
ADADIO/2
8 A/D Channels, 4 D/A Channels, 16-bit

With 8-bit Discrete Digital I/O

All Form Factors
…-ADADIO
…-ADADIO2

Linux Device Driver

And API Library
User Manual

Manual Revision: September 27, 2024

Driver Release Version 4.10.111.50.0

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

ADADIO, Linux Device Driver, User Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2002-2024, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or

software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Although extensive editing and reviews are performed before release, General Standards Corporation assumes no

responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are

made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this

documentation.

General Standards Corporation does not assume any liability arising out of the application or use of

documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or

any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,

software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

ADADIO, Linux Device Driver, User Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 7

1.1. Purpose.. 7

1.2. Acronyms .. 7

1.3. Definitions .. 7

1.4. Software Overview ... 7
1.4.1. Basic Software Architecture ... 7
1.4.2. API Library ... 8
1.4.3. Device Driver ... 8

1.5. Hardware Overview .. 8

1.6. Reference Material .. 8

1.7. Licensing ... 9

2. Installation ... 10

2.1. CPU and Kernel Support... 10
2.1.1. 32-bit Support Under 64-bit Environments .. 11

2.2. The /proc/ File System .. 11

2.3. File List ... 11

2.4. Directory Structure .. 11

2.5. Installation .. 12

2.6. Removal .. 12

2.7. Overall Make Script .. 12

2.8. Environment Variables ... 13
2.8.1. GSC_API_COMP_FLAGS .. 13
2.8.2. GSC_API_LINK_FLAGS .. 13
2.8.3. GSC_LIB_COMP_FLAGS .. 13
2.8.4. GSC_LIB_LINK_FLAGS .. 14
2.8.5. GSC_APP_COMP_FLAGS .. 14
2.8.6. GSC_APP_LINK_FLAGS .. 14

3. Main Interface Files .. 15

3.1. Main Header File .. 15

3.2. Main Library File .. 15
3.2.1. Build ... 15
3.2.2. System Libraries ... 16

4. API Library ... 17

4.1. Files ... 17

4.2. Build ... 17

4.3. Library Use ... 17

4.4. Macros .. 17

ADADIO, Linux Device Driver, User Manual

4

General Standards Corporation, Phone: (256) 880-8787

4.4.1. IOCTL Codes ... 18
4.4.2. Registers ... 18

4.5. Data Types .. 18

4.6. Functions ... 18
4.6.1. adadio_close()... 19
4.6.2. adadio_init() ... 19
4.6.3. adadio_ioctl() .. 20
4.6.4. adadio_open() ... 21
4.6.5. adadio_read() .. 22
4.6.6. ADADIO Write .. 23

4.7. IOCTL Services .. 23
4.7.1. ADADIO_IOCTL_AIN_BUF_CLEAR ... 23
4.7.2. ADADIO_IOCTL_AIN_BUF_ENABLE .. 23
4.7.3. ADADIO_IOCTL_AIN_BUF_SIZE ... 24
4.7.4. ADADIO_IOCTL_AIN_BUF_STS ... 24
4.7.5. ADADIO_IOCTL_AIN_CHAN_LAST .. 25
4.7.6. ADADIO_IOCTL_AIN_MODE .. 25
4.7.7. ADADIO_IOCTL_AIN_NRATE .. 25
4.7.8. ADADIO_IOCTL_AIN_TRIGGER .. 26
4.7.9. ADADIO_IOCTL_AOUT_CH_X_WRITE ... 26
4.7.10. ADADIO_IOCTL_AOUT_ENABLE .. 26
4.7.11. ADADIO_IOCTL_AOUT_STROBE .. 27
4.7.12. ADADIO_IOCTL_AOUT_STROBE_ENABLE ... 27
4.7.13. ADADIO_IOCTL_AUTOCAL .. 27
4.7.14. ADADIO_IOCTL_DATA_FORMAT ... 28
4.7.15. ADADIO_IOCTL_DIO_PIN_READ .. 28
4.7.16. ADADIO_IOCTL_DIO_PIN_WRITE ... 28
4.7.17. ADADIO_IOCTL_DIO_PORT_DIR ... 29
4.7.18. ADADIO_IOCTL_DIO_PORT_READ ... 29
4.7.19. ADADIO_IOCTL_DIO_PORT_WRITE ... 29
4.7.20. ADADIO_IOCTL_INITIALIZE .. 30
4.7.21. ADADIO_IOCTL_IRQ_SEL ... 30
4.7.22. ADADIO_IOCTL_LOOPBACK_CHANNEL .. 30
4.7.23. ADADIO_IOCTL_QUERY ... 31
4.7.24. ADADIO_IOCTL_REG_MOD ... 31
4.7.25. ADADIO_IOCTL_REG_READ .. 32
4.7.26. ADADIO_IOCTL_REG_WRITE .. 32
4.7.27. ADADIO_IOCTL_RX_IO_ABORT ... 33
4.7.28. ADADIO_IOCTL_RX_IO_MODE ... 33
4.7.29. ADADIO_IOCTL_RX_IO_TIMEOUT ... 34
4.7.30. ADADIO_IOCTL_WAIT_CANCEL .. 34
4.7.31. ADADIO_IOCTL_WAIT_EVENT ... 35
4.7.32. ADADIO_IOCTL_WAIT_STATUS ... 37

5. The Driver.. 38

5.1. Files ... 38

5.2. Build ... 38

5.3. Startup ... 38
5.3.1. Manual Driver Startup Procedures ... 38
5.3.2. Automatic Driver Startup Procedures ... 39

5.4. Verification ... 41

ADADIO, Linux Device Driver, User Manual

5

General Standards Corporation, Phone: (256) 880-8787

5.5. Version .. 41

5.6. Shutdown .. 41

6. Document Source Code Examples ... 42

6.1. Files ... 42

6.2. Build ... 42

6.3. Library Use ... 42

7. Utilities Source Code... 43

7.1. Files ... 43

7.2. Build ... 43

7.3. Library Use ... 43

8. Operating Information ... 44

8.1. Debugging Aids .. 44
8.1.1. Device Identification .. 44
8.1.2. Detailed Register Dump ... 44

8.2. Analog Input Configuration .. 44

8.3. I/O Modes ... 44
8.3.1. PIO - Programmed I/O ... 45
8.3.2. BMDMA - Block Mode DMA ... 45
8.3.3. DMDMA - Demand Mode DMA ... 45

9. Sample Applications ... 46

9.1. aout - Analog Output - …/aout/ .. 46

9.2. din - Digital Input - …/din/ ... 46

9.3. dout - Digital Output - …/dout/ .. 46

9.4. id - Identify Board - …/id/ .. 46

9.5. regs - Register Access - …/regs/ ... 46

9.6. rxrate - Receive Rate - …/rxrate/ .. 46

9.7. savedata - Save Acquired Data - …/savedata/ .. 46

9.8. sbtest - Single Board Test - …/sbtest/ ... 46

Document History ... 47

ADADIO, Linux Device Driver, User Manual

6

General Standards Corporation, Phone: (256) 880-8787

Table of Figures

Figure 1 The basic software architecture of Linux based ADADIO applications. .. 8

ADADIO, Linux Device Driver, User Manual

7

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

1.1. Purpose

The purpose of this document is to describe the interface to the ADADIO API Library and to the underlying Linux

device driver. The API Library software provides the interface between "Application Software" and the device

driver. The driver software provides the interface between the API Library and the actual ADADIO hardware. The

API Library and driver interfaces are based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms Description

ADC Analog-to-Digital Converter

API Application Programming Interface

BMDMA Block Mode DMA

DAC Digital-to-Analog Converter

DMA Direct Memory Access

DMDMA Demand Mode DMA

GSC General Standards Corporation

PC104P This refers to the PC/104+ form factor.

PCI Peripheral Component Interconnect

PIO Programmed I/O

PMC PCI Mezzanine Card

PMC66 This refers to a PMC device capable of operating at 66MHz bus speeds.

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

… This is a shortcut representation of the ADADIO installation directory or any of its subdirectories.

ADADIO This is used as a general reference to any device supported by this driver.

API Library This refers to the library implementing the ADADIO API.

Application This is a user mode process, which runs in user space with user mode privileges.

Driver This is the ADADIO device driver, which runs in kernel space with kernel mode privileges.

Library This is usually a general reference to the API Library.

1.4. Software Overview

1.4.1. Basic Software Architecture

This section describes the general architecture for the basic components that comprise ADADIO applications. The

overall architecture is illustrated in Figure 1 below.

ADADIO, Linux Device Driver, User Manual

8

General Standards Corporation, Phone: (256) 880-8787

ADADIO

Device Driver

adadio.ko or

adadio.o

ADADIO

API Library
libadadio_api.so

adadio_init()

adadio_open()

adadio_close()

adadio_ioctl()

adadio_read()

/proc/adadio Informational

/dev/adadio.0 Device 0

/dev/adadio.1 Device 1

/dev/adadio.X Device X

...
ADADIO

Boards

ADADIO

Application

Hardware Level

Kernel Level

Application Level

Figure 1 The basic software architecture of Linux based ADADIO applications.

1.4.2. API Library

The primary means of accessing ADADIO boards is via the ADADIO API Library. This library forms a layer

between the application and the driver. Additional information is given in section 4 (page 17). With the library,

applications are able to open and close a device and, while open, perform I/O control and read operations.

1.4.3. Device Driver

The device driver is the host software that provides a means of communicating directly with ADADIO hardware.

The driver executes under control of the operating system and runs in Kernel Mode as a Kernel Mode device driver.

The driver is implemented as a standard dynamically loadable Linux device driver written in the C programming

language. While applications can access the driver directly without use of the API Library, it is recommended that

all access is made through the library.

