ADADIO/2

8 A/D Channels, 4 D/A Channels, 16-bit
With 8-bit Discrete Digital 1/0

All Form Factors
...-ADADIO
...-.ADADIO2

Linux Device Driver
And API Library
User Manual

Manual Revision: September 27, 2024
Driver Release Version 4.10.111.50.0

General Standards Corporation
8302A Whitesburg Drive
Huntsville, AL 35802
Phone: (256) 880-8787
Fax: (256) 880-8788
URL.: http://www.generalstandards.com
E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

ADADIO, Linux Device Driver, User Manual

Preface

Copyright © 2002-2024, General Standards Corporation
Additional copies of this manual or other literature may be obtained from:

General Standards Corporation
8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or
software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Although extensive editing and reviews are performed before release, General Standards Corporation assumes no
responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are
made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this
documentation.

General Standards Corporation does not assume any liability arising out of the application or use of
documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or
any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or
errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,
software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.
GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

2
General Standards Corporation, Phone: (256) 880-8787

http://www.generalstandards.com/
mailto:sales@generalstandards.com

ADADIO, Linux Device Driver, User Manual

Table of Contents

R Fa L f oY [11 Ao F TR 7
Lo PUIPOSE. 1.ttt ettt h bR R R R R R R R R R R Rt bt 7
L2, AACTONYIMS ...ttt bt e e h ke bttt E R AR b e st AR e AR e b e e Rt Rt R Rt bt 7
T B L AT Lo oL 7
1.4, SOTEWAIE OVEIVIEW ... ceteie ettt ettt e e e ettt e e ettt e e sttt e e s eb bt e e s esbee e e s abaeeeseabeeeeeabessesbeaaessabasessabbssesasbanessbbneeas 7

1.4.1. BaSIiC SOTtWAIE ATCNITECTUIEveeivii ettt ettt e s st e e st e s st e s s bt e s sbb e s sbbessabessabesssbessrbessneeens 7
O N o B I] U RSO 8
IR G T B 1A (ot I | V7T TR 8
ST o L0 1V e (= O A= Y[R 8
1.6. RETEIENCE IMIALEITAL ... eeiiii ittt et e et e e s et et e e s bt e e s s ebb e e e s eabb e e e sbbaeessbbaeessabaesessbbaeessabbeeeas 8
O I o =T3S oo SRS 9

A o153 = 1 F= 1 To] o IR 10

I O Vg To I T4 0] BT o] oo PSS 10
2.1.1. 32-bit Support Under 64-bit ENVIFONMENTScviiiiiicciecceeceee ettt ae e 11
2.2. TR IPIOCT FIIE SYSIBIM ...ttt ettt e st e s te e s te et e e st e e ae e sseeste e ta e teeseeaseesneesreesteeseeenneenes 11
PG TR 1 < I TR 11
R B Y= Tod (o] VA 1 (0 Tox (1 =SSOSR 11
RS T LTS 1 = LT o TR 12
ST 2 (=T 1410 Y- | RO RTRRT 12
2.7, OVEIAI IMIAKE SCIIPL ... eveitieieiieie sttt ee et sttt sttt e e st e besteese et e eseeseese e besaeeseeseenteseesaeneeseeaneeneeneeneeneeneen 12
2.8. ENVIFONMENT VATTADIES ..ot ettt ettt e e ettt e e ettt e e st e e e s eta e e e s eaaeeessateeessseeeesaabeeessaseeessseeeesasrees 13
2.8.1. GSC_API COMP_ FLAGS..ciiiiiiiiisietitetetesee ittt ettt b bbb b st 13
2.8.2. GSC_APT LINK FLAGS iiiiiiiiueuitetetiiieierireststsie et s s sttt s et e st e e 13
2.8.3. GSC_LIB COMP_ FLAGS .iiiiisuiuiuerereteieiisereristsestsse st sissssast st e sss bbb e s st st st st s e s e et nenennas 13
2.8.4. GSC_LIB LINK FLAGS ..ottt bbb bbb bbb 14
2.8.5. GSC_APP COMP_ FLAGS .iiiiiitiuiuerereeeteiiiererisesestsse ettt se st st e sttt sttt nennas 14
2.8.6. GSC_APP LINK FLAGS ..ottt ittt bbb bbbt 14

3. AN INTEITACE FHIBS ...ttt ettt e e et e e et e e e e e e e e e 15
I Y/ U1 o 2T (o ST T 1 [TP TTRR 15
KTV VT I o] 120 1 S 15

TR I = YU T 1 o TSP ORRTRRRT 15
3.2.2. SYSLEIM LIDIAIIES ..ttt bbbt e bbbt et e b e st et e bbb e b bt e s e e b e e nae s 16

