transfer mode used by the API during I/O requests. In
virtually all cases, the default mode of DMA offers the best performance. The following tables describe the macros
associated with this parameter.

Macro (Parameter) Description
DMI32_IO_MODE This is the identifier for this parameter.

Macro (Values) Description
DMI32_IO_MODE_DEFAULT This selects the default, which is DMA.
DMI32_IO_MODE_DMA This selects the non-Demand Mode DMA.

49
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

DMI32_IO_MODE_PIO This selects Programmed I/O, which used repetitive register reads and writes.

Macro (Services) Description
DMI32_IO_MODE__DMA(h,w) This requests a setting of DMA.
DMI32_IO_MODE__GET(h,w,g) This retrieves a current setting.
DMI32_IO_MODE__PIO(h,w) This requests a setting of PIO.
DMI32_IO_MODE__RESET(h,w) This requests a setting change to the default.
DMI32_IO_MODE__RX_DMA(h) This requests an Rx setting of DMA.
DMI32_IO_MODE__RX_GET(h,g) This retrieves the current Rx setting.
DMI32_IO_MODE__RX_PIO(h) This requests an Rx setting of PIO.
DMI32_IO_MODE__RX_RESET(h) This requests an Rx setting change to the default.
DMI32_IO_MODE__RX_SET(h,s) This requests an Rx setting change.
DMI32_IO_MODE__SET(h,w,s) This requests a setting change.
DMI32_IO_MODE__TX_DMA(h) This requests a Tx setting of DMA.
DMI32_IO_MODE__TX_GET(h,g) This retrieves the current Tx setting.
DMI32_IO_MODE__TX_PIO(h) This requests a Tx setting of PIO.
DMI32_IO_MODE__TX_RESET(h) This requests a Tx setting change to the default.
DMI32_IO_MODE__TX_SET(h,s) This requests a Tx setting change.

6.2.8. I/O Parameter: Offset

The purpose of this parameter is to modify and report the starting offset within DRAM used by subsequent read and
write operations. The I/O Offset is equivalent to a file pointer maintained during file I/O operations. Setting the
offset is analogous to a seek() request and retrieving the offset is analogous to a tell() request. The parameter
is maintained independently for reads and writes and each is adjusted automatically by the API during I/O requests.
Offsets must be made to four byte boundaries. The following tables describe the macros associated with this
parameter.

Macro (Parameter) Description
DMI32_IO_OFFSET This is the identifier for this parameter.

Macro (Values) Description
DMI32_IO_OFFSET_DEFAULT This selects the default.
DMI32_IO_OFFSET_MASK This is the set of bits that may be set within an offset value.
DMI32_IO_OFFSET_MAX This selects the maximum offset.
DMI32_IO_OFFSET_MIN This selects the minimum offset.

Macro (Services) Description
DMI32_IO_OFFSET__GET(h,w,g) This retrieves a current setting.
DMI32_IO_OFFSET__RESET(h,w) This requests a setting change to the default.
DMI32_IO_OFFSET__RX_GET(h,g) This retrieves the current Rx setting.
DMI32_IO_OFFSET__RX_RESET(h) This requests an Rx setting change to the default.
DMI32_IO_OFFSET__RX_SET(h,s) This requests an Rx setting change.
DMI32_IO_OFFSET__SET(h,w,s) This requests a setting change.
DMI32_IO_OFFSET__TX_GET(h,g) This retrieves the current Tx setting.
DMI32_IO_OFFSET__TX_RESET(h) This requests a Tx setting change to the default.
DMI32_IO_OFFSET__TX_SET(h,s) This requests a Tx setting change.

6.2.9. I/O Parameter: Overlap Enable

The purpose of this parameter is to modify and report the API’s foreground or background processing of I/O
requests. When I/O requests are made the API will use this parameter’s setting to control how the request is
processed. If the option is enabled then processing occurs in the background as overlapped I/O. Otherwise it is
performed as blocking I/O. The following tables describe the macros associated with this parameter.

50
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Macro (Parameter) Description
DMI32_IO_OVERLAP_ENABLE This is the identifier for this parameter.

Macro (Values) Description
DMI32_IO_OVERLAP_ENABLE_DEFAULT This selects the default, which is no.
DMI32_IO_OVERLAP_ENABLE_NO This selects the no option. I/O requests block until the request

completes or times out.
DMI32_IO_OVERLAP_ENABLE_YES This selects the yes option. I/O requests return immediately

while the data transfer occurs in the background.

Macro (Services) Description
DMI32_IO_OVERLAP_ENABLE__GET(h,w,g) This retrieves a current setting.
DMI32_IO_OVERLAP_ENABLE__NO(h,w) This requests a setting of no.
DMI32_IO_OVERLAP_ENABLE__RESET(h,w) This requests a setting change to the default.
DMI32_IO_OVERLAP_ENABLE__RX_GET(h,g) This retrieves the current Rx setting.
DMI32_IO_OVERLAP_ENABLE__RX_NO(h) This requests an Rx setting of no.
DMI32_IO_OVERLAP_ENABLE__RX_RESET(h) This requests an Rx setting change to the default.
DMI32_IO_OVERLAP_ENABLE__RX_SET(h,s) This requests an Rx setting change.
DMI32_IO_OVERLAP_ENABLE__RX_YES(h) This requests an Rx setting of yes.
DMI32_IO_OVERLAP_ENABLE__SET(h,w,s) This requests a setting change.
DMI32_IO_OVERLAP_ENABLE__TX_GET(h,g) This retrieves the current Tx setting.
DMI32_IO_OVERLAP_ENABLE__TX_NO(h) This requests a Tx setting of no.
DMI32_IO_OVERLAP_ENABLE__TX_RESET(h) This requests a Tx setting change to the default.
DMI32_IO_OVERLAP_ENABLE__TX_SET(h,s) This requests a Tx setting change.
DMI32_IO_OVERLAP_ENABLE__TX_YES(h) This requests a Tx setting of yes.
DMI32_IO_OVERLAP_ENABLE__YES(h,w) This requests a setting of yes.

6.2.10. I/O Parameter: Status

The purpose of this parameter is to report the current I/O status. The status returned includes the set of
GSC_IO_STATUS_XXX fields and bits for the referenced I/O request, which may have completed or may still be
active. The following tables describe the macros associated with this parameter.

Macro (Parameter) Description
DMI32_IO_STATUS This is the identifier for this parameter.

Macro (Services) Description
DMI32_IO_STATUS__GET(h,w,g) This retrieves a current status.
DMI32_IO_STATUS__RX_GET(h,g) This retrieves the current Rx status.
DMI32_IO_STATUS__TX_GET(h,g) This retrieves the current Tx status.

6.2.11. I/O Parameter: Timeout

The purpose of this parameter is to modify and report the API’s timeout limit for I/O requests. When I/O requests
are made the API will terminate the request if it has not completed in the specified number of seconds. The
following tables describe the macros associated with this parameter.

NOTE: Applications should avoid setting the timeout limit to zero (0) when using DMA. Doing
so may result is inefficient use of DMA and it may be noticeable slower than expected.

Macro (Parameter) Description
DMI32_IO_TIMEOUT This is the identifier for this parameter.

51
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Macro (Values) Description
DMI32_IO_TIMEOUT_DEFAULT This selects the default, which is 10 seconds
DMI32_IO_TIMEOUT_MAX This selects the maximum timeout limit, which is one hour.
DMI32_IO_TIMEOUT_NO_WAIT This sets the timeout to zero (0) seconds. This means the I/O request will

terminate rather than wait for additional data transfer to occur.

Macro (Services) Description
DMI32_IO_TIMEOUT__GET(h,w,g) This retrieves a current setting.
DMI32_IO_TIMEOUT__NO_WAIT(h,w) This requests a setting to do not wait.
DMI32_IO_TIMEOUT__RESET(h,w) This requests a setting change to the default.
DMI32_IO_TIMEOUT__RX_GET(h,g) This retrieves the current Rx setting.
DMI32_IO_TIMEOUT__RX_NO_WAIT(h) This requests an Rx setting to do not wait.
DMI32_IO_TIMEOUT__RX_RESET(h) This requests an Rx setting change to the default.
DMI32_IO_TIMEOUT__RX_SET(h,s) This requests an Rx setting change.
DMI32_IO_TIMEOUT__SET(h,w,s) This requests a setting change.
DMI32_IO_TIMEOUT__TX_GET(h,g) This retrieves the current Tx setting.
DMI32_IO_TIMEOUT__TX_NO_WAIT(h) This requests a Tx setting to do not wait.
DMI32_IO_TIMEOUT__TX_RESET(h) This requests a Tx setting change to the default.
DMI32_IO_TIMEOUT__TX_SET(h,s) This requests a Tx setting change.

6.3. Interrupt Parameters

The purpose of the Interrupt Parameters is to permit access to and control of the DMI32 hardware based interrupts.
All Interrupt Parameters are put in a default state when the device is opened and are returned to that state via the
dmi32_init() service. The hardware based interrupt configuration is returned to its default state via the
dmi32_reset() service. The configuration of the Interrupt Parameters is retained mostly within the DMI32
firmware registers. Applications have access to the DMI32 interrupt registers but it is advised that they be accessed
only through the Interrupt Parameter services. When using the service dmi32_config() any number or
combination of DMI32_WHICH_IRQ_XXX bits may be used, even none. An interrupt is accessed only if it’s
respective “which” bit is set. If none is set, then no action will be taken. The following table summarizes the
Interrupt Parameters.