1.5. Hardware Overview

The ADADIO is a high-performance 16-bit analog-to-digital and digital-to-analog I/O interface board. The host side

connection is 32-bit PCI based. The external I/O interface varies per model ordered. The board contains eight

synchronous 16-bit analog-to-digital input channels capable of performing up to 200,000 conversions per second per

channel. All channels are clocked simultaneously and may be synchronized with external equipment either by the

ADADIO itself or by an external device. Conversions can be performed on demand or continuously. An onboard

receive FIFO of 32k samples collects the converted data for subsequent retrieval by the host. The FIFO allows the

ADADIO to buffer data between the cable interface and the PCI bus while maintaining continuous conversions on

the cable interface (at least up to the depth of the FIFOs) independent of the PCI bus interface. Converted data can

be retrieved using either PIO or DMA. The board also contains four independent asynchronous 16-bit digital-to-

analog output channels. In addition, the board includes TTL level digital I/O lines. This consists of an 8-bit

bidirectional discrete digital I/O port with one dedicated input and one dedicated output.

1.6. Reference Material

The following reference material may be of particular benefit in using the ADADIO. The specifications provide the

information necessary for an in depth understanding of the specialized features implemented on this board.

ADADIO, Linux Device Driver, User Manual

9

General Standards Corporation, Phone: (256) 880-8787

• The applicable ADADIO User Manual from General Standards Corporation.

• The applicable ADADIO2 User Manual from General Standards Corporation.

• The PCI9056 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc. †

• The PCI9080 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc. †

† PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE.txt in the root installation directory.

http://www.plxtech.com/

ADADIO, Linux Device Driver, User Manual

10

General Standards Corporation, Phone: (256) 880-8787

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 6.x, 5.x, 4.x, 3.x, 2.6, 2.4 and 2.2 running on a PC

system with one or more x86 processors. This release of the driver supports the below listed kernels.

Kernel Distribution

6.2.9 Red Hat Fedora Core 38

6.0.7 Red Hat Fedora Core 37

5.17.5 Red Hat Fedora Core 36

5.14.10 Red Hat Fedora Core 35

5.11.12 Red Hat Fedora Core 34

5.8.15 Red Hat Fedora Core 33

5.6.6 Red Hat Fedora Core 32

5.3.7 Red Hat Fedora Core 31

5.0.9 Red Hat Fedora Core 30

4.18.16 Red Hat Fedora Core 29

4.16.3 Red Hat Fedora Core 28

4.13.9 Red Hat Fedora Core 27

4.11.8 Red Hat Fedora Core 26

4.8.6 Red Hat Fedora Core 25

4.5.5 Red Hat Fedora Core 24

4.2.3 Red Hat Fedora Core 23

4.0.4 Red Hat Fedora Core 22

3.17.4 Red Hat Fedora Core 21

3.11.10 Red Hat Fedora Core 20

3.9.5 Red Hat Fedora Core 19

3.6.10 Red Hat Fedora Core 18

3.3.4 Red Hat Fedora Core 17

3.1.0 Red Hat Fedora Core 16

2.6.38 Red Hat Fedora Core 15

2.6.35 Red Hat Fedora Core 14

2.6.33 Red Hat Fedora Core 13

2.6.31 Red Hat Fedora Core 12

2.6.29 Red Hat Fedora Core 11

2.6.27 Red Hat Fedora Core 10

2.6.25 Red Hat Fedora Core 9

2.6.23 Red Hat Fedora Core 8

2.6.21 Red Hat Fedora Core 7

2.6.18 Red Hat Fedora Core 6

2.6.15 Red Hat Fedora Core 5

2.6.11 Red Hat Fedora Core 4

2.6.9 Red Hat Fedora Core 3

2.4.18 Red Hat 8.0

NOTE: Some older kernel versions are supported (the sources are maintained), but are not tested.

NOTE: While only Red Hat Fedora distributions are listed, numerous other distributions are

supported and have been tested on an as needed basis.

NOTE: The driver will have to be built before being used as it is provided in source form only.

ADADIO, Linux Device Driver, User Manual

11

General Standards Corporation, Phone: (256) 880-8787

NOTE: The driver has not been tested with a non-versioned kernel.

NOTE: The driver is designed for SMP support, but has not undergone SMP specific testing.

2.1.1. 32-bit Support Under 64-bit Environments

This driver supports 32-bit applications under 64-bit environments. The availability of this feature in the kernel

depends on a 64-bit kernel being configured to support 32-bit application compatibility. Additionally, 2.6 kernels

prior to 2.6.11 implemented 32-bit compatibility in a way that resulted in some drivers not being able to take

advantage of the feature. (In these kernels a driver’s IOCTL command codes must be globally unique. Beginning

with 2.6.11 this requirement has been lifted.) If the driver is not able to provide 32-bit support under a 64-bit kernel,

the “32-bit support” field in the /proc/adadio file will be “no”.

2.2. The /proc/ File System

While the driver is running, the text file /proc/adadio can be read to obtain information about the driver and the

boards it detects. Each file line includes an entry name followed immediately by a colon, a space character, and the

entry value. Below is an example of what appears in the file, followed by descriptions of each entry.

version: 4.10.111.50

32-bit support: yes

boards: 2

models: ADADIO,ADADIO2

Entry Description

version This gives the driver version number in the form x.x.x.x.

32-bit support
This reports the driver’s support for 32-bit applications. This will be either “yes” or “no”

for 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.

models

This gives a comma separated list of the basic model number for each board the driver

detected. The model numbers are listed in the same order that the boards are accessed via

the API Library’s open function.

2.3. File List

This release consists of the below listed primary files. The archive content is described in following subsections.

File Description
adadio.linux.tar.gz This archive contains the driver, the API Library and all related files.
adadio_linux_um.pdf This is a PDF version of this user manual, which is included in the archive.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory

structure is created and populated with the respective files.

Directory Description

adadio/
This is the driver root directory. It contains the documentation, the Overall Make Script (section

2.7, page 12) and the below listed subdirectories.
…/api/ This directory contains the API Library source files (section 4, page 17).

…/docsrc/
This directory contains the source files for the code samples given in this document (section 6,

page 42).
…/driver/ This directory contains the device driver source files (section 5, page 38).
…/include/ This directory contains the header files for the various libraries.

ADADIO, Linux Device Driver, User Manual

12

General Standards Corporation, Phone: (256) 880-8787

…/lib/ This directory contains all of the libraries built from the installed sources.

…/samples/
This directory contains the sample application subdirectories and all of their corresponding

source files (section 9, page 46).
…/utils/ This directory contains utility sources used by the sample applications (section 7, page 43).

2.5. Installation

Perform installation following the below listed steps. This installs the device driver, the API Library and all related

sources and documentation.

1. Create and change to the directory where the files are to be installed, such as /usr/src/linux/drivers/.

(The path name may vary among distributions and kernel versions.)

2. Copy the archive file adadio.linux.tar.gz into the current directory.

3. Issue the following command to decompress and extract the files from the provided archive. This creates the

directory adadio in the current directory, and then copies all of the archive’s files into this new directory.

tar –xzvf adadio.linux.tar.gz

2.6. Removal

Perform removal following the below listed steps. This removes the device driver, the API Library and all related

sources and documentation.

1. Shutdown the driver as described in section 5.6 (page 41).

2. Change to the directory where the driver archive was installed, which may have been

/usr/src/linux/drivers/. (The path name may vary among distributions and kernel versions.)

3. Issue the below command to remove the driver archive and all of the installed driver files.

rm –rf adadio.linux.tar.gz adadio

4. Issue the below command to remove all of the installed device nodes.

rm –f /dev/adadio.*

5. If the automatic startup procedure was adopted (section 5.3.2, page 39), then edit the system startup script

rc.local and remove the line that invokes the ADADIO’s start script. The file rc.local should be

located in the /etc/rc.d/ directory.

2.7. Overall Make Script

An Overall Make Script is included in the root installation directory. Executing this script will perform a make for

all build targets included in the release. The script also loads the driver. The script is named make_all. Follow the

below steps to perform an overall make and to load the driver.

NOTE: The following steps may require elevated privileges.

1. Change to the driver root directory (…/adadio/).

2. Remove existing build targets using the below command. This does not unload the driver.

ADADIO, Linux Device Driver, User Manual

13

General Standards Corporation, Phone: (256) 880-8787

./make_all clean

3. Issue the following command to make all archive targets and to load the driver.

./make_all

NOTE: After the device driver is built the script starts the driver. After building the API Library it

is copied by the script to /usr/lib/. A clean operation does not unload the driver. However, a

clean does delete the API Library shared object file previously copied to /usr/lib/.

2.8. Environment Variables

Some build environments may require compiler or linker options not present in the provided make files. To

accommodate local environment specific requirements, the provided make files incorporate support for the

following set of GSC specific environment variables.

2.8.1. GSC_API_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the API Library. The compiler used by the API Library make file is “gcc”. The content of this environment variable

is noted in the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in

the table refers to the contents of the environment variable. This environment variable has no effect on compiling

any other distributed source files or linking of any object files.

Undefined

or Empty

== Compiling: init.c

== Compiling: ioctl.c

== Compiling: open.c

Defined and

Not Empty

== Compiling: init.c (added 'xxx')

== Compiling: ioctl.c (added 'xxx')

== Compiling: open.c (added 'xxx')

2.8.2. GSC_API_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the API

Library. The linker used by the API Library make file is “ld”. The content of this environment variable is noted in

the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in the table

refers to the contents of the environment variable. This environment variable has no effect on compiling of any

source files or linking of any other object files.