A APT LIDTATY ot b bbbt b et b e bbb 17
T = | [T OO TTRRRRTTTRR 17
R = 10T | o E OO TTTRRRTPTRR 17
4.3, LIDIAINY USE ...ttt bbb bbb bbbt bbbt 17
R V- (o] (o 1R 17

3

General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

44,1, IOCTL COUES ...evveneeeiiieeteie ettt sttt sttt bbbtk bbbt e bbb b £ b e b e e b b e b b e bt e b b e b e b e b ettt enb b b e nn b 18
A.4.2. REGISTEIS ...ttt ettt ettt bbb bk b h b b h £ E R R R R R AR R R bR Rt bbb 18
T D - - Wl Y/ 0 1= OO PTPP RO ROPRPRO 18
4.8, FUNCEIONS. ...ttt bR e R R e R R R R R R R R Rt r ettt n bt r e 18
0 Vo - Yo [o T o (0T) ST 19
R Vo - Yo | o T 1L (S 19
TG R Vo - Yo | o T oo [S 20
R Yo - Yo [o o o =1 o) S 21
T (o To [To I €= Lo [I OSSP TP TO TSP T PP ST 22
4.6.6. ADADIO WIIEE ...veiteiiieteie ettt sttt bbb bbb £ b e b ek b e £ b e bt e b b et e b e b et bt e bt nn et 23
O (O 1O - Vol OSSPSR 23
4.7.1. ADADIO_IOCTL_AIN_BUF _CLEAR ...ttt bbbt 23
4.7.2. ADADIO_IOCTL_AIN_BUF_ENABLEcocceitiitiiiiiieseie sttt 23
4.7.3. ADADIO_IOCTL_AIN_BUF _SIZEoooioieeeeeeeeeeeeeeeeeeeeeseeeeseeeseesesessssssssssnsssssssssnsa s s snansannes 24
4.7.4. ADADIO_IOCTL_AIN_BUFRF_STS ...ttt 24
4.7.5. ADADIO_IOCTL_AIN_CHAN_LAST ..ottt 25
4.7.6. ADADIO_IOCTL_AIN_MODEccotitrititiicieinite ettt 25
4.7.7. ADADIO_IOCTL_AIN_NRATE ...ttt bbbt 25
4.7.8. ADADIO_IOCTL_AIN_TRIGGERccctiiiiiiiieirisictreee et 26
4.7.9. ADADIO_IOCTL_AOUT_CH_X_WRITEocoiiiririiiiiiei et 26
4.7.10. ADADIO_IOCTL_AOUT _ENABLEooiii ittt st sttt ettt 26
4.7.11. ADADIO_IOCTL_AOUT _STROBEeiiiiiiiieee ettt et sttt st sneeanees 27
4.7.12. ADADIO_IOCTL_AQUT STROBE_ENABLEovvevieeeeeieeieeeeeeieeeeeeeeesiesssessasssessiesssessesnanninnes 27
4.7.13. ADADIO_IOCTL_AUTOCAL ...ttt sttt st sttt s be e sbe e sbe e be e s b e st e sbeesbeesbeesbeaneesnees 27
4.7.14. ADADIO_IOCTL_DATA_FORMAT ...ttt sttt st sttt sse et e nbe et naesneesneas 28
4.7.15. ADADIO_IOCTL_DIO_PIN_READ ..ottt 28
4.7.16. ADADIO_IOCTL_DIO_PIN_WRITE ...ttt 28
4.7.17. ADADIO_IOCTL_DIO_PORT_DIR ...ttt 29
4.7.18. ADADIO_IOCTL_DIO_PORT_READ.......ccoiitttiiieinieieit sttt 29
4.7.19. ADADIO_IOCTL_DIO_PORT_WRITEcctiiteiiiititiiiet ettt 29
4.7.20. ADADIO_IOCTL_INITIALIZE ..ottt bbb 30
4.7.21. ADADIO _IOCTL_IRQ_SEL ..o.ouiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesees s sees s s s s sns s s e s 30
4.7.22. ADADIO_IOCTL_LOOPBACK_CHANNELooiiiiieceseeee et st 30
4.7.23. ADADIO_IOCTL_QUERY ..ottt ettt ettt sttt et e st e e steeste e sbeeteeneeeneesbeenbeenteeneeaneesnees 31
4.7.24. ADADIO _IOCTL_REG _MODcovvireieeereeeeeeeeeeeeeeeeeeeeseeesseseese e ssssssssa s ssasssns s ssensannennes 31
4.7.25. ADADIO _IOCTL_REG _READooovoieeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseesssessssnsesss s s s sns s s nsannennes 32
4.7.26. ADADIO_IOCTL_REG WRITEoooiiiieieeieeeeeeeeeeeeeeoeeeee e seesee s es s s nssns e s nnannsnnes 32
4.7.27. ADADIO_IOCTL_RX_IO_ABORT ..ottt bbbt 33
4.7.28. ADADIO_IOCTL_RX_IO_IMODEc.ooiiiiiiiieiiisiceeistee ettt 33
4.7.29. ADADIO_IOCTL_RX_IO_TIMEOUTcootiiiteiiriiiinisieie ittt 34
4.7.30. ADADIO_IOCTL_WAIT_CANCELocoititiiteiisieese ettt 34
4.7.31. ADADIO_IOCTL_WAIT_EVENT ..ottt bbbt 35
4.7.32. ADADIO_IOCTL_WAIT_STATUS ..ottt ettt ste e steenae e st e sneesteenteenaeanaeanees 37
ST I 0 [0 B AV TSRS 38
TN R 1TSSV PTUR PRSP 38
5.2 BUIIH <.tttk b £k E bR R b b £ R R R bR R bbbt e bbbt et 38
TR IS L4 (1] o F T TP U TP OO TTUPTPPTUPRPRN 38
5.3.1. Manual Driver Startup PrOCEAUIEScoiiiieiieiieieie sttt sttt sttt e bbb sbesbeeneeseennesee b 38
5.3.2. Automatic Driver STartup PrOCEAUIES..........cii ittt sttt bbb b 39
T =T 4 1 o= 1o SRS 41
4