Parameter Macros Description
DMI32_IRQ_CALLBACK_ARG This refers to an arbitrary, application supplied callback argument.
DMI32_IRQ_CALLBACK_FUNC This refers to an application supplied callback function.
DMI32_IRQ_ENABLE This refers to the enabled/disabled state of an interrupt.
DMI32_IRQ_STATE This refers to the active/inactive state of an interrupt source.

6.3.1. Interrupt Parameter: Callback Argument

The purpose of this parameter is to modify and report the application provided argument that is receives as “arg3”
during an interrupt callback event. Applications are free to assign virtually any arbitrary value desired. The
following tables describe the macros associated with this parameter.

NOTE: Applications must remember that the macros GSC_NO_CHANGE and GSC_DEFAULT
have special meaning when applying parameter modifications. If the application specific value
being supplied for this parameter happens to equal either of these values, then the results will be
according to the API’s use of these special values rather than the application’s intent.

NOTE: This parameter can be accessed and altered during the callback, but the callback must
return before subsequent callbacks can be made on the same interrupt.

Macro (Parameter) Description
DMI32_IRQ_CALLBACK_ARG This is the identifier for this parameter.

52
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Macro (Values) Description
DMI32_IRQ_CALLBACK_ARG_DEFAULT This is the default, which is zero.

Macro (Services) Description
DMI32_IRQ_CALLBACK_ARG__GET(h,w,g) This retrieves a current setting.
DMI32_IRQ_CALLBACK_ARG__RESET(h,w) This requests a setting change to the default.
DMI32_IRQ_CALLBACK_ARG__SET(h,w,s) This requests a setting change.
DMI32_IRQ_CALLBACK_ARG__XXX_GET(h,g) This retrieves the current interrupt “XXX” setting. *
DMI32_IRQ_CALLBACK_ARG__XXX_RESET(h) This requests a setting change for interrupt “XXX” to the

default. *
DMI32_IRQ_CALLBACK_ARG__XXX_SET(h,s) This requests an interrupt “XXX” setting change. *

* The XXX refers individually to BS, BE, UIOA, UIOB and MBUR.

6.3.2. Interrupt Parameter: Callback Function

The purpose of this parameter is to modify and report the application provided callback function pointer for an
interrupt callback event. The specified callback function must be of the type dmi32_callback_func_t (page
21). The given function is called for each respective interrupt. The following tables describe the macros associated
with this parameter.

NOTE: This parameter can be accessed and altered during the callback, but the callback must
return before subsequent callbacks can be made on the same interrupt.

Macro (Parameter) Description
DMI32_IRQ_CALLBACK_FUNC This is the identifier for this parameter.

Macro (Values) Description
DMI32_IRQ_CALLBACK_FUNC_DEFAULT This is the default, which is NULL.

Macro (Services) Description
DMI32_IRQ_CALLBACK_FUNC__GET(h,w,g) This retrieves a current function pointer.
DMI32_IRQ_CALLBACK_FUNC__RESET(h,w) This requests a function pointer change to the default,

which disables callback notification.
DMI32_IRQ_CALLBACK_FUNC__SET(h,w,s) This requests a function pointer change.
DMI32_IRQ_CALLBACK_FUNC__XXX_GET(h,g) This retrieves the current interrupt “XXX” function

pointer. *
DMI32_IRQ_CALLBACK_FUNC__XXX_RESET(h) This requests a function pointer change for interrupt

“XXX” to the default, which disables callback
notification.

DMI32_IRQ_CALLBACK_FUNC__XXX_SET(h,s) This requests an interrupt “XXX” function pointer
change. *

* The XXX refers individually to BS, BE, UIOA, UIOB and MBUR.

6.3.3. Interrupt Parameter: Enable

The purpose of this parameter is to modify and report the enabled state of the respective interrupt. This parameter is
used to enable and disable generation of interrupts for the respective interrupt source. An interrupt source will not
generate an interrupt unless the interrupt is enabled. The following tables describe the macros associated with this
parameter.

53
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Macro (Parameter) Description
DMI32_IRQ_ENABLE This is the identifier for this parameter.

Macro (Values) Description
DMI32_IRQ_ENABLE_DEFAULT This is the default, which is disabled.
DMI32_IRQ_ENABLE_NO This option disables the interrupt.
DMI32_IRQ_ENABLE_YES This option enables the interrupt.

Macro (Services) Description
DMI32_IRQ_ENABLE__GET(h,w,g) This retrieves a current setting.
DMI32_IRQ_ENABLE__NO(h,w) This requests that a number of interrupts be disabled.
DMI32_IRQ_ENABLE__RESET(h,w) This requests a setting change to the default.
DMI32_IRQ_ENABLE__SET(h,w,s) This requests a setting change.
DMI32_IRQ_ENABLE__XXX_GET(h,g) This retrieves the current interrupt “XXX” setting.
DMI32_IRQ_ENABLE__XXX_NO(h) This requests that interrupt “XXX” be disabled.
DMI32_IRQ_ENABLE__XXX_RESET(h) This requests a setting change for interrupt “XXX” to the default.
DMI32_IRQ_ENABLE__XXX_SET(h,s) This requests an interrupt “XXX” setting change.
DMI32_IRQ_ENABLE__XXX_YES(h) This requests that interrupt “XXX” be enabled.
DMI32_IRQ_ENABLE__YES(h,w) This requests that a number of interrupts be enabled.

* The XXX refers individually to BS, BE, UIOA, UIOB and MBUR.

6.3.4. Interrupt Parameter: State

The purpose of this read-only parameter is to report the state of the respective interrupt source. This parameter
reports whether or not an interrupt source is active. If an interrupt source is active, then it will generate an interrupt
when enabled. The following tables describe the macros associated with this parameter.

NOTE: If an interrupt is enabled and it becomes active, the interrupt will be serviced. The result
of this is that the state for an enabled interrupt will always appear as inactive. The state for
interrupts which are disabled may be reported as either active or inactive, depending on the
interrupt sources’ state at the time it is accessed.

Macro (Parameter) Description
DMI32_IRQ_STATE This is the identifier for this parameter.

Macro (Values) Description
DMI32_IRQ_STATE_ACTIVE This reflects that the source was active.
DMI32_IRQ_STATE_INACTIVE This reflects that the source was inactive.

Macro (Services) Description
DMI32_IRQ_STATE__GET(h,w,g) This retrieves a current state.
DMI32_IRQ_STATE__XXX_GET(h,g) This retrieves the current interrupt “XXX” state. *

* The XXX refers individually to BS, BE, UIOA, UIOB and MBUR.

6.4. Miscellaneous Parameters

The purpose of the Miscellaneous Parameters is to permit access to and control of DMI32 parameters which do not
readily fit into the other parameter categories. All Miscellaneous Parameters are put in a default state when the
device is opened and are returned to that state via the dmi32_init() service. The hardware based Miscellaneous
Parameters are returned to their default states via the dmi32_reset() service. The configuration of one or more
Miscellaneous Parameters is retained within the DMI32 firmware registers. Applications have access to these

54
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

DMI32 registers but it is advised that these features be accessed only through the Miscellaneous Parameter services.
When using the service dmi32_config() the Miscellaneous Parameters ignores the “which” bit parameter. The
following table summarizes the Miscellaneous Parameters.

Parameter Macros Description
DMI32_MISC_BOARD_JUMPERS This refers to the board’s User Jumpers.
DMI32_MISC_DRAM_CAPACITY_MB This refers to the board’s DRAM capacity.
DMI32_MISC_DRAM_SIZE_MB This refers to the board’s current DRAM size.
DMI32_MISC_FEATURES This refers to support for various board features.
DMI32_MISC_MAP_GSC_REGS This refers to mapping of the GSC firmware registers into API

memory space.
DMI32_MISC_MAP_PLX_REGS This refers to mapping of the PLX feature set registers into API

memory space.
DMI32_MISC_STRICT_ARGUMENTS This refers to how the API responds when it receives application

argument values that are invalid or unrecognized.
DMI32_MISC_STRICT_CONFIG This refers to how the API responds when it receives application

requests that are invalid given the board’s current configuration.
DMI32_MISC_STRICT_DRAM_LIMITS This refers to how the API responds when it receives application

argument values that are outside the board’s current DRAM
memory range.

6.4.1. Miscellaneous Parameter: Board Jumpers

The purpose of this read-only parameter is to report the state of the User Jumper pins on the board. These jumpers
can be used to distinguish between multiple boards placed within the same system. The jumper state is reported in
the lower two bits of the value retrieved. The following tables describe the macros associated with this parameter.

Macro (Parameter) Description
DMI32_MISC_BOARD_JUMPERS This is the identifier for this parameter.

Macro (Services) Description
DMI32_MISC_BOARD_JUMPERS__GET(h,g) This retrieves the current state.