Undefined

or Empty
==== Linking: ../lib/libadadio_api.so

Defined and

Not Empty
==== Linking: ../lib/libadadio_api.so (added 'xxx')

2.8.3. GSC_LIB_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the utility libraries. The compiler used by the utility library make files is “gcc”. The content of this environment

variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The

“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on

compiling any other distributed source files or linking of any object files.

ADADIO, Linux Device Driver, User Manual

14

General Standards Corporation, Phone: (256) 880-8787

Undefined

or Empty

== Compiling: close.c

== Compiling: init.c

== Compiling: ioctl.c

Defined and

Not Empty

== Compiling: close.c (added 'xxx')

== Compiling: init.c (added 'xxx')

== Compiling: ioctl.c (added 'xxx')

2.8.4. GSC_LIB_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the

utility libraries. The linker used by the utility library make files is “ld”. The content of this environment variable is

noted in the make files’ output to the screen. The table below shows a portion of the screen output. The “xxx” in the

table refers to the contents of the environment variable. This environment variable has no effect on compiling of any

source files or linking of any other object files.

Undefined

or Empty
==== Linking: ../lib/adadio_utils.a

Defined and

Not Empty
==== Linking: ../lib/adadio_utils.a (added 'xxx')

2.8.5. GSC_APP_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the sample applications. The compiler used by the sample application make files is “gcc”. The content of this

environment variable is noted in the make files’ output to the screen. The table below shows a portion of the screen

output. The “xxx” in the table refers to the contents of the environment variable. This environment variable has no

effect on compiling any other distributed source files or linking of any object files.

Undefined

or Empty

== Compiling: main.c

== Compiling: perform.c

Defined and

Not Empty

== Compiling: main.c (added 'xxx')

== Compiling: perform.c (added 'xxx')

2.8.6. GSC_APP_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the

sample applications. The linker used by the sample application make files is “gcc”. The content of this environment

variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The

“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on

compiling of any source files or linking of any other object files.

Undefined

or Empty
==== Linking: id

Defined and

Not Empty
==== Linking: id (added 'xxx')

ADADIO, Linux Device Driver, User Manual

15

General Standards Corporation, Phone: (256) 880-8787

3. Main Interface Files

This section gives general information on the suggested device interface files to use when developing ADADIO

based applications.

3.1. Main Header File

Throughout the remainder of this document references are made to various header files included as part of the

ADADIO driver installation. For ease of use it is suggested that applications include only the single header file

shown below rather than individually including those headers identified separately later in this document. Including

this header file pulls in all other pertinent ADADIO header files. Therefore, sources may include only this one

ADADIO header and make files may reference only this one ADADIO include directory.

Description File Location

Header File adadio_main.h …/include/

3.2. Main Library File

Throughout the remainder of this document references are made to various statically linkable libraries included as

part of the ADADIO driver installation. For ease of use it is suggested that applications link only the single static

library file shown below rather than individually linking those static libraries identified separately elsewhere in this

document. Linking this library file pulls in all other pertinent ADADIO specific static libraries. Therefore, make

files may reference only this one ADADIO static library and only this one ADADIO library directory.

Description File (see note below) Location

Static Library adadio_main.a
…/lib/

Static Library adadio_multi.a

NOTE: The ADADIO API Library is implemented as a shared library and is thus not linked with

the ADADIO Main Library. The API Library must be linked with applications by adding the

argument –ladadio_api to the linker command line.

NOTE: For applications using the ADADIO and no other GSC devices, link the

adadio_main.a library. For applications using multiple GSC device types, link the

xxxx_main.a library for one of the devices and the xxxx_multi.a library for the others.

Linking multiple xxxx_main.a libraries may likely produce link errors due to duplicate

symbols being defined. While it may make little or no difference, it is recommended that one

choose the xxxx_main.a library from the driver with the largest number in positions three

(x.x.X.x.x) and/or four (x.x.x.X.x) in the driver release version number.

3.2.1. Build

The main library is built via the Overall Make Script (section 2.7, page 12). However, the main library can be built

separately following the below steps.

1. Change to the directory where the main library resides (…/lib/).

2. Remove existing build targets using the below command.

make clean

3. Build the main library by issuing the below command.

make

ADADIO, Linux Device Driver, User Manual

16

General Standards Corporation, Phone: (256) 880-8787

3.2.2. System Libraries

In addition to linking the static library named above, as well as the API Library shared object file, applications may

need to also link in additional system libraries as noted below.

Library gcc Link Flag

Math -lm

POSIX Thread -lpthread

Real Time -lrt

ADADIO, Linux Device Driver, User Manual

17

General Standards Corporation, Phone: (256) 880-8787

4. API Library

The ADADIO API Library is the software interface between user applications and the ADADIO device driver. The

interface is accessed by including the header file adadio_api.h.

NOTE: Contact General Standards Corporation if additional library functionality is required.

4.1. Files

The library files are summarized in the table below.

Description File Location

Source Files *.c, *.h … …/api/

Header File adadio_api.h …/include/

Library File adadio_api.so
…/lib/

/usr/lib/ †

† The shared object library is automatically copied to /usr/lib/ when it is built.

4.2. Build

The API Library is built via the Overall Make Script (section 2.7, page 12), but can be built separately following the

below steps.

NOTE: The following steps may require elevated privileges.

1. Change to the directory where the library sources are installed (…/api/).

2. Remove existing build targets using the below command.

make clean

3. Compile the source files and build the API Library by issuing the below command. This step copies the Library

to /usr/lib/.

make

4.3. Library Use

The library is used at application compile time, at application link time and at application run time. At compile time

include the below listed header file in each source file using a component of the Library interface. Also, edit the

include file search path to locate the header file in the below listed directory. At link time the Library’s shared object

file is linked via the linker command line. This can be done by naming the .so file explicitly or by adding the below

linker command line argument. At run time the library is found in the directory /usr/lib/. (The shared object

file is automatically copied to /usr/lib/ when it is built.)

Description File Location Linker Argument

Header File adadio_api.h …/include/

Shared Object Library libadadio_api.so
…/lib/

/usr/lib/ -ladadio_api

4.4. Macros

The Library interface includes the following macros.

ADADIO, Linux Device Driver, User Manual

18

General Standards Corporation, Phone: (256) 880-8787

4.4.1. IOCTL Codes

The IOCTL macros are documented in section 4.7 (page 23).

4.4.2. Registers

The following gives the complete set of ADADIO registers.

4.4.2.1. GSC Registers

The following table gives the complete set of GSC specific ADADIO registers. Please note that the set of registers

supported by any given device may vary according to model and firmware version. For the set of supported registers

and their detailed definitions refer to the appropriate ADADIO User Manual.

NOTE: Refer to the output of the “id” sample application (…/id/) for a complete list of the

registers supported by the device being accessed.

Macro Description
ADADIO_GSC_AIDR Analog Input Data Register
ADADIO_GSC_AOC0R Analog Output Channel 0 Register
ADADIO_GSC_AOC1R Analog Output Channel 1 Register
ADADIO_GSC_AOC2R Analog Output Channel 2 Register
ADADIO_GSC_AOC3R Analog Output Channel 3 Register
ADADIO_GSC_BCR Board Control Register
ADADIO_GSC_BRR Board Revision Register *
ADADIO_GSC_DIOPR Digital I/O Port Register
ADADIO_GSC_SRR Sample Rate Register

* The first time this register is read after a fresh load of the driver may take several seconds as

access to this register requires an Autocalibration cycle and an initialization.

4.4.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of PCI

register identifiers refer to driver header files gsc_pci9056.h and gsc_pci9080.h, which are automatically

included via adadio_api.h.

4.4.2.3. PLX Feature Set Registers

Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX

register identifiers refer to driver header files gsc_pci9056.h and gsc_pci9080.h, which are automatically

included via adadio_api.h.

4.5. Data Types

The data types used by the API Library are described with the IOCTL services with which they are used. For

additional information refer to section 4.7 (page 23).

4.6. Functions

The interface includes the following functions. The return values reflect the completion status of the requested

operation. A return value less than zero always reflects an error condition. The table below summarizes the error

status values. For the I/O function, read, non-negative return values reflect the number of bytes transferred between

the application and the interface. A value equal to the requested transfer size indicates complete success. Return

ADADIO, Linux Device Driver, User Manual

19

General Standards Corporation, Phone: (256) 880-8787

values less than the requested transfer size indicate that the I/O timeout expired. For the other API function calls a

return value of zero indicates success.

Return Value Description
< 0 This is the value “(-errno)” (see errno.h).

4.6.1. adadio_close()

This function is the entry point to close a connection to an open ADADIO. The board is put in an initialized state

before this call returns.

Prototype

int adadio_close(int fd);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 21).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value descriptions above.

Example

#include <stdio.h>

#include "adadio_dsl.h"

int adadio_close_dsl(int fd)

{

 int errs;

 int ret;

 ret = adadio_close(fd);

 if (ret)

 printf("ERROR: adadio_close() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.2. adadio_init()

This function is the entry point to initializing the ADADIO API Library and must be the first call into the Library.

This function may be called more than once, but only the first successful call actually initializes the library.

Subsequent calls perform no operation at all. All other API calls return a failure status when the API Library is not

initialized.

Prototype

int adadio_init(void);

ADADIO, Linux Device Driver, User Manual

20

General Standards Corporation, Phone: (256) 880-8787

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value descriptions above.

Example

#include <stdio.h>

#include "adadio_dsl.h"

int adadio_init_dsl(void)

{

 int errs;

 int ret;

 ret = adadio_init();

 if (ret)

 printf("ERROR: adadio_init() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.3. adadio_ioctl()

This function is the entry point to performing setup and control operations on an ADADIO. This function should

only be called after a successful open of the respective device. The specific operation performed varies according to

the request argument, which is any of the IOCTL services supported by the API (section 4.7, page 23). The arg

argument varies according to the specified IOCTL service and is NULL when unused.