General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

TSI Y =T £ [0 FO TSSO U VPRSP 41
5.8, SNULHOWN ...ttt bbb bbb bbbt bbb bbbt e bt b et bt b e et n s 41
6. Document Source Code EXamMPIES.......cccociiiieiiiiiiicie e 42
B. L. FHIES. ettt b e E e h bR E R R R R R R R R R £ R R R bbbt bt nb s 42
T = 11T o OSSPSR 42
8.3, LDIAIY USE ..ottt b bbb bbb R b bR E R bR bR bbbt n s 42
7. UTIITIES SOUNCE COUE.......eiiiiiiiiiieceste ettt r e 43
5 T ST TSR TP PR 43
2 =0T o OSSP RP PR 43
S T o] =V - SRS 43
8. Operating INTOMMATIONcc.iiiiiii et 44
ST I T o TUTo o 1 o TN Lo LSRR 44
8.1.1. DEVICe TUENTITICALIONecvieiiiirieciet et nr e r e 44
8.1.2. Detailed REGISIEr DUMIP ...iciiiiicie sttt e st este e st e e te e b e eneeesseste e teenbeesteeseenreennees 44

8.2. ANalog INPUL CONFIQUIALIONcvieiie ettt e st e te e be e teaseesneesreesreeseeenneenes 44
B.3. I/O IMIOES ...t R Rt r e 44
ST 0 o (@ e o T T T4 0 T 1 SRS 45
8.3.2. BMDMA - BIOCK MOUE DIMA ...ttt sttt sttt e et st sbesneeneeseeneeeeneens 45
8.3.3. DMDMA - Demand MOTe DIMA ..ottt bbbt 45

T T g o] (I A o] o] [ToF 1 o] o S RSP SRSS 46
9.1. 20Ut - ANAIOY OULPUL = ... 80U/ . .eeieeieeeie ettt et e et e et e e s e s te e ba e be e s teasaessaesreesreesneenneenns 46
9.2. din - DIgital INPUL = . ../AIN/ c.eiiiieic et ettt e et e st e e be e be e beeraesreenreenreenreeneenes 46
9.3. dout - Digital QULPUL - ... AOUL/ c..eeieeiiecie et ettt et e te e be e tessaesreestaesreenreenneenes 46
9.4, 1d - 1dentify BOAI = ... 107 .cveiviiieiieee bbbttt 46
0.5, 10S - REGISIEN ACCESS = .. ./TEES/ .. evevereetereeieetertei ettt ettt bbbttt b bbb bbb bbb e b e bt et e b bttt e ens 46
9.6. IXIate - RECEIVE RALE = ... /TXIALE/ ..viveuiitiiteiictisieet ettt bbb bbbt b bbbt bbbttt 46
9.7. savedata - Save Acquired Data - .../SAVEAALA/eoviiriiiiiirieee s 46
9.8. shtest - Single BOArd TSt - .../SDEEST/ ...cuiviuiieirieictisie ettt bbbttt 46
[T Tot U] 0= o1 o 1151 (0] SRR 47

5

General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

Table of Figures

Figure 1 The basic software architecture of Linux based ADADIO applications.ccccvevvevieveieiennsesesieesesee e 8