6.4.2. Miscellaneous Parameter: DRAM Capacity MB

The purpose of this read-only parameter is to report the DMI32’s DRAM memory capacity, which is the maximum
amount of memory supported. This refers to the board’s capability, which may exceed the amount of memory
actually installed. The capacity is reported in megabyte units. The following tables describe the macros associated
with this parameter.

Macro (Parameter) Description
DMI32_MISC_DRAM_CAPACITY_MB This is the identifier for this parameter.

Macro (Services) Description
DMI32_MISC_DRAM_CAPACITY_MB__GET(h,g) This retrieves the DRAM capacity.

6.4.3. Miscellaneous Parameter: DRAM Size MB

The purpose of this read-only parameter is to report the size of the DMI32’s DRAM memory. This refers to the
amount of memory actually installed, and may be less than the board’s capacity. The size is reported in megabyte
units. In the dmi32_misc_param_t structure the parameter is listed separately. The following tables describe the
macros associated with this parameter.

55
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Macro (Parameter) Description
DMI32_MISC_DRAM_SIZE_MB This is the identifier for this parameter.

Macro (Services) Description
DMI32_MISC_DRAM_SIZE_MB__GET(h,g) This retrieves the DRAM size.

6.4.4. Miscellaneous Parameter: Features

The purpose of this read-only parameter is to determine the firmware’s support for various features. The feature in
question is passed as the “set” value. Support for the specified feature is reported in the “get” value. The
following tables describe the macros associated with this parameter.

Macro (Parameter) Description
DMI32_MISC_FEATURES This is the identifier for this parameter.

Macro (Set Values) Description
DMI32_MISC_FEATURES_FR This refers to the Feature Register.
DMI32_MISC_FEATURES_IRQ_MBUR This refers to the Multi-Buffer Under Run interrupt.
DMI32_MISC_FEATURES_LMBR This refers to the Local Memory Bank Register.
DMI32_MISC_FEATURES_SW_DIR This refers to the software selectable Start Word Direction feature.

Macro (Get Values) Description
DMI32_MISC_FEATURES_ABSENT This indicates that the feature is unsupported in firmware.
DMI32_MISC_FEATURES_PRESENT This indicates that the feature is supported in firmware.

Macro (Services) Description
DMI32_MISC_FEATURES__GET(h,s,g) This requests support status for a specified feature.
DMI32_MISC_FEATURES__XXX(h,g) This requests support status for the respective feature. *

* The XXX refers individually to FR, LMBR, IRQ_MBUR and SW_DIR.

6.4.5. Miscellaneous Parameter: GSC Register Mapping

The purpose of this parameter is to control and report the mapping of GSC registers into API memory space. This
parameter should always be enabled, even though the registers are not directly accessible by applications. If it is
disabled, the API’s access to DMI32 firmware registers operates with reduced efficiency. The following tables
describe the macros associated with this parameter.

NOTE: There are circumstances where this feature cannot be enabled and utilized. This is usually
limited to embedded hosts here the BIOS doesn’t place all PCI memory access regions on CPU
Page Size boundaries. If the BIOS cannot be configured to utilize such boundaries, then API
performance is degraded.

NOTE: Parameter access utility macros are limited for this parameter as it should always be
enabled. The parameter should only be disabled for testing purposes.

Macro (Parameter) Description
DMI32_MISC_MAP_GSC_REGS This is the identifier for this parameter.

Macro (Values) Description
DMI32_MISC_MAP_GSC_REGS_DEFAULT This is the default, which is enabled.
DMI32_MISC_MAP_GSC_REGS_DISABLE This refers to the disabled state. When disabled, access to

firmware registers must go through the Device Driver, which
reduces efficiency.

56
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

DMI32_MISC_MAP_GSC_REGS_ENABLE This refers to the enabled state. When enabled, access to
firmware registers is done entirely within the API, which
increases efficiency.

Macro (Services) Description
DMI32_MISC_MAP_GSC_REGS__ENABLE(h) This requests that the option be enabled.
DMI32_MISC_MAP_GSC_REGS__GET(h,g) This requests the current setting.
DMI32_MISC_MAP_GSC_REGS__RESET(h) This requests a setting change to the default.
DMI32_MISC_MAP_GSC_REGS__SET(h,s) This requests a change to the current setting.

6.4.6. Miscellaneous Parameter: PLX Register Mapping

The purpose of this parameter is to control and report the mapping of PLX registers into API memory space. This
parameter should always be enabled, even though it is not directly usable by applications. If it is disabled, the API’s
access to PLX registers operates with reduced efficiency. The following tables describe the macros associated with
this parameter.

NOTE: There are circumstances where this feature cannot be enabled and utilized. This is usually
limited to embedded hosts here the BIOS doesn’t place all PCI memory access regions on CPU
Page Size boundaries. If the BIOS cannot be configured to utilize such boundaries, then API
performance is degraded.

NOTE: Parameter access utility macros are limited for this parameter as it should always be
enabled. The parameter should only be disabled for testing purposes.

Macro (Parameter) Description
DMI32_MISC_MAP_PLX_REGS This is the identifier for this parameter.

Macro (Values) Description
DMI32_MISC_MAP_PLX_REGS_DEFAULT This is the default, which is enabled.
DMI32_MISC_MAP_PLX_REGS_DISABLE This refers to the disabled state. When disabled, access to PLX

registers must go through the Device Driver, which reduces
efficiency.

DMI32_MISC_MAP_PLX_REGS_ENABLE This refers to the enabled state. When enabled, access to PLX
registers is done entirely within the API, which increases
efficiency.

Macro (Services) Description
DMI32_MISC_MAP_PLX_REGS__ENABLE(h) This request that the option be enabled.
DMI32_MISC_MAP_PLX_REGS__GET(h,g) This requests the current setting.
DMI32_MISC_MAP_PLX_REGS__RESET(h) This requests a setting change to the default.
DMI32_MISC_MAP_PLX_REGS__SET(h,s) This request a change to the current setting.

6.4.7. Miscellaneous Parameter: Strict Arguments

The purpose of this parameter is to control and retrieve the setting that governs the API’s handling of certain
unrecognized values. For example, if the setting supplied when adjusting this parameter is not listed in the
appropriate table below, then the API can either respond with an error condition or infer the application’s intent per
the value that was received. If Strict Argument processing is enabled, then processing is terminated with an error
status. Otherwise the API is lenient and will try to proceed gracefully. This policy is applicable to parameter
processing only, and applies to most parameters. The following tables describe the macros associated with this
parameter.

57
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Macro (Parameter) Description
DMI32_MISC_STRICT_ARGUMENTS This is the identifier for this parameter.

Macro (Values) Description
DMI32_MISC_STRICT_ARGUMENTS_DEFAULT This is the default, which is lenient processing.
DMI32_MISC_STRICT_ARGUMENTS_DISABLE This refers to lenient processing.
DMI32_MISC_STRICT_ARGUMENTS_ENABLE This refers to strict processing.

Macro (Services) Description
DMI32_MISC_STRICT_ARGUMENTS__GET(h,g) This requests the current setting.
DMI32_MISC_STRICT_ARGUMENTS__NO(h) This requests lenient processing.
DMI32_MISC_STRICT_ARGUMENTS__RESET(h) This requests a setting change to the default.
DMI32_MISC_STRICT_ARGUMENTS__SET(h,s) This requests a setting change.
DMI32_MISC_STRICT_ARGUMENTS__YES(h) This requests strict processing.

6.4.8. Miscellaneous Parameter: Strict Configuration

The purpose of this parameter is to control and retrieve the setting that governs the API’s handling of certain invalid
configurations. For example, if the setting supplied when adjusting a parameter is inconsistent with the board’s
current configuration, then the API can either respond with an error condition or try to proceed gracefully. If Strict
Configuration processing is enabled, then processing is terminated with an error status. Otherwise the API is lenient
and will try to proceed gracefully. This policy is applicable to parameter processing only, but is NOT applicable to
the DMI32 at this time. The following tables describe the macros associated with this parameter.

Macro (Parameter) Description
DMI32_MISC_STRICT_CONFIG This is the identifier for this parameter.

Macro (Values) Description
DMI32_MISC_STRICT_CONFIG_DEFAULT This is the default, which is lenient processing.
DMI32_MISC_STRICT_CONFIG_DISABLE This refers to lenient processing.
DMI32_MISC_STRICT_CONFIG_ENABLE This refers to strict processing.

Macro Description
DMI32_MISC_STRICT_CONFIG__GET(h,g) This requests the current setting.
DMI32_MISC_STRICT_CONFIG__NO(h) This requests lenient processing.
DMI32_MISC_STRICT_CONFIG__RESET(h) This requests that the default be selected.
DMI32_MISC_STRICT_CONFIG__SET(h,s) This requests a setting change.
DMI32_MISC_STRICT_CONFIG__YES(h) This requests strict processing.

6.4.9. Miscellaneous Parameter: Strict DRAM Limits

The purpose of this parameter is to control and retrieve the setting restricting an application’s DRAM addressing to
what is installed on the DMI32. When enable the API restricts I/O accesses and relevant I/O Parameter and Transfer
Parameter change requests so that they fall entirely within the installed memory. While enabled and the API is
configured to be lenient, the default, the API will quietly adjust requests so that they fall within installed memory. If
disabled, then applications are free to access any addressable region without limits. The following tables describe
the macros associated with this parameter.