NOTE: IOCTL operations are not supported for an open on device index -1.

Prototype

int adadio_ioctl(int fd, int request, void* arg);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 21).
request This specifies the desired operation to be performed (section 4.7, page 23).

arg This is specific to the IOCTL operation specified by the request argument.

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "adadio_dsl.h"

int adadio_ioctl_dsl(int fd, int request, void *arg)

{

ADADIO, Linux Device Driver, User Manual

21

General Standards Corporation, Phone: (256) 880-8787

 int errs;

 int ret;

 ret = adadio_ioctl(fd, request, arg);

 if (ret)

 printf("ERROR: adadio_ioctl() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.4. adadio_open()

This function is the entry point to open a connection to an ADADIO. The device is initialized before the function

returns.

Prototype

int adadio_open(int device, int share, int* fd);

Argument Description
device This is the zero-based index of the ADADIO device to access. †

share
Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).

fd

The device handle is returned here. The pointer cannot be NULL. Values returned are as

follows.

Value Description
>= 0 This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

† The index value -1 can also be given to acquire driver information (section 2.2, page 11).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "adadio_dsl.h"

int adadio_open_dsl(int device, int share, int* fd)

{

 int errs;

 int ret;

 ret = adadio_open(device, share, fd);

 if (ret)

 printf("ERROR: adadio_open() returned %d\n", ret);

 errs = ret ? 1 : 0;

ADADIO, Linux Device Driver, User Manual

22

General Standards Corporation, Phone: (256) 880-8787

 return(errs);

}

4.6.4.1. Access Modes

The value of the share argument determines the device access mode, as follows.

Shared Access Mode:

Shared Access Mode allows multiple applications to access the same device simultaneously. In this mode, the first

successful open request returns with the device in an initialized state. Subsequent successful Shared Access Mode

open requests do not affect the state of the device. Once opened in Shared Access Mode, the device access remains

in this mode until all Shared Access Mode accesses release the device with a close request.

Exclusive Access Mode:

Exclusive Access Mode allows a single application to acquire exclusive access to a device. In this mode, a

successful open request returns with the device in an initialized state. While open in this mode all subsequent open

requests will fail regardless of the access mode requested. Once opened in Exclusive Access Mode, the device

access remains in this mode until released by the application with a close request.

4.6.5. adadio_read()

This function is the entry point to reading data from an open ADADIO. This function should only be called after a

successful open of the respective device. The function reads up to bytes bytes from the device.

NOTE: If an open was performed using an index of -1, then read requests will acquire

information from the driver (section 2.2, page 11) rather than data from a device.

NOTE: For additional information refer to the I/O Modes information (section 8.3, page 44).

Prototype

int adadio_read(int fd, void* dst, size_t bytes);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 21).
dst The data read is put here.

bytes
This is the desired number of bytes to read. When reading from a device, this must be a

multiple of four (4).

Return Value Description

0 to bytes

The operation succeeded. When reading from a device, a value less than bytes

indicates that the I/O timeout period lapsed (section 4.7.29, page 34) before the entire

request could be satisfied.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "adadio_dsl.h"

int adadio_read_dsl(int fd, void* dst, size_t bytes, size_t* qty)

{

ADADIO, Linux Device Driver, User Manual

23

General Standards Corporation, Phone: (256) 880-8787

 int errs;

 int ret;

 ret = adadio_read(fd, dst, bytes);

 if (ret < 0)

 printf("ERROR: adadio_read() returned %d\n", ret);

 if (qty)

 qty[0] = (ret < 0) ? 0 : (size_t) ret;

 errs = (ret < 0) ? 1 : 0;

 return(errs);

}

4.6.6. ADADIO Write

A write function is not supported for generating analog output. Instead, applications must use the

ADADIO_IOCTL_AOUT_CH_X_WRITE IOCTL services (section 4.7.9, page 26).

4.7. IOCTL Services

The ADADIO API Library and device driver implement the following IOCTL services. Each service is described

along with the applicable adadio_ioctl() function arguments.

4.7.1. ADADIO_IOCTL_AIN_BUF_CLEAR

This service clears the data from the input buffer.

Usage

Argument Description
request ADADIO_IOCTL_AIN_BUF_CLEAR

arg Not used.

4.7.2. ADADIO_IOCTL_AIN_BUF_ENABLE

This service enables and disables the input buffer.

Usage

Argument Description
request ADADIO_IOCTL_AIN_BUF_ENABLE

arg s32*

Valid argument values are as follows.

Value Description
-1 This requests the current setting.
ADADIO_AIN_BUF_ENABLE_NO This disables input to the buffer and clears the buffer content.
ADADIO_AIN_BUF_ENABLE_YES This enables input to the buffer.

ADADIO, Linux Device Driver, User Manual

24

General Standards Corporation, Phone: (256) 880-8787

4.7.3. ADADIO_IOCTL_AIN_BUF_SIZE

This service sets the size of the board’s virtual input buffer. The physical buffer size is 32K samples deep.

NOTE: The buffer fill level status flags refer to the virtual buffer size, not the physical buffer size.

NOTE: Input sample collection is halted while the virtual buffer is full.

Usage

Argument Description
request ADADIO_IOCTL_AIN_BUF_SIZE

arg s32*

Valid argument values are as follows.

Value Description
-1 This requests the current setting.
ADADIO_AIN_BUF_SIZE_1 Set the Virtual Buffer size to one sample.
ADADIO_AIN_BUF_SIZE_2 Set the Virtual Buffer size to two samples.
ADADIO_AIN_BUF_SIZE_4 Set the Virtual Buffer size to four samples.
ADADIO_AIN_BUF_SIZE_8 Set the Virtual Buffer size to eight samples.
ADADIO_AIN_BUF_SIZE_16 Set the Virtual Buffer size to 16 samples.
ADADIO_AIN_BUF_SIZE_32 Set the Virtual Buffer size to 32 samples.
ADADIO_AIN_BUF_SIZE_64 Set the Virtual Buffer size to 64 samples.
ADADIO_AIN_BUF_SIZE_128 Set the Virtual Buffer size to 128 samples.
ADADIO_AIN_BUF_SIZE_256 Set the Virtual Buffer size to 256 samples.
ADADIO_AIN_BUF_SIZE_512 Set the Virtual Buffer size to 512 samples.
ADADIO_AIN_BUF_SIZE_1024 Set the Virtual Buffer size to 1,024 samples.
ADADIO_AIN_BUF_SIZE_2048 Set the Virtual Buffer size to 2,048 samples.
ADADIO_AIN_BUF_SIZE_4096 Set the Virtual Buffer size to 4,096 samples.
ADADIO_AIN_BUF_SIZE_8192 Set the Virtual Buffer size to 8,192 samples.
ADADIO_AIN_BUF_SIZE_16384 Set the Virtual Buffer size to 16,384 samples.

ADADIO_AIN_BUF_SIZE_32768
Set the Virtual Buffer size to 32,768 samples, which is the

buffer’s physical size.

4.7.4. ADADIO_IOCTL_AIN_BUF_STS

This service retrieves the fill level status of the virtual input buffer.

Usage

Argument Description
request ADADIO_IOCTL_AIN_BUF_STS

arg s32*

Valid argument values returned are as follows.

Value Description
ADADIO_AIN_BUF_STS_EMPTY The virtual buffer is empty.
ADADIO_AIN_BUF_STS_ALMOST_EMPTY The buffer is less than half full, but it is not empty.
ADADIO_AIN_BUF_STS_HALF_FULL The buffer is at least half full, but it is not full.
ADADIO_AIN_BUF_STS_FULL The virtual buffer is full.

ADADIO, Linux Device Driver, User Manual

25

General Standards Corporation, Phone: (256) 880-8787

4.7.5. ADADIO_IOCTL_AIN_CHAN_LAST

This service configures the selection of the last channel to scan, which effectively sets the range and number of

channels to scan.

Usage

Argument Description
request ADADIO_IOCTL_AIN_CHAN_LAST

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
0 Scan channel 0 only.

1 Scan channels 0-1.

2 Scan channels 0-2.

3 Scan channels 0-3.

4 Scan channels 0-4.

5 Scan channels 0-5.

6 Scan channels 0-6.

7 Scan channels 0-7.

4.7.6. ADADIO_IOCTL_AIN_MODE

This service configures the analog input mode.

Usage

Argument Description
request ADADIO_IOCTL_AIN_MODE

arg s32*

Valid argument values are as follows.

Value Description
-1 Passing in this value requests the current setting.
ADADIO_AIN_MODE_DIFF_BURST This refers to Differential, burst input operation.
ADADIO_AIN_MODE_DIFF_CONT This refers to Differential, continuous input operation.

ADADIO_AIN_MODE_LB_TEST
This refers to connection of a single output channel to all input

channels.
ADADIO_AIN_MODE_SE_BURST This refers to Single Ended, burst input operation.
ADADIO_AIN_MODE_SE_CONT This refers to Single Ended, continuous input operation.
ADADIO_AIN_MODE_VREF_TEST This option connects the inputs to the +VREF reference voltage.
ADADIO_AIN_MODE_ZERO_TEST This option connects the inputs to the zero-reference voltage.

4.7.7. ADADIO_IOCTL_AIN_NRATE

This service sets the NRATE divider value for input sample rate generation.

ADADIO, Linux Device Driver, User Manual

26

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request ADADIO_IOCTL_AIN_NRATE

arg s32*

Valid argument values are as follows.