6
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

1. Introduction

1.1. Purpose
The purpose of this document is to describe the interface to the ADADIO API Library and to the underlying Linux
device driver. The API Library software provides the interface between "Application Software" and the device

driver. The driver software provides the interface between the API Library and the actual ADADIO hardware. The
API Library and driver interfaces are based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms | Description

ADC Analog-to-Digital Converter

API Application Programming Interface
BMDMA | Block Mode DMA

DAC Digital-to-Analog Converter

DMA Direct Memory Access

DMDMA | Demand Mode DMA

GSC General Standards Corporation
PC104P This refers to the PC/104+ form factor.
PCI Peripheral Component Interconnect
PIO Programmed 1/0O

PMC PCI Mezzanine Card

PMC66 This refers to a PMC device capable of operating at 66MHz bus speeds.

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition
This is a shortcut representation of the ADADIO installation directory or any of its subdirectories.
ADADIO This is used as a general reference to any device supported by this driver.

API Library | This refers to the library implementing the ADADIO API.

Application | This is a user mode process, which runs in user space with user mode privileges.

Driver This is the ADADIQ device driver, which runs in kernel space with kernel mode privileges.

Library This is usually a general reference to the API Library.

1.4. Software Overview
1.4.1. Basic Software Architecture

This section describes the general architecture for the basic components that comprise ADADIO applications. The
overall architecture is illustrated in Figure 1 below.

7
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

ADADIO
Application
adadio_init()
¢ adadio_open()
adadio_close()
. ADADIO . . . adadio_ioctl()
Application Level API Library -«— libadadio_api.so adadio_read()
Kernel Level ADADIO adadio.ko or /proc/adadio Informational
ernel Leve Device Driver adadio.o /dev/adadio.0 Device 0
/dev/adadio.1 Device 1
¢ /dev/adadio.X Device X
Hardware Level ADARHO
Boards

Figure 1 The basic software architecture of Linux based ADADIO applications.
1.4.2. API Library

The primary means of accessing ADADIO boards is via the ADADIO API Library. This library forms a layer
between the application and the driver. Additional information is given in section 4 (page 17). With the library,
applications are able to open and close a device and, while open, perform 1/O control and read operations.

1.4.3. Device Driver

The device driver is the host software that provides a means of communicating directly with ADADIO hardware.
The driver executes under control of the operating system and runs in Kernel Mode as a Kernel Mode device driver.
The driver is implemented as a standard dynamically loadable Linux device driver written in the C programming
language. While applications can access the driver directly without use of the API Library, it is recommended that
all access is made through the library.

1.5. Hardware Overview

The ADADIO is a high-performance 16-bit analog-to-digital and digital-to-analog 1/O interface board. The host side
connection is 32-bit PCI based. The external I/O interface varies per model ordered. The board contains eight
synchronous 16-bit analog-to-digital input channels capable of performing up to 200,000 conversions per second per
channel. All channels are clocked simultaneously and may be synchronized with external equipment either by the
ADADIO itself or by an external device. Conversions can be performed on demand or continuously. An onboard
receive FIFO of 32k samples collects the converted data for subsequent retrieval by the host. The FIFO allows the
ADADIO to buffer data between the cable interface and the PCI bus while maintaining continuous conversions on
the cable interface (at least up to the depth of the FIFOs) independent of the PCI bus interface. Converted data can
be retrieved using either PIO or DMA. The board also contains four independent asynchronous 16-bit digital-to-
analog output channels. In addition, the board includes TTL level digital 1/O lines. This consists of an 8-bit
bidirectional discrete digital 1/0 port with one dedicated input and one dedicated output.

1.6. Reference Material

The following reference material may be of particular benefit in using the ADADIO. The specifications provide the
information necessary for an in depth understanding of the specialized features implemented on this board.

8
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

e The applicable ADADIO User Manual from General Standards Corporation.
e The applicable ADADIO2 User Manual from General Standards Corporation.
e The PCI9056 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

e The PCI9080 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

+ PLX Technology Inc.
870 Maude Avenue
Sunnyvale, California 94085 USA
Phone: 1-800-759-3735
WEB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE. txt in the root installation directory.

9
General Standards Corporation, Phone: (256) 880-8787

http://www.plxtech.com/

ADADIO, Linux Device Driver, User Manual

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 6.x, 5.x, 4.x, 3.x, 2.6, 2.4 and 2.2 running on a PC
system with one or more x86 processors. This release of the driver supports the below listed kernels.