Macro (Parameter) Description
DMI32_MISC_STRICT_DRAM_LIMITS This is the identifier for this parameter.

Macro (Values) Description
DMI32_MISC_STRICT_DRAM_LIMITS_DEFAULT This is the default, which is enabled.
DMI32_MISC_STRICT_DRAM_LIMITS_DISABLE This refers to the limits being ignored.

58
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

DMI32_MISC_STRICT_DRAM_LIMITS_ENABLE This refers to the limits being observed.

Macro (Services) Description
DMI32_MISC_STRICT_DRAM_LIMITS__GET(h,g) This requests the current setting.
DMI32_MISC_STRICT_DRAM_LIMITS__NO(h) This requests that the limits be ignored.
DMI32_MISC_STRICT_DRAM_LIMITS__RESET(h) This requests a setting change to the default.
DMI32_MISC_STRICT_DRAM_LIMITS__SET(h,s) This requests a setting change.
DMI32_MISC_STRICT_DRAM_LIMITS__YES(h) This requests that the limits be observed.

6.5. Transfer Parameters

The purpose of the Transfer Parameters is to permit access to and control of those parameters that pertain
exclusively to the DMI32’s cable based data transfer feature. All Transfer Parameters are put in a default state when
the device is opened and are returned to that state via the dmi32_init() service. The configuration of some of
these parameters is retained within the DMI32 firmware registers. Those maintained in DMI32 firmware registers
are put in a default state via the dmi32_reset() service. Applications have access to the DMI32 registers but it is
advised that these features be accessed only through the Transfer Parameter services. When using the services
dmi32_config() the “which” bits argument is ignored. The following table summarizes the Transfer
Parameters.

Parameter Macros Description
DMI32_XFER_CLKIN_TEST This refers to the board’s Clock In Test feature.
DMI32_XFER_DIRECTION This refers to the data transfer direction across the cable

interface.
DMI32_XFER_ENABLE This refers to data transfer enable/disable setting.
DMI32_XFER_INTERNAL_CLOCK_SPEED This refers to the board’s Internal Clock Speed feature.
DMI32_XFER_MODE This refers to the data transfer mode (Continuous or Single

Shot).
DMI32_XFER_OFFSET This refers to off offset of the next data transfer operation.
DMI32_XFER_SIZE This refers to the size of the next data transfer operation.
DMI32_XFER_START_WORD This refers to Start Word value for the next data transfer

operation.
DMI32_XFER_START_WORD_DIR This refers to the Start Word transmit direction for the next data

transfer operation.
DMI32_XFER_STATE This refers to current data transfer state (Active or Inactive).
DMI32_XFER_STATE_RX This refers to current data transfer receive state (Active or

Inactive).
DMI32_XFER_STATE_TX This refers to current data transfer transmit state (Active or

Inactive).
DMI32_XFER_TEST_MODE This refers to the board’s data transfer Test Mode feature.

6.5.1. Transfer Parameter: CLKIN Test

The purpose of this parameter is to check the clock on the cable’s CLKIN signal. When requested, the API will wait
for the check to complete and then return. If completed successfully, the results reported is the clock rate in
megahertz. If unsuccessful the results indicate either that a clock was not detected or that it did not complete. The
following tables describe the macros associated with this parameter.

Macro (Parameter) Description
DMI32_XFER_CLKIN_TEST This is the identifier for this parameter.

Macro (Set Values) Description
DMI32_XFER_CLKIN_TEST_DEFAULT This is the default, which is to do nothing.
DMI32_XFER_CLKIN_TEST_NO This reflects a request to do nothing.

59
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

DMI32_XFER_CLKIN_TEST_YES This reflects a request to perform a check.

Macro (Get Values) Description
DMI32_XFER_CLKIN_TEST_BUSY The test did not complete. This should never be reported.
DMI32_XFER_CLKIN_TEST_NONE No clock was detected.
Otherwise … The detected clock rate in megahertz.

Macro (Services) Description
DMI32_XFER_CLKIN_TEST__GET(h,g) This requests the current recorded results.

DMI32_XFER_CLKIN_TEST__SET(h,s) This makes a request.
DMI32_XFER_CLKIN_TEST__YES(h,g) This requests a test and the results.

6.5.2. Transfer Parameter: Direction

The purpose of this parameter is to control and retrieve the setting for the cable’s data transfer direction. The
following tables describe the macros associated with this parameter.

NOTE: This parameter cannot be set while a cable transfer is in progress.

Macro (Parameter) Description
DMI32_XFER_DIRECTION This is the identifier for this parameter.

Macro (Values) Description
DMI32_XFER_DIRECTION_DEFAULT This is the default, which is to receive.
DMI32_XFER_DIRECTION_RX This reflects the receive data direction.
DMI32_XFER_DIRECTION_TX This reflects the transmit data direction.

Macro (Services) Description
DMI32_XFER_DIRECTION__GET(h,g) This requests the current setting.
DMI32_XFER_DIRECTION__RESET(h) This changes the current setting to the default.
DMI32_XFER_DIRECTION__RX(h) This requests the receive direction.
DMI32_XFER_DIRECTION__SET(h,s) This changes the current setting.
DMI32_XFER_DIRECTION__TX(h) This requests the transmit direction.

6.5.3. Transfer Parameter: Enable

The purpose of this parameter is to control and retrieve the board’s enabling or inhibiting of the data transfer
process. If enabled, the data transfer process is enabled. If the Start Word Direction is set to output, then the Start
Word is sent and board starts transmitting or recording cable data, depending on the Transfer Direction. If the Start
Word Direction is set to input, then the board waits for the Start Word to be received before it starts transmitting or
recording cable data, depending on the Transfer Direction. If the parameter is disabled, data transfer ceases. Data
transmission stops almost immediately. Data reception stops after a brief delay. The following tables describe the
macros associated with this parameter.

NOTE: Applications must be aware that data transfer between the host and the DMI32’s DRAM
is not possible while cable based data transfer is in progress. I/O requests will fail while cable data
transfer is active.

Macro (Parameter) Description
DMI32_XFER_ENABLE This is the identifier for this parameter.

Macro (Values) Description
DMI32_XFER_ENABLE_DEFAULT This is the default, which is to inhibit data flow.

60
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

DMI32_XFER_ENABLE_NO This disables data flow.
DMI32_XFER_ENABLE_YES This enables data flow.

Macro (Services) Description
DMI32_XFER_ENABLE__GET(h,g) This requests the current setting.
DMI32_XFER_ENABLE__NO(h) This request that the data stop flowing.
DMI32_XFER_ENABLE__RESET(h) This requests a setting change to the default.
DMI32_XFER_ENABLE__SET(h,s) This requests a setting change.
DMI32_XFER_ENABLE__YES(h) This request that the data flow.

6.5.4. Transfer Parameter: Internal Clock Speed

The purpose of this parameter is to control and retrieve the board feature that divides the internal clock while in test
mode. The following tables describe the macros associated with this parameter.

NOTE: This parameter cannot be set while a cable transfer is in progress.

NOTE: This parameter is applicable only when the Transfer Test Mode parameter is enabled.

Macro (Parameter) Description
DMI32_XFER_INTERNAL_CLOCK_SPEED This is the identifier for this parameter.

Macro (Values) Description
DMI32_XFER_INTERNAL_CLOCK_SPEED_DEFAULT This is the default, which is the unaltered clock

speed.
DMI32_XFER_INTERNAL_CLOCK_SPEED_HIGH This reflects the unaltered clock speed.
DMI32_XFER_INTERNAL_CLOCK_SPEED_LOW This reflects the divided clock speed.

Macro (Services) Description
DMI32_XFER_INTERNAL_CLOCK_SPEED__GET(h,g) This requests the current setting.
DMI32_XFER_INTERNAL_CLOCK_SPEED__HIGH(h) This requests the unaltered clock speed.
DMI32_XFER_INTERNAL_CLOCK_SPEED__LOW(h) This requests the divided clock speed.
DMI32_XFER_INTERNAL_CLOCK_SPEED__RESET(h) This requests a setting change to the default.
DMI32_XFER_INTERNAL_CLOCK_SPEED__SET(h,s) This requests a setting change.

6.5.5. Transfer Parameter: Mode

The purpose of this parameter is to control and retrieve the setting for the board’s cable data transfer of a single
DRAM buffer or of multiple DRAM buffers. The following tables describe the macros associated with this
parameter.

NOTE: This parameter cannot be set while a cable transfer is in progress.

NOTE: When using the DMI32 in Multi-Buffer mode, applications are responsible for updating
the Transfer Offset parameter if the DMI32 is to switch from one Transfer Buffer to another.
Otherwise the DMI32 will continue to transfer the same block of data. Applications can use the
Buffer Start interrupt as a queue to update the Transfer Offset parameter to the next location.

Macro (Parameter) Description
DMI32_XFER_MODE This is the identifier for this parameter.

Macro (Values) Description
DMI32_XFER_MODE_DEFAULT This is the default, which is the single buffer mode.
DMI32_XFER_MODE_SINGLE This reflects the single buffer mode.

61
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

DMI32_XFER_MODE_MULTI This reflects the multi-buffer mode.