Value Description
-1 Passing in this value requests the current setting.
100 – 0xFFFF This is the range for 200K S/S boards
200 – 0xFFFF This is the range for 100K S/S boards

4.7.8. ADADIO_IOCTL_AIN_TRIGGER

This service initiates an input strobe operation.

Usage

Argument Description
request ADADIO_IOCTL_AIN_TRIGGER

arg Not used.

4.7.9. ADADIO_IOCTL_AOUT_CH_X_WRITE

This refers to the below listed services.

Service Description
ADADIO_IOCTL_AOUT_CH_0_WRITE Write to Output Channel 0.
ADADIO_IOCTL_AOUT_CH_1_WRITE Write to Output Channel 1.
ADADIO_IOCTL_AOUT_CH_2_WRITE Write to Output Channel 2.
ADADIO_IOCTL_AOUT_CH_3_WRITE Write to Output Channel 3.

These services write a value to their respective analog output channels.

Usage

Argument Description
request ADADIO_IOCTL_AOUT_CH_X_WRITE

arg s32*

Valid argument values are as follows.

Value Description
-1 Passing in this value requests the current setting.
0x0000 – 0xFFFF This is the value to be applied to the output channel.

4.7.10. ADADIO_IOCTL_AOUT_ENABLE

This service enables or disables the analog outputs.

ADADIO, Linux Device Driver, User Manual

27

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request ADADIO_IOCTL_AOUT_ENABLE

arg s32*

Valid argument values are as follows.

Value Description
-1 Passing in this value requests the current setting.
ADADIO_AOUT_ENABLE_NO Disable the outputs.
ADADIO_AOUT_ENABLE_YES Enable the outputs

4.7.11. ADADIO_IOCTL_AOUT_STROBE

This service initiates an output strobe operation.

Usage

Argument Description
request ADADIO_IOCTL_AOUT_STROBE

arg Not used.

4.7.12. ADADIO_IOCTL_AOUT_STROBE_ENABLE

This service enables or disables output strobe operation.

Usage

Argument Description
request ADADIO_IOCTL_AOUT_STROBE_ENABLE

arg s32*

Valid argument values are as follows.

Value Description
-1 Passing in this value requests the current setting.

ADADIO_AOUT_STROBE_ENABLE_NO
Disable output strobe operation. Values are posted to the

output immediately.

ADADIO_AOUT_STROBE_ENABLE_YES
Enable output strobe operation. Values are posted to the

output only in response to an output strobe.

4.7.13. ADADIO_IOCTL_AUTOCAL

This service initiates an Autocalibration cycle.

NOTE: The driver performs an initialization after performing an autocalibration, as required by

the hardware. This is a complete initialization and is the same as is done with the

ADADIO_IOCTL_INITIALIZE IOCTL service (section 4.7.20, page 30).

NOTE: If the autocalibration service returns an error status, an error message will be posted to the

system log briefly describing the error condition.

ADADIO, Linux Device Driver, User Manual

28

General Standards Corporation, Phone: (256) 880-8787

NOTE: When an error is encountered, the service writes a brief, descriptive error message to the

system log.

Usage

Argument Description
request ADADIO_IOCTL_AUTOCAL

arg Not used.

4.7.14. ADADIO_IOCTL_DATA_FORMAT

This service sets the analog input and output data encoding format.

Usage

Argument Description
request ADADIO_IOCTL_DATA_FORMAT

arg s32*

Valid argument values returned are as follows.

Value Description
-1 This requests the current setting.
ADADIO_DATA_FORMAT_2S_COMP This refers to the Twos Compliment encoding format.
ADADIO_DATA_FORMAT_OFF_BIN This refers to the Offset Binary encoding format.

4.7.15. ADADIO_IOCTL_DIO_PIN_READ

This service reads the dedicated digital input pin.

Usage

Argument Description
request ADADIO_IOCTL_DIO_PIN_READ

arg s32*

Valid argument values returned are as follows.

Value Description
ADADIO_DIO_PIN_CLEAR The dedicated input is low.
ADADIO_DIO_PIN_SET The dedicated input is high.

4.7.16. ADADIO_IOCTL_DIO_PIN_WRITE

This service sets the output level for the dedicated digital output pin.

Usage

Argument Description
request ADADIO_IOCTL_DIO_PIN_WRITE

arg s32*

Valid argument values are as follows.

ADADIO, Linux Device Driver, User Manual

29

General Standards Corporation, Phone: (256) 880-8787

Value Description
-1 This requests the current setting.
ADADIO_DIO_PIN_CLEAR Set the output to a low level.
ADADIO_DIO_PIN_SET Set the output to a high level.

4.7.17. ADADIO_IOCTL_DIO_PORT_DIR

This service sets the direction of the 8-bit digital I/O port.

Usage

Argument Description
request ADADIO_IOCTL_DIO_PORT_DIR

arg s32*

Valid argument values are as follows.

Value Description
-1 This requests the current setting.
ADADIO_DIO_PORT_DIR_INPUT This selects the input direction.
ADADIO_DIO_PORT_DIR_OUTPUT This selects the output direction.

4.7.18. ADADIO_IOCTL_DIO_PORT_READ

This service reads the value at the digital I/O port. The value read is input data only if the port is configured as an

input. If the port is configured to output data, then this service retrieves the current output value.

Usage

Argument Description
request ADADIO_IOCTL_DIO_PORT_READ

arg s32*

Valid argument values returned are as follows.

Value Description
0x00 – 0xFF This is an 8-bit port.

4.7.19. ADADIO_IOCTL_DIO_PORT_WRITE

This service sets the output value for the digital I/O port. The value provided appears at the digital I/O port only if

the port is configured as an output.

Usage

Argument Description
request ADADIO_IOCTL_DIO_PORT_WRITE

arg s32*

Valid argument values are as follows.

ADADIO, Linux Device Driver, User Manual

30

General Standards Corporation, Phone: (256) 880-8787

Value Description

-1
Passing in this value returns the last output value, if the port is configured as an

output. If the port is configured as an input, then this will retrieve the current input.
0x00 – 0xFF This is an 8-bit port.

4.7.20. ADADIO_IOCTL_INITIALIZE

This service returns all interface settings for the board to the state they were in when the board was first opened.

This includes both hardware-based settings and software-based settings.

NOTE: If the initialization service returns an error status, an error message will be posted to the

system log briefly describing the error condition.

Usage

Argument Description
request ADADIO_IOCTL_INITIALIZE

arg Not used.

4.7.21. ADADIO_IOCTL_IRQ_SEL

This service configures the source selection for firmware interrupts.

Usage

Argument Description
request ADADIO_IOCTL_IRQ_SEL

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
ADADIO_IRQ_AUTOCAL_DONE This refers to the completion of an Autocalibration cycle.
ADADIO_IRQ_AIN_BUF_EMPTY This refers to the Input Buffer becoming empty.
ADADIO_IRQ_AIN_BUF_FULL This refers to the Input Buffer becoming full.
ADADIO_IRQ_AIN_BUF_HALF_FULL This refers to the Input Buffer becoming half full.
ADADIO_IRQ_AIN_BURST_DONE This refers to the completion of an input burst.
ADADIO_IRQ_AOUT_STROBE_DONE This refers to the completion of an output strobe.
ADADIO_IRQ_INIT_DONE This refers to the completion of an initialization cycle.

4.7.22. ADADIO_IOCTL_LOOPBACK_CHANNEL

This service selects the output channel to use for the Loopback input mode selection.

Usage

Argument Description
request ADADIO_IOCTL_LOOPBACK_CHANNEL

arg s32*

Valid argument values are as follows.

ADADIO, Linux Device Driver, User Manual

31

General Standards Corporation, Phone: (256) 880-8787

Value Description
-1 This requests the current setting.
0 Select channel 0 output as the input source.
1 Select channel 1 output as the input source.
2 Select channel 2 output as the input source.
3 Select channel 3 output as the input source.

4.7.23. ADADIO_IOCTL_QUERY

This service queries the driver for various pieces of information about the board and the driver.

Usage

Argument Description
request ADADIO_IOCTL_QUERY

arg s32*

Valid argument values are as follows.

Value Description

ADADIO_QUERY_AUTOCAL_MS
This returns the maximum duration of the Autocalibration cycle

in milliseconds.

ADADIO_QUERY_COUNT
This returns the number of query options supported by the IOCTL

service.

ADADIO_QUERY_DEVICE_TYPE
This returns the identifier value for the board’s type. This should

be GSC_DEV_TYPE_ADADIO.

ADADIO_QUERY_DMDMA Does the board support Demand Mode DMA? (0 = no, 1 = yes)
ADADIO_QUERY_FIFO_SIZE This returns the size of the input buffer in 32-bit A/D values.
ADADIO_QUERY_FSAMP_MAX This gives the maximum FSAMP value in S/S.
ADADIO_QUERY_FSAMP_MIN This gives the minimum FSAMP value in S/S.
ADADIO_QUERY_INIT_MS This returns the duration of a board initialization in milliseconds.
ADADIO_QUERY_MASTER_CLOCK This returns the master clock frequency in hertz.
ADADIO_QUERY_NRATE_MASK This returns the mask for the board’s NRATE fields.
ADADIO_QUERY_NRATE_MAX This returns the maximum supported NRATE value.
ADADIO_QUERY_NRATE_MIN This returns the minimum supported NRATE value.

ADADIO_QUERY_VRANGE
This returns the voltage range option supported by the board. See

below.

Valid return values are as indicated in the above table and as given in the below table.

Value Description

ADADIO_IOCTL_QUERY_ERROR
Either there was a processing error or the query option is

unrecognized.

Valid return values for the ADADIO_QUERY_VRANGE option are as follows.