Kernel | Distribution
6.2.9 | Red Hat Fedora Core 38
6.0.7 | Red Hat Fedora Core 37

5.17.5 | Red Hat Fedora Core 36
5.14.10 | Red Hat Fedora Core 35
5.11.12 | Red Hat Fedora Core 34
5.8.15 | Red Hat Fedora Core 33
5.6.6 | Red Hat Fedora Core 32
5.3.7 | Red Hat Fedora Core 31
5.0.9 | Red Hat Fedora Core 30

4.18.16 | Red Hat Fedora Core 29
4.16.3 | Red Hat Fedora Core 28
4.13.9 | Red Hat Fedora Core 27
4.11.8 | Red Hat Fedora Core 26
4.8.6 | Red Hat Fedora Core 25
455 | Red Hat Fedora Core 24
4.2.3 | Red Hat Fedora Core 23
4.0.4 | Red Hat Fedora Core 22

3.17.4 | Red Hat Fedora Core 21
3.11.10 | Red Hat Fedora Core 20
3.9.5 | Red Hat Fedora Core 19
3.6.10 | Red Hat Fedora Core 18
3.3.4 | Red Hat Fedora Core 17
3.1.0 | Red Hat Fedora Core 16

2.6.38 | Red Hat Fedora Core 15
2.6.35 | Red Hat Fedora Core 14
2.6.33 | Red Hat Fedora Core 13
2.6.31 | Red Hat Fedora Core 12
2.6.29 | Red Hat Fedora Core 11
2.6.27 | Red Hat Fedora Core 10
2.6.25 | Red Hat Fedora Core 9
2.6.23 | Red Hat Fedora Core 8
2.6.21 | Red Hat Fedora Core 7
2.6.18 | Red Hat Fedora Core 6
2.6.15 | Red Hat Fedora Core 5
2.6.11 | Red Hat Fedora Core 4
2.6.9 | Red Hat Fedora Core 3

[2.4.18 | Red Hat 8.0 I

NOTE: Some older kernel versions are supported (the sources are maintained), but are not tested.

NOTE: While only Red Hat Fedora distributions are listed, numerous other distributions are
supported and have been tested on an as needed basis.

NOTE: The driver will have to be built before being used as it is provided in source form only.

10
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

NOTE: The driver has not been tested with a non-versioned kernel.
NOTE: The driver is designed for SMP support, but has not undergone SMP specific testing.
2.1.1. 32-bit Support Under 64-bit Environments

This driver supports 32-bit applications under 64-bit environments. The availability of this feature in the kernel
depends on a 64-bit kernel being configured to support 32-bit application compatibility. Additionally, 2.6 kernels
prior to 2.6.11 implemented 32-bit compatibility in a way that resulted in some drivers not being able to take
advantage of the feature. (In these kernels a driver’s IOCTL command codes must be globally unique. Beginning
with 2.6.11 this requirement has been lifted.) If the driver is not able to provide 32-bit support under a 64-bit kernel,
the “32-bit support” field in the /proc/adadio file will be “no”.

2.2. The /proc/ File System

While the driver is running, the text file /proc/adadio can be read to obtain information about the driver and the
boards it detects. Each file line includes an entry name followed immediately by a colon, a space character, and the
entry value. Below is an example of what appears in the file, followed by descriptions of each entry.

version: 4.10.111.50
32-bit support: yes
boards: 2

models: ADADIO,ADADIO2

Entry Description

version This gives the driver version number in the form x.x.x.x.

B

This reports the driver’s support for 32-bit applications. This will be either “yes” or “no’

32-bit t . .
+- SUPPOTE g0 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.
This gives a comma separated list of the basic model number for each board the driver
models detected. The model numbers are listed in the same order that the boards are accessed via

the API Library’s open function.

2.3. File List

This release consists of the below listed primary files. The archive content is described in following subsections.

File Description
adadio.linux.tar.gz | Thisarchive contains the driver, the API Library and all related files.
adadio linux um.pdf | Thisis a PDF version of this user manual, which is included in the archive.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory
structure is created and populated with the respective files.

Directory Description
adadio/ This is the driver root directqry. It confcains tr_]e documentation, the Overall Make Script (section
2.7, page 12) and the below listed subdirectories.
../api/ This directory contains the API Library source files (section 4, page 17).
/d This directory contains the source files for the code samples given in this document (section 6,
../docsrc/ page 42)

../driver/ | This directory contains the device driver source files (section 5, page 38).

../include/ | This directory contains the header files for the various libraries.

11
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

../1ib/ This directory contains all of the libraries built from the installed sources.

../samples/

This directory contains the sample application subdirectories and all of their corresponding
source files (section 9, page 46).

../utils/ This directory contains utility sources used by the sample applications (section 7, page 43).

2.5. Installation

Perform installation following the below listed steps. This installs the device driver, the API Library and all related
sources and documentation.

1.