Macro (Services) Description
DMI32_XFER_MODE__GET(h,g) This requests the current setting.
DMI32_XFER_MODE__MULTI(h) This requests the multi-buffer mode.
DMI32_XFER_MODE__RESET(h) This requests a setting change to the default.
DMI32_XFER_MODE__SET(h,s) This requests a setting change.
DMI32_XFER_MODE__SINGLE(h) This requests the single buffer mode.

6.5.6. Transfer Parameter: Offset

The purpose of this parameter is to modify and report the starting offset within DRAM used by subsequent cable
based data transfers. Offsets must be made to four byte boundaries and must not extend past the end of the DMI32’s
DRAM. The following tables describe the macros associated with this parameter.

NOTE: When using the DMI32 in Multi-Buffer mode, applications are responsible for updating
the Transfer Offset parameter if the DMI32 is to switch from one Transfer Buffer to another.
Otherwise the DMI32 will continue to transfer the same block of data. Applications can use the
Buffer Start interrupt as a queue to update the Transfer Offset parameter to the next location.

Macro (Parameter) Description
DMI32_XFER_OFFSET This is the identifier for this parameter.

Macro (Values) Description
DMI32_XFER_OFFSET_DEFAULT This is the default, which is zero.
DMI32_XFER_OFFSET_MASK This is the set of bits that may be set within an offset value.
DMI32_XFER_OFFSET_MAX This is the maximum offset.
DMI32_XFER_OFFSET_MIN This is the minimum offset.

Macro (Services) Description
DMI32_XFER_OFFSET__GET(h,g) This retrieves the current setting.
DMI32_XFER_OFFSET__RESET(h) This requests a setting change to the default.
DMI32_XFER_OFFSET__SET(h,s) This requests a setting change.

6.5.7. Transfer Parameter: Size

The purpose of this parameter is to control and retrieve the number of bytes transferred across the cable in the next
data transfer operation. This parameter operates by accessing the board’s Transfer Buffer Size Register. The size
must be in four byte increments and must not cause the transfer to extend beyond the end of memory. The following
tables describe the macros associated with this parameter.

NOTE: The 4GB macro has a value of zero, which is a special case for the DMI32 firmware. This
macro (and the value zero) are given special attention in the API to insure that applications have
full access to the board’s capabilities.

Macro (Parameter) Description
DMI32_XFER_SIZE This is the identifier for this parameter.

Macro (Values) Description
DMI32_XFER_SIZE_4GB This refers to 4GB.
DMI32_XFER_SIZE_DEFAULT This is the default, which is the minimum.
DMI32_XFER_SIZE_MASK This is the mask of bits that can be set in the value specified.
DMI32_XFER_SIZE_MAX This is the maximum, which is 4GB - 4.
DMI32_XFER_SIZE_MIN This is the minimum, which is four bytes.

62
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

Macro (Services) Description
DMI32_XFER_SIZE__GET(h,g) This requests the current setting.
DMI32_XFER_SIZE__RESET(h) This requests a setting change to the default.
DMI32_XFER_SIZE__SET(h,s) This requests a setting change.

6.5.8. Transfer Parameter: Start Word

The purpose of this parameter is to modify and report the Start Word command value sent across the User I/O cable
signals as part of initiating data transfer. The following tables describe the macros associated with this parameter.

NOTE: Applications are free to assign any 7-bit Start Word value desired. However, for the
DMI32 to capture a Start Word sent across the cable, the D6 bit must be set. If the D6 bit is not
set, then the DMI32 will not recognize the User I/O value as a Start Word.

Macro (Parameter) Description
DMI32_XFER_START_WORD This is the identifier for this parameter.

Macro (Values) Description
DMI32_XFER_START_WORD_DEFAULT This is the default, which is the hardware’s default after a reset.
DMI32_XFER_START_WORD_MASK This is the set of bits that may be set within a Start Word value.

Macro (Services) Description
DMI32_XFER_START_WORD__GET(h,g) This retrieves the current setting.
DMI32_XFER_START_WORD__RESET(h) This requests a setting change to the default.
DMI32_XFER_START_WORD__SET(h,s) This requests a setting change.

6.5.9. Transfer Parameter: Start Word Direction

The purpose of this parameter is to modify and report the direction from which the Start Word will be posted on the
User I/O cable signals as part of initiating data transfer. The following tables describe the macros associated with
this parameter.

NOTE: Some firmware versions do not support this feature.

Macro (Parameter) Description
DMI32_XFER_START_WORD_DIR This is the identifier for this parameter.

Macro (Values) Description
DMI32_XFER_START_WORD_DIR_DEFAULT This is the default, which is the receive direction.
DMI32_XFER_START_WORD_DIR_RX This refers to the receive direction.
DMI32_XFER_START_WORD_DIR_TX This refers to the transmit direction.

Macro (Services) Description
DMI32_XFER_START_WORD_DIR__GET(h,g) This retrieves the current setting.
DMI32_XFER_START_WORD_DIR__RESET(h) This requests a setting change to the default.
DMI32_XFER_START_WORD_DIR__RX(h) This requests the receive direction.
DMI32_XFER_START_WORD_DIR__SET(h,s) This requests a setting change.
DMI32_XFER_START_WORD_DIR__TX(h) This requests the transmit direction.

63
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

6.5.10. Transfer Parameter: State

The purpose of this read-only parameter is to retrieve the data transfer state. This refers to the transfer of data across
the cable and is independent of the data transfer direction. In essence, this reflects the enabled/disabled state of the
transfer process. The following tables describe the macros associated with this parameter.

Macro (Parameter) Description
DMI32_XFER_STATE This is the identifier for this parameter.

Macro (Values) Description
DMI32_XFER_STATE_ACTIVE This means that data is being transferred across the cable.
DMI32_XFER_STATE_INACTIVE This means that data is not being transferred across the cable.

Macro (Services) Description
DMI32_XFER_STATE__GET(h,g) This requests the current state.

6.5.11. Transfer Parameter: State Rx

The purpose of this read-only parameter is to retrieve the data transfer state for data being received. This reflects the
recording of receive data and indicates that the Start Word has been send or received. The following tables describe
the macros associated with this parameter.

Macro (Parameter) Description
DMI32_XFER_STATE_RX This is the identifier for this parameter.

Macro (Values) Description
DMI32_XFER_STATE_RX_ACTIVE This means that data is being recorded from the cable.
DMI32_XFER_STATE_RX_INACTIVE This means that data is not being recorded from the cable.

Macro (Services) Description
DMI32_XFER_STATE_RX__GET(h,g) This requests the current state.

6.5.12. Transfer Parameter: State Tx

The purpose of this read-only parameter is to retrieve the data transfer state for data being transmitted. This reflects
the transmission of DRAM data to the cable and indicates that the Start Word has been send or received. The
following tables describe the macros associated with this parameter.

Macro (Parameter) Description
DMI32_XFER_STATE_TX This is the identifier for this parameter.

Macro (Values) Description
DMI32_XFER_STATE_TX_ACTIVE This means that data is being transmitted to the cable.
DMI32_XFER_STATE_TX_INACTIVE This means that data is not being transmitted to the cable.

Macro (Services) Description
DMI32_XFER_STATE_TX__GET(h,g) This requests the current state.

6.5.13. Transfer Parameter: Test Mode

The purpose of this parameter is to control and retrieve the setting controlling the board’s clock generation and
routing configuration. When enabled, the cable’s CLKIN and CLKOUT signals are reversed and the CLKOUT
signal is derived from the DMI32’s onboard oscillator. This is done to facilitate connecting two DMI32 boards back-
to-back using a strait pass-through cable. The following tables describe the macros associated with this parameter.

64
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

NOTE: This parameter cannot be set while a cable transfer is in progress.

Macro (Parameter) Description
DMI32_XFER_TEST_MODE This is the identifier for this parameter.

Macro (Values) Description
DMI32_XFER_TEST_MODE_DEFAULT This is the default, which is normal operation.
DMI32_XFER_TEST_MODE_NO This reflects the normal operating mode.
DMI32_XFER_TEST_MODE_YES This reflects the reversed clock signal mode.

Macro (Services) Description
DMI32_XFER_TEST_MODE__GET(h,g) This requests the current setting.
DMI32_XFER_TEST_MODE__NO(h) This requests the normal mode.
DMI32_XFER_TEST_MODE__RESET(h) This requests a setting change to the default.
DMI32_XFER_TEST_MODE__SET(h,s) This requests a setting change.
DMI32_XFER_TEST_MODE__YES(h) This requests the reversed clock signal mode.

6.6. User I/O Parameters

The purpose of the User I/O Parameters is to permit access to and control of the board’s two User I/O data ports. All
User I/O Parameters are put in a default state when the device is opened and are returned to that state via the
dmi32_init() and dmi32_reset() services. The configuration of these parameters is retained within the
DMI32 firmware registers. Applications have access to the DMI32 registers but it is advised that these features be
accessed only through the User I/O Parameter services. When using the service dmi32_config() the “which”
bits are used to refer to the port(s) of interest. In additions, some of the parameters may be referenced by which is
currently configured as an input or output. The following table summarizes the User I/O Parameters.