Value Description
ADADIO_VRANGE_10 The board is configured for ±10V.
ADADIO_VRANGE_25_5_10 The board is configured for ±2.5V, ±5V or ±10V.

4.7.24. ADADIO_IOCTL_REG_MOD

This service performs a read-modify-write operation on a board register. This includes only the firmware registers,

as the PCI and PLX Feature Set registers are read-only.

ADADIO, Linux Device Driver, User Manual

32

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request ADADIO_IOCTL_REG_MOD

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg; // range: any valid register definition

 u32 value; // range: 0x0-0xFFFFFFFF

 u32 mask; // range: 0x0-0xFFFFFFFF

} gsc_reg_t;

Fields Description
reg This is the register to access. Refer to section 4.4.2 on page 18 for additional information.
value This is the value to write to the specified register. Only the bits set in the map are applied.

mask

This is a map of the bits to modify. If a bit is set, then the corresponding register bit is set

according the content of the value field. If a bit here is zero, then that register bit is

unmodified.

4.7.25. ADADIO_IOCTL_REG_READ

This service reads the value of an ADADIO register. This includes the PCI registers, the PLX Feature Set registers

and the firmware registers.

Usage

Argument Description
request ADADIO_IOCTL_REG_READ

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg; // range: any valid register definition

 u32 value; // range: 0x0-0xFFFFFFFF

 u32 mask; // range: 0x0-0xFFFFFFFF

} gsc_reg_t;

Fields Description
reg This is the register to read from. Refer to section 4.4.2 on page 18 for additional information.
value This is the value read from the specified register.
mask This is ignored for read requests.

4.7.26. ADADIO_IOCTL_REG_WRITE

This service writes a value to a board register. This includes only the firmware registers, as the PCI and PLX Feature

Set registers cannot be modified.

ADADIO, Linux Device Driver, User Manual

33

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request ADADIO_IOCTL_REG_WRITE

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg; // range: any valid register definition

 u32 value; // range: 0x0-0xFFFFFFFF

 u32 mask; // range: 0x0-0xFFFFFFFF

} gsc_reg_t;

Fields Description
reg This is the register to write to. Refer to section 4.4.2 on page 18 for additional information.
value This is the value to write to the specified register.
mask This is ignored for write requests.

4.7.27. ADADIO_IOCTL_RX_IO_ABORT

This service aborts an ongoing adadio_read() request.

Usage

Argument Description
request ADADIO_IOCTL_RX_IO_ABORT

arg s32*

The results are reported as one of the following values.

Value Description
ADADIO_IO_ABORT_NO A read request was not aborted as none were ongoing.
ADADIO_IO_ABORT_YES An ongoing read request was aborted.

4.7.28. ADADIO_IOCTL_RX_IO_MODE

This service selects the data transfer mode for I/O operations. Refer to the adadio_read() service for additional

information (section 4.6.5 on page 22).

Usage

Argument Description
request ADADIO_IOCTL_RX_IO_MODE

arg s32*

Valid argument values are as follows.

Value Description
-1 This requests the current setting.

GSC_IO_MODE_BMDMA
This refers to Block Mode DMA in which the DMA is initiated only after the

data becomes available.

ADADIO, Linux Device Driver, User Manual

34

General Standards Corporation, Phone: (256) 880-8787

GSC_IO_MODE_DMDMA
This refers to Demand Mode DMA in which the transfer occurs as the data

become available. This is the most efficient option for most I/O requests.

GSC_IO_MODE_PIO
This refers to PIO in which data is transferred by repetitive register accesses.

This is preferred for very small transfer requests. This is the default.

NOTE: Demand Mode DMA is not available on boards with older firmware. Refer to the board

hardware manual for details, or to the ADADIO_QUERY_DMDMA query option (section 4.7.23,

page 31).

4.7.29. ADADIO_IOCTL_RX_IO_TIMEOUT

This service sets the timeout limit for I/O requests. The limit is specified in seconds.

Usage

Argument Description
request ADADIO_IOCTL_RX_IO_TIMEOUT

arg s32*

Valid argument values are in the range from zero to 3600, -1, and ADADIO_IO_TIMEOUT_INFINITE. A value

of zero tells the driver not to sleep in order to wait for more data, and should only be used with PIO mode reads. A

value of -1 is used to retrieve the current setting. If the option ADADIO_IO_TIMEOUT_INFINITE is used, then

the driver will wait indefinitely rather than timing out. The default is 10 seconds.

4.7.30. ADADIO_IOCTL_WAIT_CANCEL

This service resumes all threads blocked via ADADIO_IOCTL_WAIT_EVENT IOCTL calls (section 4.7.31, page

35), according to the provided criteria. When a blocked thread is waiting for any event specified in the structure,

then the thread is resumed.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver

initiated waits are unaffected by application cancel requests.

Usage

Argument Description
request ADADIO_IOCTL_WAIT_CANCEL

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

ADADIO, Linux Device Driver, User Manual

35

General Standards Corporation, Phone: (256) 880-8787

Fields Description
flags This is unused by wait cancel operations.

main
This specifies the set of GSC_WAIT_MAIN_* events whose wait requests are to be

cancelled. Refer to section 4.7.31.2 on page 36.

gsc
This specifies the set of ADADIO_WAIT_GSC_* events whose wait requests are to be

cancelled. Refer to section 4.7.31.3 on page 36.
alt This is unused with the ADADIO board and should be zero.

io
This specifies the set of ADADIO_WAIT_IO_* events whose wait requests are to be

cancelled. Refer to section 4.7.31.4 on page 36.
timeout_ms This is unused by wait cancel operations.
count Upon return this indicates the number of waits that were cancelled.

4.7.31. ADADIO_IOCTL_WAIT_EVENT

This service blocks a thread until any one of a specified set of events occurs, or until a timeout lapses, whichever

occurs first. The set of possible events to wait for are specified in the structure’s main, gsc, alt and io fields. All

field values must be valid and at least one event must be specified. If the thread is resumed because one of the

referenced events has occurred, then the bit for the respective event is the only event bit that will be set. All other

event bits and fields will be zero. (Multiple event bits will be set only if the events occur simultaneously.)

NOTE: The service waits only for the first of the specified events, not for all specified events.

NOTE: A wait timeout is reported via the gsc_wait_t structure’s flags field having the

GSC_WAIT_FLAG_TIMEOUT flag set, rather than via an ETIMEDOUT error.

Usage

Argument Description
request ADADIO_IOCTL_WAIT_EVENT

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description

flags
This must initially be zero. Upon return this indicates the reason that the thread was

resumed. Refer to section 4.7.31.1on page 36.

main
This specifies any number of GSC_WAIT_MAIN_* events that the thread is to wait for.

Refer to section 4.7.31.2 on page 36.

gsc
This specifies any number of ADADIO_WAIT_GSC_* events that the thread is to wait

for. Refer to section 4.7.31.3 on page 36.
alt This is unused with the ADADIO board and must be zero.

io
This specifies any number of ADADIO_WAIT_IO_* events that the thread is to wait

for. Refer to section 4.7.31.4 on page 36.

ADADIO, Linux Device Driver, User Manual

36

General Standards Corporation, Phone: (256) 880-8787

timeout_ms

This specified the maximum amount of time, in milliseconds, that the thread is to wait

for any of the referenced events. A value of zero means do not timeout at all. If non-

zero, then upon return the value will be the approximate amount of time actually waited.
count This is unused by wait event operations and must be zero.

4.7.31.1. gsc_wait_t.flags Options

Upon return from a wait request the wait structure’s flags field will indicate the reason that the thread was

resumed. Only one of the below options will be set.

Fields Description
GSC_WAIT_FLAG_CANCEL The wait request was cancelled.
GSC_WAIT_FLAG_DONE One of the referenced events occurred.
GSC_WAIT_FLAG_TIMEOUT The timeout period lapsed before a referenced event occurred.

4.7.31.2. gsc_wait_t.main Options

The wait structure’s main field may specify any of the below primary interrupt options. These interrupt options are

supported by the ADADIO and other General Standards products.

Fields Description
GSC_WAIT_MAIN_DMA0 This refers to the DMA Done interrupt on DMA engine number zero.
GSC_WAIT_MAIN_DMA1 This refers to the DMA Done interrupt on DMA engine number one.
GSC_WAIT_MAIN_GSC This refers to any of the Interrupt Control/Status Register interrupts.

GSC_WAIT_MAIN_OTHER
This generally refers to an interrupt generated by another device sharing the

same interrupt as the ADADIO.
GSC_WAIT_MAIN_PCI This refers to any interrupt generated by the ADADIO.
GSC_WAIT_MAIN_SPURIOUS This refers to board interrupts which should never be generated.
GSC_WAIT_MAIN_UNKNOWN This refers to board interrupts whose source could not be identified.

4.7.31.3. gsc_wait_t.gsc Options

The wait structure’s gsc field may specify any combination of the below interrupt options. These are the interrupt

options referenced in the Board Control Register. Applications are responsible for selecting the desired interrupts.

Refer to ADADIO_IOCTL_IRQ_SEL (section 4.7.21, page 30).

Value Description
ADADIO_WAIT_GSC_AIN_BUF_EMPTY This refers to the Input Buffer becoming empty.
ADADIO_WAIT_GSC_AIN_BUF_FULL This refers to the Input Buffer becoming full.
ADADIO_WAIT_GSC_AIN_BUF_HALF_FULL This refers to the Input Buffer becoming half full.
ADADIO_WAIT_GSC_AIN_BURST_DONE This refers to the completion of an input burst.
ADADIO_WAIT_GSC_AOUT_STROBE_DONE This refers to the completion of an output strobe.
ADADIO_WAIT_GSC_AUTOCAL_DONE This refers to the completion of an Autocalibration cycle.
ADADIO_WAIT_GSC_INIT_DONE This refers to the completion of an initialization cycle.