Create and change to the directory where the files are to be installed, such as /usr/src/linux/drivers/.
(The path name may vary among distributions and kernel versions.)

Copy the archive file adadio.linux.tar.gz into the current directory.

Issue the following command to decompress and extract the files from the provided archive. This creates the
directory adadio in the current directory, and then copies all of the archive’s files into this new directory.

tar —-xzvf adadio.linux.tar.gz

2.6. Removal

Perform removal following the below listed steps. This removes the device driver, the API Library and all related
sources and documentation.

1.

2.

Shutdown the driver as described in section 5.6 (page 41).

Change to the directory where the driver archive was installed, which may have been
/usr/src/linux/drivers/. (The path name may vary among distributions and kernel versions.)

Issue the below command to remove the driver archive and all of the installed driver files.

rm -rf adadio.linux.tar.gz adadio

Issue the below command to remove all of the installed device nodes.

rm —-f /dev/adadio.*

If the automatic startup procedure was adopted (section 5.3.2, page 39), then edit the system startup script

rc.local and remove the line that invokes the ADADIO’s start script. The file rc.local should be
located in the /etc/rc.d/ directory.

2.7. Overall Make Script

An Overall Make Script is included in the root installation directory. Executing this script will perform a make for
all build targets included in the release. The script also loads the driver. The script is named make all. Follow the
below steps to perform an overall make and to load the driver.

1.

2.

NOTE: The following steps may require elevated privileges.
Change to the driver root directory (.../adadio/).

Remove existing build targets using the below command. This does not unload the driver.

12
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

./make _all clean

3. Issue the following command to make all archive targets and to load the driver.

./make all

NOTE: After the device driver is built the script starts the driver. After building the API Library it
is copied by the script to /usr/1ib/. A clean operation does not unload the driver. However, a
clean does delete the API Library shared object file previously copied to /usr/1ib/.

2.8. Environment Variables

Some build environments may require compiler or linker options not present in the provided make files. To
accommodate local environment specific requirements, the provided make files incorporate support for the
following set of GSC specific environment variables.

2.8.1. GSC_API_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the API Library. The compiler used by the API Library make file is “gcc”. The content of this environment variable
is noted in the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in
the table refers to the contents of the environment variable. This environment variable has no effect on compiling
any other distributed source files or linking of any object files.

. == Compiling: init.c
Undefined _ s L
Compiling: ioctl.c
or Empty L
Compiling: open.c
. = Compiling: init.c (added 'xxx')
Defined and | _ s L. , \
Not Empt = Compiling: i1octl.c (added '"xxx'")
Pty = Compiling: open.c (added 'xxx')

2.8.2. GSC_API_ LINK FLAGS

This environment variable accommodates adding linker command line options when linking object files for the API
Library. The linker used by the API Library make file is “1d”. The content of this environment variable is noted in
the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in the table
refers to the contents of the environment variable. This environment variable has no effect on compiling of any
source files or linking of any other object files.

Undefined | ____ Linking: ../lib/libadadio api.so

or Empty _

Definedand | ____ ; ; ' '
Not Empty | ~ Linking: ../lib/libadadio_api.so (added 'xxx'")

2.8.3.GSC_LIB COMP FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the utility libraries. The compiler used by the utility library make files is “gcc”. The content of this environment
variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The
“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on
compiling any other distributed source files or linking of any object files.

13
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

. == Compiling: close.c
L‘Jrngf:lmted == Compiling: init.c
Pty == Compiling: ioctl.c
== Compiling: close.c added ' !
Definedand | __ p-l l g- C (Y XX}?)
Not Empt == Compiling: init.c (added 'xxx')
P | Compiling: ioctl.c (added '"xxx'")

2.8.4.GSC_LIB_LINK FLAGS

This environment variable accommodates adding linker command line options when linking object files for the
utility libraries. The linker used by the utility library make files is “1d”. The content of this environment variable is
noted in the make files’ output to the screen. The table below shows a portion of the screen output. The “xxx” in the
table refers to the contents of the environment variable. This environment variable has no effect on compiling of any
source files or linking of any other object files.

Undefined | ____ 1:nking: ../lib/adadio utils.a
or Empty -
Bg{'gﬂ;’;d ———— Linking: ../lib/adadio utils.a (added 'xxx')

2.8.5.GSC_APP_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the sample applications. The compiler used by the sample application make files is “gcc”. The content of this
environment variable is noted in the make files’ output to the screen. The table below shows a portion of the screen
output. The “xxx” in the table refers to the contents of the environment variable. This environment variable has no
effect on compiling any other distributed source files or linking of any object files.