Parameter Macros Description
DMI32_USER_IO_DIRECTION This refers to the User I/O direction.
DMI32_USER_IO_INPUT This refers to the User I/O input value.
DMI32_USER_IO_OUTPUT This refers to the User I/O output value.

6.6.1. User I/O Parameter: Direction

The purpose of this parameter is to control and retrieve the port’s data transfer direction. The following tables
describe the macros associated with this parameter.

Macro (Parameter) Description
DMI32_USER_IO_DIRECTION This is the identifier for this parameter.

Macro (Values) Description
DMI32_USER_IO_DIRECTION_DEFAULT This is the default, which is input.
DMI32_USER_IO_DIRECTION_IN This refers to the input direction.
DMI32_USER_IO_DIRECTION_OUT This refers to the output direction.

Macro (Services) Description
DMI32_USER_IO_DIRECTION__GET(h,w,g) This requests a current setting.
DMI32_USER_IO_DIRECTION__SET(h,w,s) This requests a setting change.
DMI32_USER_IO_DIRECTION__IN(h,w) This requests a setting change to input.
DMI32_USER_IO_DIRECTION__OUT(h,w) This requests a setting change to output.
DMI32_USER_IO_DIRECTION__RESET(h,w) This requests a setting change to the default.
DMI32_USER_IO_DIRECTION__X_GET(h,g) This requests the setting for port X. *
DMI32_USER_IO_DIRECTION__X_IN(h) This requests that port X be configured as an input *

65
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

DMI32_USER_IO_DIRECTION__X_OUT(h) This requests that port X be configured as an output *
DMI32_USER_IO_DIRECTION__X_RESET(h) This requests a setting change for port X to the default. *
DMI32_USER_IO_DIRECTION__X_SET(h,s) This requests a setting change for port X. *

* The “X” refers individually to A and B.

6.6.2. User I/O Parameter: Input

The purpose of this read-only parameter is to retrieve a port’s current input value, which is the value currently on the
cable. The following tables describe the macros associated with this parameter.

Macro (Parameter) Description
DMI32_USER_IO_INPUT This is the identifier for this parameter.

Macro (Values) Description
DMI32_USER_IO_INPUT_MASK This is the set of bits that may be set when reading an input port.

Macro (Services) Description
DMI32_USER_IO_INPUT__A_GET(h,g) This request the current input from port A.
DMI32_USER_IO_INPUT__B_GET(h,g) This request the current input from port B.
DMI32_USER_IO_INPUT__CUR_GET(h,g) This request the input from that port, A or B, currently

functioning as an input. If neither is functioning as an input
then neither is read.

DMI32_USER_IO_INPUT__GET(h,w,g) This requests a current input.

6.6.3. User I/O Parameter: Output

The purpose of this parameter is to update and retrieve a port’s current output value, which is the value the port will
put on the cable when functioning as an output. The following tables describe the macros associated with this
parameter.

Macro (Parameter) Description
DMI32_USER_IO_OUTPUT This is the identifier for this parameter.

Macro (Values) Description
DMI32_USER_IO_OUTPUT_DEFAULT This is the default output value, which is zero.
DMI32_USER_IO_OUTPUT_MASK This is the set of bits that may be set when reading an input port.

Macro (Services) Description
DMI32_USER_IO_OUTPUT__CUR_GET(h,g) This request the value for that port, A or B, currently

functioning as an output. If neither is functioning as an
output then neither is read.

DMI32_USER_IO_OUTPUT__CUR_RESET(h) This request a value update for that port, A or B, currently
functioning as an output to the default output value. If
neither is functioning as an output then neither is written.

DMI32_USER_IO_OUTPUT__CUR_SET(h,s) This request a value update for that port, A or B, currently
functioning as an output. If neither is functioning as an
output then neither is written.

DMI32_USER_IO_OUTPUT__GET(h,w,g) This requests a port’s current value.
DMI32_USER_IO_OUTPUT__RESET(h,w) This requests that a port’s current output be set to the

default.
DMI32_USER_IO_OUTPUT__SET(h,w,s) This requests a change to a port’s current value.
DMI32_USER_IO_OUTPUT__X_GET(h,g) This request the current value for port X.
DMI32_USER_IO_OUTPUT__X_RESET(h) This request a value change for port X to the default.

66
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

DMI32_USER_IO_OUTPUT__X_SET(h,s) This request a value change for port X.

* The “X” refers individually to A and B.

67
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

7. Operation
This section explains some operational procedures using the DMI32 with the SDK. This is in no way intended to be
a comprehensive guide on using the DMI32. This is simply to address a very few issues relating to the board’s use.

7.1. Overview

Before accessing any DMI32, applications first verify the state of the API (by calling dmi32_api_status()).
Once done, access is permissible to any and all installed boards (by calling dmi32_open()). An open request
returns a handle to the device which is specific to and usable only by the API. (The API prevents access to the
device other than by this handle.) Using this handle, applications have full access to and control over the DMI32 and
its features. Applications can configure all available device and API settings, perform I/O and data transfer
operations and when done release access to the device (by calling dmi32_close()).

7.2. Data Reception

7.2.1. Overview

Data reception is a relatively simple process. The following steps provide an overview of the kind of actions needed.

1. Return the API and the device to a known state by calling dmi32_init(). This places the API and the
DMI32 in the same state it was in when first opened.

2. Configure the I/O Parameters, which can be done using the many DMI32_IO_XXX() macros.

3. Configure the Interrupt Parameters, which can be done using the many DMI32_IRQ_XXX() macros.

4. Configure the Transfer Parameters, which can be done using the many DMI32_XFER_XXX() macros.

5. Configure the Miscellaneous Parameters, which can be done using the many DMI32_MISC_XXX()
macros.

6. Initiate data transfer in from the cable interface and read the data from the board’s DRAM.

7.2.2. Details

The following is a specific set of actions an application may make in configuring a board for data reception. These
steps are focused primarily on the task of getting data into the DMI32 and may vary significantly depending on the
application’s needs.

1. Return the API and the device to a known state by calling dmi32_init(). This places the API and the
DMI32 in the same state it was in when first opened.

2. Configure the board’s Test Mode, which should normally be disabled. Refer to the
DMI32_XFER_TEST_MODE__XXX() macros. If Test Mode is not needed, then this step can be ignored.

3. If Test Mode is enabled, then configure the Transfer Internal Clock Speed parameter. Refer to the
DMI32_XFER_INTERNAL_CLOCK_SPEED__XXX() macros. If Test Mode is not needed, then this step
can be ignored.

4. Configure the Transfer Mode parameter. Refer to the DMI32_XFER_MODE__XXX() macros. If using the
Multi-Buffer mode, then additional work will be required as data transfers begins in order to define
additional Transfer Buffers.

68
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

5. Configure the Transfer Direction parameter. Refer to the DMI32_XFER_DIRECTION__RX() macro.

6. Configure the Start Word parameter. Refer to the DMI32_XFER_START_WORD__XXX() macros.

7. Configure the Start Word Direction parameter. Refer to the DMI32_XFER_START_WORD_DIR__XXX()
macros.

8. Define the Transfer Buffer using the dmi32_xfer_buf_set() service. If using the Multi-Buffer mode,
then this step will have to be repeated as data transfers begin in order to define additional Transfer Buffers.
This service serves the same purpose as defining the Transfer Buffer using the
DMI32_XFER_OFFSET__XXX() and DMI32_XFER_SIZE__XXX() macros.

9. Configure the User I/O Direction parameter for both User I/O ports. Refer to the
DMI32_USER_IO_DIRECTION__XXX() macros.

10. Enable the data reception process by exercising the DMI32_XFER_ENABLE__YES() macro.

11. If in Single Buffer mode simply wait for the reception process to complete before proceeding. If in Multi-
Buffer mode, update the Transfer Offset and Transfer Size parameters at the appropriate points in time in
order to record data in additional Transfer Buffers. When finished, either exercise the
DMI32_XFER_ENABLE__NO() macro to abruptly stop data reception (after a short delay) or switch to
Single Buffer mode to gracefully halt reception at the end of the current buffer.

12. When data reception has ended, proceed as follows.

13. Configure the I/O Offset parameter. Refer to the dmi32_seek() service, and its related macros, or the
DMI32_IO_OFFSET__XXX() macros.

14. Exercise the dmi32_read() service to retrieve data recorded by the DMI32.

7.3. Data Transmission

7.3.1. Overview

Data transmission is a relatively simple process. The following steps provide an overview of the kind of actions
needed.

1. Return the API and the device to a known state by calling dmi32_init(). This places the API and the
DMI32 in the same state it was in when first opened.

2. Configure the I/O Parameters, which can be done using the many DMI32_IO_XXX() macros.

3. Configure the Interrupt Parameters, which can be done using the many DMI32_IRQ_XXX() macros.

4. Configure the Transfer Parameters, which can be done using the many DMI32_XFER_XXX() macros.

5. Configure the Miscellaneous Parameters, which can be done using the many DMI32_MISC_XXX()
macros.

6. Write data into the board’s DRAM and initiate data transfer out the cable interface.

69
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

7.3.2. Details

The following is a specific set of actions an application may make in configuring a board for data transmission.
These steps are focused primarily on the task of getting data out of the DMI32 and may vary significantly depending
on the application’s needs.