4.7.31.4. gsc_wait_t.io Options

The wait structure’s io field may specify any of the below event options. These events are generated in response to

application board data read requests.

Fields Description
ADADIO_WAIT_IO_RX_ABORT This refers to read requests which have been aborted.
ADADIO_WAIT_IO_RX_DONE This refers to read requests which have been satisfied.

ADADIO, Linux Device Driver, User Manual

37

General Standards Corporation, Phone: (256) 880-8787

ADADIO_WAIT_IO_RX_ERROR This refers to read requests which end due to an error.
ADADIO_WAIT_IO_RX_TIMEOUT This refers to read requests which end due to the timeout period lapse.

4.7.32. ADADIO_IOCTL_WAIT_STATUS

This service count all threads blocked via the ADADIO_IOCTL_WAIT_EVENT IOCTL service (section 4.7.31,

page 35), according to the provided criteria. A match is made when a waiting thread’s wait criteria matches any of

the criteria specified in the structure passed to this service.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver

initiated waits are ignored by application status requests.

Usage

Argument Description
request ADADIO_IOCTL_WAIT_STATUS

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description
flags This is unused by wait status operations.

main
This specifies the set of GSC_WAIT_MAIN_* events whose wait requests are to be

counted. Refer to section 4.7.31.2 on page 36.

gsc
This specifies the set of ADADIO_WAIT_GSC_* events whose wait requests are to be

counted. Refer to section 4.7.31.3 on page 36.
alt This is unused with the ADADIO board and should be zero.

io
This specifies the set of ADADIO_WAIT_IO_* events whose wait requests are to be

counted. Refer to section 4.7.31.4 on page 36.
timeout_ms This is unused by wait status operations.
count Upon return this indicates the number of waits that met any of the specified criteria.

ADADIO, Linux Device Driver, User Manual

38

General Standards Corporation, Phone: (256) 880-8787

5. The Driver

NOTE: Contact General Standards Corporation if additional driver functionality is required.

5.1. Files

The device driver files are summarized in the table below.

Description Files Location

Source Files *.c, *.h …

…/driver/
Header File adadio.h

Driver File
adadio.ko †

adadio.o ‡

† This is for kernel versions 2.6 and later.

‡ This is for kernel versions 2.4 are earlier.

5.2. Build

NOTE: Building the driver requires installation of the kernel headers.

Follow the below steps to build the driver.

1. Change to the directory where the driver and its sources are installed (…/driver/).

2. Remove existing build targets using the below command.

make clean

3. Build the driver by issuing the below command.

make

NOTE: Due to the differences between the many Linux distributions some build errors may

occur. These errors may include system header location differences, which should be easily

corrected.

5.3. Startup

NOTE: The driver will have to be built before being used as it is provided in source form only.

The startup script used in this procedure is designed to load the device driver and create fresh device nodes. This is

accomplished by unloading the current driver, if loaded, and then loading the accompanying device driver. In

addition, the script deletes and recreates the device nodes. This is done to ensure that the device nodes in use have

the same major number as assigned dynamically to the driver by the kernel, and so that the number of device nodes

corresponds to the number of boards identified by the driver.

5.3.1. Manual Driver Startup Procedures

Start the driver manually by following the below listed steps.

NOTE: The following steps may require elevated privileges.

ADADIO, Linux Device Driver, User Manual

39

General Standards Corporation, Phone: (256) 880-8787

1. Change to the directory where the driver sources are installed (…/driver/).

2. Install the driver module and create the device nodes by executing the below command. If any errors are

encountered then an appropriate error message will be displayed.

./start

NOTE: This script must be executed each time the host is rebooted.

NOTE: The ADADIO device node major number is assigned dynamically by the kernel. The

minor numbers and the device node suffix numbers are index numbers beginning with zero, and

increase by one for each additional board installed.

3. Verify that the device driver module has been loaded by issuing the below command and examining the output.

The module name adadio should be included in the output.

lsmod

4. Verify that the device nodes have been created by issuing the below command and examining the output. The

output should include one node for each installed board.

ls –l /dev/adadio.*

5.3.2. Automatic Driver Startup Procedures

Start the driver automatically with each system reboot by following the below listed steps.

1. Locate and edit the system startup script rc.local, which should be in the /etc/rc.d/ directory. Modify

the file by adding the below line so that it is executed with every reboot. The example is based on the driver

being installed in /usr/src/linux/drivers/, though it may have been installed elsewhere.

/usr/src/linux/drivers/adadio/driver/start

NOTE: For systemd installations the file rc.local may be located under the /etc/

directory rather than under /etc/rc.d/.

2. Load the driver and create the required device nodes by rebooting the system.

3. Verify that the driver is loaded and that the device nodes have been created. Do this by following the

verification steps given in the manual startup procedures.

5.3.2.1. File rc.local Not Present

Some distributions may not install a default version of rc.local. Some may not even create the directory

/etc/rc.d/. If the directory is not present, then it may be created. The directory must be created with the owner

and group set to root. The directory permissions must be set to rwxr-xr-x. If the file /etc/rc.d/rc.local

is not present, then it too may be created. The file must also be created with the owner and group set to root.

Additionally, the file permissions must also be set to rwxr-xr-x. After the directory and file are created as

described, reboot to verify boot time loading of the driver. Here is an example of a default version of rc.local.

ADADIO, Linux Device Driver, User Manual

40

General Standards Corporation, Phone: (256) 880-8787

#!/bin/bash

Add your local content here.

5.3.2.2. Default rc.local File Permissions

The rc.local script may fail to run at boot time because some distributions install a default version of the file

without execute permissions. Without execute permissions, boot time invocation of the script fails, which inhibits

boot time loading of the driver. If this is the case, then change the file permissions to rwxr-xr-x. After the file

permissions are adjusted as described, reboot to verify boot time loading of the driver.

5.3.2.3. systemd Installations

With the advent of the systemd startup implementation, rc.local may be accessed via a systemd startup

service. The service name may be rc-local, rc-local.service or something similar. This service may or

may not be enabled by default. If the service is disabled, then the script will not execute, which prevents boot time

loading of the driver. The service can be enabled with the below command line. After the service is enabled, reboot

to verify boot time loading of the driver.

systemctl enable rc-local

NOTE: For systemd installations the file rc.local may be located under the /etc/

directory rather than under /etc/rc.d/.

5.3.2.4. systemd and rc.local Timing

If the above steps have been performed but the driver still does not start then examine the dmesg output for driver

messages. If the output shows that the driver starts and immediately stops, then the problem may be timing. That is,

since systemd doesn’t serialize startup initialization as done in the past, driver loading may fail if required services

have not completed their own initialization. If this is the problem, then it may be corrected simply by inserting a

delay in rc.local prior to it calling the driver’s start script (i.e., sleep for one or more seconds).

5.3.2.5. SElinux Implications

If not disabled, then SElinux may prevent boot time loading of the driver. If this is the case, then it can be verified

and corrected using SElinux related tools and utilities. First, install the necessary software using the below

command. (As necessary, replace the yum command line with that which is available for your distribution.)

yum install setroubleshoot setools

Next, run the below command to determine if SElinux is preventing the driver from loading at boot time.

sealert –a /var/log/audit/audit.log

If SElinux is preventing the driver from loading, then the output from the above command should include a

reference to the driver’s start script, the insmod command that loads the driver or the name of the driver

executable. If so, then the output should also indicate the commands necessary to resolve the issue. The following is

an example of the instructions given when the culprit is insmod, which is the start script command that loads the

driver. After running these commands reboot the system to verify boot time loading of the driver.

ausearch -c 'insmod' --raw | audit2allow -M my-insmod

semodule -X 300 -i my-insmod.pp

ADADIO, Linux Device Driver, User Manual

41

General Standards Corporation, Phone: (256) 880-8787

5.4. Verification

Follow the below steps to verify that the driver has been properly installed and started.

1. Verify that the file /proc/adadio is present. If the file is present then the driver is loaded and running.

Verify the file’s presence by viewing its content with the below command.

cat /proc/adadio

5.5. Version

The driver version number can be obtained in a variety of ways. It is reported by the driver both when the driver is

loaded and when it is unloaded (depending on kernel configuration options, this may be visible only in places such

as /var/log/messages). It is reported in the text file /proc/adadio while the driver is loaded and running.

The version number is also given in the file release.txt in the root install directory.

5.6. Shutdown

Shutdown the driver following the below listed steps.

NOTE: The following steps may require elevated privileges.

1. If the driver is currently loaded then issue the below command to unload the driver.

rmmod adadio

2. Verify that the driver module has been unloaded by issuing the below command. The module name adadio

should not be in the listed output.

lsmod

ADADIO, Linux Device Driver, User Manual

42

General Standards Corporation, Phone: (256) 880-8787

6. Document Source Code Examples

The source code examples included in this document are built into a statically linkable library usable with console

applications. The purpose of these files is to verify that the documentation samples compile and to provide a library

of working sample code to assist in a user’s learning curve and application development effort.

6.1. Files

The library files are summarized in the table below.

Description Files Location

Source Files *.c, *.h … …/docsrc/

Header File adadio_dsl.h …/include/

Library File adadio_dsl.a …/lib/

6.2. Build

The library is built via the Overall Make Script (section 2.7, page 12), but can be built separately following the

below steps.

1. Change to the directory where the documentation sources are installed (…/docsrc/).

2. Remove existing build targets using the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make

4. Rebuild the Main Library (section 3.2, page 15).

6.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above

listed header file in each source file using a component of the library interface. At link time include the above listed

static library file with the objects being linked with the application.