Undefined == Compiling: main.c

or Empty == Compiling: perform.c

Definedand | == Compiling: main.c (added "xxx')

Not Empty | == Compiling: perform.c (added 'xxx')

2.8.6. GSC_APP_LINK FLAGS

This environment variable accommodates adding linker command line options when linking object files for the
sample applications. The linker used by the sample application make files is “gcc”. The content of this environment
variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The
“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on
compiling of any source files or linking of any other object files.

Undefined o , i
or Empty = Linking: id

Definedand | ____ ' :
Not Empty | Linking: id (added 'xxx')

14
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

3. Main Interface Files

This section gives general information on the suggested device interface files to use when developing ADADIO
based applications.

3.1. Main Header File

Throughout the remainder of this document references are made to various header files included as part of the
ADADIO driver installation. For ease of use it is suggested that applications include only the single header file
shown below rather than individually including those headers identified separately later in this document. Including
this header file pulls in all other pertinent ADADIO header files. Therefore, sources may include only this one
ADADIO header and make files may reference only this one ADADIO include directory.

Description | File Location
Header File | adadio main.h | ../include/

3.2. Main Library File

Throughout the remainder of this document references are made to various statically linkable libraries included as
part of the ADADIO driver installation. For ease of use it is suggested that applications link only the single static
library file shown below rather than individually linking those static libraries identified separately elsewhere in this
document. Linking this library file pulls in all other pertinent ADADIO specific static libraries. Therefore, make
files may reference only this one ADADIO static library and only this one ADADIO library directory.

Description | File (see note below) | Location
Static Library | adadio_main.a /1ib/
Static Library | adadio multi.a |7

NOTE: The ADADIO API Library is implemented as a shared library and is thus not linked with
the ADADIO Main Library. The API Library must be linked with applications by adding the
argument ~ladadio_api to the linker command line.

NOTE: For applications using the ADADIO and no other GSC devices, link the
adadio main.a library. For applications using multiple GSC device types, link the
xxxx_main.a library for one of the devices and the xxxx multi.a library for the others.
Linking multiple xxxx main.a libraries may likely produce link errors due to duplicate
symbols being defined. While it may make little or no difference, it is recommended that one
choose the xxxx main.a library from the driver with the largest number in positions three
(x.x.X.x.X) and/or four (x.x.x.X.x) in the driver release version number.
3.2.1. Build

The main library is built via the Overall Make Script (section 2.7, page 12). However, the main library can be built
separately following the below steps.

1. Change to the directory where the main library resides (.../1ib/).
2. Remove existing build targets using the below command.

make clean
3. Build the main library by issuing the below command.

make

15
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

3.2.2. System Libraries

In addition to linking the static library named above, as well as the API Library shared object file, applications may
need to also link in additional system libraries as noted below.

Library gcc Link Flag
Math -1m

POSIX Thread | -1pthread
Real Time -1rt

16
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

4. API Library

The ADADIO API Library is the software interface between user applications and the ADADIO device driver. The
interface is accessed by including the header file adadio api.h.

NOTE: Contact General Standards Corporation if additional library functionality is required.
4.1. Files

The library files are summarized in the table below.

Description | File Location
Source Files | *.c, *.h/api/
Header File | adadio api.h |../include/

../1ib/
/usr/lib/ T
1 The shared object library is automatically copied to /usr/1ib/ when it is built.

Library File | adadio api.so

4.2. Build

The API Library is built via the Overall Make Script (section 2.7, page 12), but can be built separately following the
below steps.

NOTE: The following steps may require elevated privileges.
1. Change to the directory where the library sources are installed (.../api/).
2. Remove existing build targets using the below command.
make clean

3. Compile the source files and build the API Library by issuing the below command. This step copies the Library
to /usr/lib/.

make

4.3. Library Use

The library is used at application compile time, at application link time and at application run time. At compile time
include the below listed header file in each source file using a component of the Library interface. Also, edit the
include file search path to locate the header file in the below listed directory. At link time the Library’s shared object
file is linked via the linker command line. This can be done by naming the .so file explicitly or by adding the below
linker command line argument. At run time the library is found in the directory /usr/1ib/. (The shared object
file is automatically copied to /usr/1ib/ when itis built.)

Description File Location Linker Argument
Header File adadio api.h ../include/
4.4. Macros
The Library interface includes the following macros.
17

General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

4.4.1. 10CTL Codes

The IOCTL macros are documented in section 4.7 (page 23).

4.4.2. Registers

The following gives the complete set of ADADIO registers.

4.4.2.1. GSC Registers

The following table gives the complete set of GSC specific ADADIO registers. Please note that the set of registers

supported by any given device may vary according to model and firmware version. For the set of supported registers
and their detailed definitions refer to the appropriate ADADIO User Manual.