1. Return the API and the device to a known state by calling dmi32_init(). This places the API and the
DMI32 in the same state it was in when first opened.

2. Configure the I/O Offset parameter. Refer to the dmi32_seek() service, and its related macros, or the
DMI32_IO_OFFSET__XXX() macros.

3. Exercise the dmi32_write() service to initialize the DMI32’s DRAM with the data image to be
transmitted.

4. Configure the board’s Test Mode, which should normally be disabled. Refer to the
DMI32_XFER_TEST_MODE__XXX() macros. If Test Mode is not needed, then this step can be ignored.

5. If Test Mode is enabled, then configure the Transfer Internal Clock Speed parameter. Refer to the
DMI32_XFER_INTERNAL_CLOCK_SPEED__XXX() macros. If Test Mode is not needed, then this step
can be ignored.

6. Configure the Transfer Mode parameter. Refer to the DMI32_XFER_MODE__XXX() macros. If using the
Multi-Buffer mode, then additional work will be required as data transfers begins in order to define
additional Transfer Buffers.

7. Configure the Transfer Direction parameter. Refer to the DMI32_XFER_DIRECTION__TX() macro.

8. Configure the Start Word parameter. Refer to the DMI32_XFER_START_WORD__XXX() macros.

9. Configure the Start Word Direction parameter. Refer to the DMI32_XFER_START_WORD_DIR__XXX()
macros.

10. Define the Transfer Buffer using the dmi32_xfer_buf_set() service. If using the Multi-Buffer mode,
then this step will have to be repeated as data transfer begins in order to define additional Transfer Buffers.
This service performs the same purpose as defining the Transfer Buffer using the
DMI32_XFER_OFFSET__XXX() and DMI32_XFER_SIZE__XXX() macros.

11. Configure the User I/O Direction parameter for both User I/O ports. Refer to the
DMI32_USER_IO_DIRECTION__XXX() macros.

12. Enable the data transmit process by exercising the DMI32_XFER_ENABLE__YES() macro.

13. If in Single Buffer mode simply wait for the transmission process to complete before proceeding. If in
Multi-Buffer mode, update the Transfer Offset and Transfer Size parameters at the appropriate points in
time in order to transmit data from additional Transfer Buffers. When finished, either exercise the
DMI32_XFER_ENABLE__NO() macro to abruptly stop data transmission or switch to Single Buffer
mode to gracefully halt transmission at the end of the current buffer.

70
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

7.4. Data Transfer Issues

7.4.1. I/O Abort Requests

The API includes the feature of aborting I/O operations. One issue with requesting an abort is that overlapped I/O
operations occur in the background with threads having a priority of THREAD_PRIORITY_HIGHEST. This means
that the I/O operation may have a higher priority than the requesting thread, resulting in the I/O requests completing
before the API is able to register the abort request.

7.4.2. I/O Data Buffers

The API Library supports the use of Application Buffers (application allocated buffers) and API Buffers (the API’s
internally allocated buffers). Each has plusses and minuses and both can be used by dmi32_read() and
dmi32_write() interchangeably. Application Buffers are entirely under application control and are obtained by
malloc() and similar services. This permits an application to have any number of buffers of most any desired
size, and can even exceed the size of physical memory. The drawback they have though is that allocations only
appear to be contiguous, when, in fact, they are actually scattered throughout physical memory. In addition, they can
be paged out to the hard disk as needed by the OS. A result of this is additional overhead when performing I/O. API
Buffers, on the other hand, avoid this inefficiency because they occupy physically contiguous and immovable
memory regions, and therefore require less overhead during I/O requests. The disadvantage though, is that these may
be smaller than desired and the API supports only two. (While each of the two API Buffers is associated with a
particular I/O data direction, both can be used interchangeably at will.)

While use of API Buffers will generally give better performance, overall performance will be application dependent.
API users are free to use whichever type desired and can switch from one to the other as needed. Within each I/O
direction though, there is a small performance penalty when switching from one type to another. There is no penalty
however when switching between the Rx API Buffer and the Tx API Buffer, as the Rx/Tx association is part of the
interface and not the implementation. The API Buffers are ideally suited for applications wishing to implement a
ping-pong or ring-buffer type I/O buffering mechanism.

API Buffers are accessed via the I/O Buffer Size and I/O Buffer Pointer parameters (DMI32_IO_BUFFER_SIZE
and DMI32_IO_BUFFER_POINTER, respectively). Each buffer size starts out at zero (0) and the pointer as
NULL. Application must first use the I/O Buffer Size parameter in order to make an allocation request. Since the
resources for these memory regions are much more limited than for malloc() type requests, the size of the
allocation obtained may be smaller than asked for. After a size request use the I/O Buffer Pointer parameter to get a
pointer to the memory obtained. Each attempt to alter the size demands that the application update its pointer.
Failure to do so is likely to produce a protection fault. When finished, setting the size to zero (0) frees the buffer.

7.4.3. I/O Timeout

In general the timeout settings should be made so that they expire only when something has gone wrong (see
exception below). This is not critical with PIO, but it is with DMA. With PIO transfers, a timeout has no
consequence except to cause the API to transfer no additional data. In this case no data is lost and an exact
accounting of the amount of data transferred is accurately maintained. With DMA transfers, a timeout results in the
DMA engine aborting the transfer midstream. For the DMI32 this means that the amount of data that was
successfully transferred in that request is unknown. With DMA transfers, since they tend to complete very quickly,
I/O timeouts are less likely. If a DMA operation times out, the amount of data transferred in that request will be
unknown.

The exception to the above guidelines is with a timeout of zero (0). With the DMI32 the effect of a zero timeout
means to perform the transfer and return when it is done, effectively ignoring the minimal time limit.

71
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

7.4.4. Blocking/Overlapped I/O

The API supports blocking and overlapped I/O requests. The default is blocking I/O where the call returns at the
conclusion of the operation. Overlapped I/O is selected merely by enabling the I/O Overlap Enable parameter. When
this is done I/O requests return immediately, while the operation is carried out in the background. For both methods,
there are two ways of determining when and how an operation concludes. The first method is by polling. By using
the I/O Status parameter an application can query for the status of an I/O operation. This indicates if the operation is
still in progress, if it has ended, and how (timeout, abort, error) and how much data was transferred. This can be
done by any thread both for overlapped I/O and blocking I/O (i.e. one thread can check if another is still blocked on
an I/O operation). The second method is by event notification, which is available both as a callback and as a wait
service. Using the callback service an application can provide a function pointer and an arbitrary argument that is
invoked when the I/O completes (Tx and Rx are independently configurable). The callback occurs in a separate
thread context and must return before any follow-on callbacks can be made. (The callback receives the device
handle, an application’s arbitrary value, and the I/O status as arguments.) Using the wait service, any number of
threads can block until an I/O operation ends. Each thread can independently wait on Tx and/or Rx. When a wait
request is made the thread will block until the first of the referenced operations ends. This occurs whether the I/O
operation began before the request was made of began afterwards. Once resumed the I/O Status parameter must be
queried to determine the I/O completion status.

7.4.5. I/O Modes

The API Library offers two data transfer modes. Each has its pros and cons, which are described briefly below.

Mode Description
This mode uses repetitive register accesses to perform transfers.
Pros: It is the most reliable mode offered. It is well suited for any size I/O request. This mode should

never return a failure status for valid requests.

PIO

Cons: It is inefficient.
This mode uses non-Demand Mode DMA, which transfers data without processor intervention.
Pros: This is the most efficient means provided. See note below.

DMA

Cons: This method becomes inefficient with smaller sized transfers. If an I/O timeout is encountered,
the amount of data may be more than the amount reported. See note below. This mode could
return a failure status, depending on system resources.

NOTE: If an I/O timeout period expires while the DMA engine is performing a transfer, the
transfer is aborted and the amount of data transferred will be unknown.

7.4.6. DMA Based I/O Requests

The two DMA engines on the DMI32 are each limited to transfers of 8,388,607 bytes. That is one byte shy of 8-
megabytes. For the DMI32 that translates to a transfer limit of 8,388,604 bytes, or 2,097,151 32-bit values, which is
one shy of 2-megasamples. The API breaks all DMA requests into smaller requests of at most (8M - 4) bytes each.
So, if an application made a request for 8MB, the API would break that into one request for (8M - 4) bytes and
another request for four bytes. Application should therefore consider making DMA requests smaller than, or a
multiple of 8,388,604 bytes.

7.5. Event Notification

The API Library supports event notification for two sources or types of events. They include Interrupt Notification
and I/O Completion Notification and operate independently. Notification for both sources includes both a callback
mechanism and a wait mechanism. All are described below. Interrupt Notification is driven by interrupts generated
by the DMI32 from any of the interrupt sources identified in the Interrupt Control Register (DMI32_ICR). I/O
Completion Notification is associated with completed I/O requests. This applies to both blocking and overlapped
I/O, and generally occurs no matter the outcome of the I/O request (i.e. successful transfer or not).