ADADIO, Linux Device Driver, User Manual

43

General Standards Corporation, Phone: (256) 880-8787

7. Utilities Source Code

The driver archive includes a body of utility source code designed to aid in the understanding and use of the API

calls and the IOCTL services. The utility services provide wrappers, mostly visual, around the respective services.

Utility sources are also included for device independent and common, general-purpose services. The aim of all the

visual wrappers is to facilitate structured console output for the sample applications. The utility services are used

extensively by the sample applications. An additional purpose of these utility services is to provide a library of

working sample code to assist in a user’s learning curve and application development effort.

7.1. Files

The utility files are summarized in the table below.

Description Files Location

Source Files *.c, *.h … …/utils/

Header File adadio_utils.h …/include/

Library Files

adadio_utils.a

gsc_utils.a

os_utils.a

plx_utils.a

…/lib/

7.2. Build

The libraries are built via the Overall Make Script (section 2.7, page 12), but can be built separately following the

below steps.

1. Change to the directory where the utility sources are installed (…/utils/).

2. Remove existing build targets using the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make

4. Rebuild the Main Library (section 3.2, page 15).

7.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above

listed header file in each source file using a component of the library interface. At link time include the above listed

static library file with the objects being linked with the application.

ADADIO, Linux Device Driver, User Manual

44

General Standards Corporation, Phone: (256) 880-8787

8. Operating Information

This section explains some basic operational procedures for using the ADADIO. This is in no way intended to be a

comprehensive guide. This is simply to address a very few issues relating to their use.

8.1. Debugging Aids

The driver package includes the following items useful for development and/or debugging aids.

8.1.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id

example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as

follows.

Description File Location

Application id …/id/

8.1.2. Detailed Register Dump

Among the utility services provided is a function to generate a detailed listing of the device registers to the console.

When used, the function is typically used to verify the device configuration. In these cases, the function should be

called just prior to the first read operation. When intended for sending to GSC tech support, please set the detail

argument to 1. The function arguments are as follows. The utility location is given in the subsequent table.

Argument Description
fd This is the file descriptor used to access the device.
detail If non-zero the GSC register dump will include details of each register field.

Description File/Name Location

Function adadio_reg_list() Source File

Source File reg.c …/utils/

Header File adadio_utils.h …/include/

Library File adadio_utils.a …/lib/

8.2. Analog Input Configuration

The basic steps for Analog Input configuration are illustrated in the utility function noted below. The table also gives

the location of the source file, the header file and the corresponding library containing the executable code.

Item Name/File Location

Function adadio_config_ai() Source File

Source File config_ai.c …/utils/

Header File adadio_utils.h …/include/

Library File adadio_utils.a …/lib/

8.3. I/O Modes

All device I/O requests move data through an intermediate driver buffer on its way between the device and

application memory. The data is processed in chunks no larger than the size of this intermediate buffer. The process

used to perform this transfer is according to the I/O mode selection. Movement of data between the application

buffers and an intermediate driver buffer is performed by the kernel.

ADADIO, Linux Device Driver, User Manual

45

General Standards Corporation, Phone: (256) 880-8787

8.3.1. PIO - Programmed I/O

This mode involves repetitive register accesses. In this mode the driver will write data to the output buffer one value

at a time. As needed, the driver will repeatedly sleep for one system time tick in order to wait for addition space in

the output buffer. This process is repeated until the data is exhausted or the I/O timeout expires, whichever occurs

first.

8.3.2. BMDMA - Block Mode DMA

This mode is intended for data transfers that do not exceed the size of the ADADIO input buffer. Here, the board’s

DMA engine is used to perform a hardware-controlled transfer which does not require processer intervention to

move the data. In this mode the DMA transfer is initiated only when the input buffer contains sufficient data to

fulfill the request. This is a very efficient I/O method. However, for small requests PIO is more efficient.

8.3.3. DMDMA - Demand Mode DMA

This DMA transfer mode is similar to the block mode, except that a transfer for the entire amount of data is initiated

immediately and is not limited to the size of the virtual FIFO. Here however, the actual movement of data occurs as

the data becomes available in the input buffer. This is the most efficient method supported. However, for small

requests PIO is more efficient.

ADADIO, Linux Device Driver, User Manual

46

General Standards Corporation, Phone: (256) 880-8787

9. Sample Applications

The driver archive includes a variety of sample and test applications. While they are provided without support and

without any external documentation, any problems reported will be addressed as time permits. The applications are

command line based and produce text output for display on a console. All of the applications are built via the

Overall Make Script (section 2.7, page 12), but each may be built individually by changing to its respective directory

and issuing the commands “make clean” and “make all”. The initial output from each application includes

information on its supported command line arguments. The following gives a brief overview of each application.

9.1. aout - Analog Output - …/aout/

This application outputs a repeating pattern on the four output channels. The pattern is different for each channel,

though they are synchronized at the same modest rate.

9.2. din - Digital Input - …/din/

This application reads the cable’s digital I/O signals and reports the values read to the console.

9.3. dout - Digital Output - …/dout/

This application writes a pattern to the cable’s digital output lines as it is displayed to the console.

9.4. id - Identify Board - …/id/

This application reports detailed board identification information. This can be used with tech support to help identify

as much technical information about the board as possible from software.

9.5. regs - Register Access - …/regs/

This application provides menu based interactive access to the board’s registers, and reports other pertinent

information to the console.

9.6. rxrate - Receive Rate - …/rxrate/

This application configures the board for its highest ADC sample rate then reads the input as fast as possible. The

purpose is to measure the peak sustainable input rate for the host, per the provided command line arguments.

9.7. savedata - Save Acquired Data - …/savedata/

This application configures the board for a modest sample rate, reads a megabyte of data, then saves the data to a

hex file.

9.8. sbtest - Single Board Test - …/sbtest/

This application performs functional testing of the driver and a user specified board, at least to the extent possible

with just a single board and no additional equipment.

ADADIO, Linux Device Driver, User Manual

47

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

September 27, 2024

Updated to version 4.10.111.50.0. Updated the kernel support table. Updated the

description of the Autocalibration service. Minor editorial changes. Removed the prefix

“util_” from the utility source files. Renamed all Auto_Cal* content to Autocal.

January 30, 2023

Updated to version 4.9.102.44.0. Updated the kernel support table. Added section on

environment variables. Updated the information for the open and close calls. Minor

editorial modifications.

March 8, 2022
Updated to version 4.8.97.38.0. Updated the kernel support table. Expanded automatic

startup information. Minor editorial changes.

January 28, 2020 Updated to version 4.7.90.30.1.

January 20, 2020 Updated to version 4.7.90.30.0. Minor editorial changes.

December 5, 2019
Updated to version 4.6.89.29.0. Minor editorial changes. Added a licensing subsection.

Added WAIT_EVENT note. Added support for the ADADIO2.

June 25, 2019
Updated to version 4.5.86.28.0. Updated the kernel support table. Minor editorial changes.

Some document reorganization.

February 7, 2019

Updated to version 4.4.81.26.0. Updated the inside cover page. Updated the CPU and

kernel support section. Minor editorial changes. Updated Block Mode DMA macro and

associated information. Document reorganization.

December 5, 2016

Updated to version 4.3.68.18.0. Updated the kernel support table. Added support for infinite

I/O timeouts. Updated the operating information section. Made various miscellaneous

updates. Some document reorganization.

June 9, 2016

Updated to version 4.2.66.14.0. Organized sample applications alphabetically. Added the

IOCTL service ADADIO_IOCTL_AIN_BUF_CLEAR. Updated the usage of the Wait

Event timeout_ms field. Updated material on the open call. Added open access mode

descriptions. Updated the kernel support table.

May 4, 2016
Updated to version 4.1.66.13.0. Removed the built field from the /proc file. Updated

the kernel support table.

September 16, 2015
Updated to version 4.0.60.8.0. Updated the device node name to include a period before the

device index. Removed double underscore that prefaced various data types.

September 4, 2014 Updated to version 3.8.55.0.

February 28, 2014 Updated to version 3.7.52.0. Updated the kernel support data.

January 8, 2014 Updated to version 3.6.51.0. Updated the kernel support data.

November 6, 2013 Updated to version 3.6.48.0. Removed the sample application testapp from the release.

July 7, 2013 Updated to version 3.6.45.0. Updated the kernel support data.

July 23, 2012 Updated to version 3.6.39.0. Updated the kernel support data.

December 20, 2011 Updated to version 3.5.34.0.

November 10, 2011 Updated to version 3.4.32.0.

March 21, 2011

Updated to version 3.3.22.0. Various editorial changes. Removed the IRQ_ENABLE

IOCTL service – local interrupts are always enabled. Removed the IRQ_STATUS IOCTL

service. Updated the CPU and Kernel Support information. Updated the comments for the

Initialize IOCTL service. Changed the spelling of various Autocalibration related software

items.

December 28, 2009 Updated to version 3.2.13.0.

July 29, 2009 Updated to version 3.1.9.0. Minor change to kernel support table.

April 17, 2009 Updated to version 3.0.5.0.

April 10, 2009 Updated to version 3.0.4.0. Extensive interface changes. Added sample applications.

September 2, 2008 Updated to version 2.1.0. Numerous modifications.

November 2, 2004 Updated to version 2.0.0.

February 11, 2003 Ported the driver to the 2.4 kernel.

February 10, 2003 The test application now uses ADADIODocSrcLib. Some code examples were updated.

February 7, 2003
Added notes about mmap() of GSC registers when they aren’t on a page boundary. The

documentation sources are now included as a library.

ADADIO, Linux Device Driver, User Manual

48

General Standards Corporation, Phone: (256) 880-8787

June 13, 2002 Initial release.