72
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

7.5.1. Event Callback

Using the callback mechanism each notification source can be assigned a callback function. Each source can have a
single callback with an application specific value passed as an argument. Callbacks can be assigned to any source
and in any combination desired. If a given callback is associated with multiple sources, then multiple callbacks will
be made as the different events occur. So, for example, if a single callback is assigned to two different interrupts,
then the callback function will be called separately for each interrupt, as often as each occurs. Since each source is
associated with its own callback context, a thread context, such callbacks must support multithreaded operation.
Applications are free to reconfigure callbacks during a callback context, but the callback for a given event must
return before subsequent callback notification can occur for that same event. The prototype required for all callbacks
is the data type dmi32_callback_func_t. The three arguments to the callback are each U32 data types.
Application must cast the values given to their respective types, which are described below.

7.5.1.1. Interrupt Notification Callback

The callback function arguments are described in the following table. The values received during the callback must
be cast according to the data types specified.

Argument Cast Description
arg1 void* This is the device handle received from dmi32_open().
arg2 U32 This is the specific “which” bit for the interrupt that produced the callback. Refer to the

DMI32_WHICH_IRQ_XXX macros.
arg3 U32 This is an application specific argument. This is the Interrupt Callback Argument

parameter.

7.5.1.2. I/O Completion Notification Callback

The callback function arguments are described in the following table. The values received during the callback must
be cast according to the data types specified.

Argument Cast Description
arg1 void* This is the device handle received from dmi32_open().
arg2 U32 This is the applicable I/O status data. Refer to the GSC_IO_STATUS_XXX macros.
arg3 U32 This is an application specific argument. This is the I/O Callback Argument parameter.

7.5.2. Event Waiting

The waiting mechanism operates by blocking the calling thread until any one of a number of referenced events
occurs. The calling thread is resumed when the first of the referenced events occurs, or when a timeout limit expires,
whichever occurs first. The time limit is passed as an argument to the wait service. Threads can wait on any number
or combinations of interrupts, or either or both I/O directions, but the two sources cannot be combined. Also, any
number of threads can wait on identical or different events. All are resumed when a referenced event occurs.

7.6. Clock Checks

The API includes the Transfer CLKIN Test parameter to request that a check be performed on the board’s input
clock. This parameter waits for the check to complete before returning and returns the detected clock rate. The
below example illustrates a possible use of this parameter.

Example

#include <stdio.h>

#include "dmi32_api.h"

73
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

#include "dmi32_dsl.h"

U32 dmi32_dsl_clock_check(void* handle, U32* mhz, int verbose)
{
 U32 status;
 unsigned long value;

 status = DMI32_XFER_CLKIN_TEST__YES(handle, &value);
 mhz[0] = (U32) value;

 if (!verbose)
 {
 }
 else if (status != GSC_SUCCESS)
 {
 mhz[0] = 0;
 printf("Transfer CLKIN Test failure: %ld\n", (long) status);
 }
 else if (mhz[0] == DMI32_XFER_CLKIN_TEST_NONE)
 {
 mhz[0] = 0;
 printf("No clock detected.\n");
 }
 else if (mhz[0] == DMI32_XFER_CLKIN_TEST_BUSY)
 {
 mhz[0] = 0;
 printf("Clock test did not complete.\n");
 }
 else
 {
 printf("Clock Rate: %ldMHz\n", (long) mhz[0]);
 }

 return(status);
}

74
General Standards Corporation, Phone: (256) 880-8787

DMI32, SDK 6.0.0 Reference Manual

75
General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description
October 29, 2007 Updated for SDK port to Linux, which is SDK version 6.0.0.
August 18, 2005 Initial release.

	PCI-DMI32
	Software Development Kit
	SDK 6.0.0 Reference Manual
	1. Introduction
	1.1. Purpose
	1.2. Acronyms
	1.3. Definitions
	1.5. Application Programming Interface
	1.6. Software Overview
	1.6.1. Software Architecture

	1.7. Hardware Overview
	1.8. Code Samples
	1.9. Reference Material

	2. Using the SDK
	2.1. Compatibility
	2.2. Limitations and Restrictions
	2.3. Multithreaded
	2.4. Compile Time Use
	2.5. Link Time Use
	2.6. Run Time Use

	3. Macros
	3.1. API Version Number
	Example
	Example

	3.4. I/O Status Fields
	Example

	3.5. Maximum Number of Open Handles
	3.7. Registers
	3.7.1. GSC Registers
	3.7.2. PCI9080 PCI Configuration Registers
	3.7.3. PLX PCI9080 Feature Set Registers
	Local Configuration Registers
	Runtime Registers
	DMA Registers
	Message Queue Registers

	4. Data Types
	4.1. Discrete Data Types
	4.2. dmi32_callback_func_t
	Definition
	Definition

	5. Functions
	5.1. dmi32_api_status()
	Prototype
	Example

	5.2. dmi32_board_count()
	Prototype
	Example

	5.3. dmi32_close()
	Prototype
	Example

	5.4. dmi32_config()
	Prototype
	Example

	5.5. dmi32_init()
	Prototype
	Example

	5.6. dmi32_io_wait()
	Prototype
	Example

	5.7. dmi32_irq_wait()
	Prototype
	Example

	5.8. dmi32_open()
	Prototype
	Example

	5.9. dmi32_read()
	Prototype
	Example

	5.10. dmi32_reg_mod()
	Prototype
	Example

	5.11. dmi32_reg_read()
	Prototype
	Example

	5.12. dmi32_reg_write()
	Prototype
	Example

	5.13. dmi32_reset()
	Prototype
	Example

	5.14. dmi32_seek()
	Prototype
	Example

	5.15. dmi32_status_text()
	Prototype
	Example

	5.16. dmi32_tell()
	Prototype
	Example

	5.17. dmi32_version_get()
	Prototype
	Example

	5.18. dmi32_write()
	Prototype
	Example

	5.19. dmi32_xfer_buf_get()
	Prototype
	Example

	5.20. dmi32_xfer_buf_set()
	Prototype
	Example

	6. Configuration Parameters
	6.1. Parameter Macros
	6.1.1. Parameter Definitions
	6.1.2. Value Definitions
	6.1.3. Service Definitions
	6.1.3.1. Device Handle: h
	6.1.3.2. Which Bits: w
	6.1.3.3. Set Value: s
	6.1.3.4. Get Value: g

	6.2. Input/Output Parameters
	6.2.1. I/O Parameter: Abort
	6.2.2. I/O Parameter: Aborted
	6.2.3. I/O Parameter: Buffer Pointer
	6.2.4. I/O Parameter: Buffer Size
	6.2.5. I/O Parameter: Callback Argument
	6.2.6. I/O Parameter: Callback Function
	6.2.7. I/O Parameter: Mode
	6.2.8. I/O Parameter: Offset
	6.2.9. I/O Parameter: Overlap Enable
	6.2.10. I/O Parameter: Status
	6.2.11. I/O Parameter: Timeout

	6.3. Interrupt Parameters
	6.3.1. Interrupt Parameter: Callback Argument
	6.3.2. Interrupt Parameter: Callback Function
	6.3.3. Interrupt Parameter: Enable
	6.3.4. Interrupt Parameter: State

	6.4. Miscellaneous Parameters
	6.4.1. Miscellaneous Parameter: Board Jumpers
	6.4.2. Miscellaneous Parameter: DRAM Capacity MB
	6.4.3. Miscellaneous Parameter: DRAM Size MB
	6.4.4. Miscellaneous Parameter: Features
	6.4.5. Miscellaneous Parameter: GSC Register Mapping
	6.4.6. Miscellaneous Parameter: PLX Register Mapping
	6.4.7. Miscellaneous Parameter: Strict Arguments
	6.4.8. Miscellaneous Parameter: Strict Configuration
	6.4.9. Miscellaneous Parameter: Strict DRAM Limits

	6.5. Transfer Parameters
	6.5.1. Transfer Parameter: CLKIN Test
	6.5.2. Transfer Parameter: Direction
	6.5.3. Transfer Parameter: Enable
	6.5.4. Transfer Parameter: Internal Clock Speed
	6.5.5. Transfer Parameter: Mode
	6.5.6. Transfer Parameter: Offset
	6.5.7. Transfer Parameter: Size
	6.5.8. Transfer Parameter: Start Word
	6.5.9. Transfer Parameter: Start Word Direction
	6.5.10. Transfer Parameter: State
	6.5.11. Transfer Parameter: State Rx
	6.5.12. Transfer Parameter: State Tx
	6.5.13. Transfer Parameter: Test Mode

	6.6. User I/O Parameters
	6.6.1. User I/O Parameter: Direction
	6.6.2. User I/O Parameter: Input
	6.6.3. User I/O Parameter: Output

	7. Operation
	7.2. Data Reception
	7.2.1. Overview
	7.2.2. Details

	7.3. Data Transmission
	7.3.1. Overview
	7.3.2. Details

	7.4. Data Transfer Issues
	7.4.1. I/O Abort Requests
	7.4.2. I/O Data Buffers
	7.4.3. I/O Timeout
	7.4.4. Blocking/Overlapped I/O
	7.4.5. I/O Modes
	7.4.6. DMA Based I/O Requests

	7.5. Event Notification
	7.5.1. Event Callback
	7.5.1.1. Interrupt Notification Callback
	7.5.1.2. I/O Completion Notification Callback

	7.5.2. Event Waiting

	7.6. Clock Checks
	Example

	Document History