NOTE: Refer to the output of the “id” sample application (../id/) for a complete list of the
registers supported by the device being accessed.

Macro Description
ADADIO_GSC_AIDR | Analog Input Data Register
ADADIO_GSC_AOCOR | Analog Output Channel O Register
ADADIO_GSC_AOCIR | Analog Output Channel 1 Register
ADADIO_GSC_AOCZR | Analog Output Channel 2 Register
ADADIO_GSC_AOC3R | Analog Output Channel 3 Register
ADADIO GSC_BCR Board Control Register
ADADIO GSC_BRR Board Revision Register *
ADADIO_GSC_DIOPR | Digital I/O Port Register
ADADIO GSC_SRR Sample Rate Register

* The first time this register is read after a fresh load of the driver may take several seconds as
access to this register requires an Autocalibration cycle and an initialization.

4.4.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of PCI
register identifiers refer to driver header files gsc_pci9056.h and gsc_pci9080.h, which are automatically
included via adadio api.h.

4.4.2.3. PLX Feature Set Registers
Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX

register identifiers refer to driver header files gsc_pci9056.h and gsc_pci9080.h, which are automatically
included via adadio api.h.

4.5. Data Types

The data types used by the API Library are described with the IOCTL services with which they are used. For
additional information refer to section 4.7 (page 23).

4.6. Functions

The interface includes the following functions. The return values reflect the completion status of the requested
operation. A return value less than zero always reflects an error condition. The table below summarizes the error
status values. For the I/O function, read, non-negative return values reflect the number of bytes transferred between
the application and the interface. A value equal to the requested transfer size indicates complete success. Return

18
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

values less than the requested transfer size indicate that the 1/0 timeout expired. For the other API function calls a
return value of zero indicates success.

Return Value | Description
<0 This is the value “ (-errno)” (see errno.h).

4.6.1. adadio_close()

This function is the entry point to close a connection to an open ADADIO. The board is put in an initialized state
before this call returns.

Prototype

int adadio_close(int £d);

Argument | Description

fd This is the file descriptor obtained from the open service (section 4.6.4, page 21).
Return Value | Description

0 The operation succeeded.

<0 An error occurred. See error value descriptions above.

Example

#include <stdio.h>
#include "adadio dsl.h"
int adadio close dsl(int £fd)
{
int errs;
int ret;

ret = adadio close(fd);

if (ret)
printf ("ERROR: adadio close() returned %d\n", ret);

errs =ret 21 : 0;
return (errs);
}

4.6.2. adadio_init()
This function is the entry point to initializing the ADADIO API Library and must be the first call into the Library.
This function may be called more than once, but only the first successful call actually initializes the library.
Subsequent calls perform no operation at all. All other API calls return a failure status when the API Library is not
initialized.
Prototype

int adadio_init (void);

19
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

Return Value | Description

0 The operation succeeded.

<0 An error occurred. See error value descriptions above.
Example

#include <stdio.h>

#include "adadio dsl.h"

int adadio _init dsl(void)

{

int errs;
int ret;

ret =

adadio_init();

if (ret)
printf ("ERROR: adadio init () returned %d\n", ret);

errs

=ret 2 1 : 0;

return (errs) ;

}

4.6.3. adadio_ioctl()

This function is the entry point to performing setup and control operations on an ADADIO. This function should
only be called after a successful open of the respective device. The specific operation performed varies according to
the request argument, which is any of the IOCTL services supported by the API (section 4.7, page 23). The arg
argument varies according to the specified IOCTL service and is NULL when unused.

NOTE: IOCTL operations are not supported for an open on device index -1.

Prototype

int adadio_ioctl(int fd, int request, void* arg);

Argument | Description

fd This is the file descriptor obtained from the open service (section 4.6.4, page 21).
request | This specifies the desired operation to be performed (section 4.7, page 23).

arg This is specific to the IOCTL operation specified by the request argument.

Return Value | Description

0

The operation succeeded.

<0

An error occurred. See error value description above.

Example

#include <stdio.h>

#include "adadio dsl.h"

int adadio ioctl dsl(int £fd, int request, void *arg)

{

20
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

int errs;
int ret;

ret =

adadio ioctl (fd, request, arg);

if (ret)
printf ("ERROR: adadio ioctl() returned %d\n", ret);

errs

= ret 21 : 0;

return (errs) ;

}

4.6.4. adadio_open()

This function is the entry point to open a connection to an ADADIO. The device is initialized before the function

returns.

Prototype

int adadio_open(int device, int share, int* fd);

Argument | Description

device This is the zero-based index of the ADADIO device to access. T

share Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access
Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).
The device handle is returned here. The pointer cannot be NULL. Values returned are as
follows.

fd

Value | Description
>= 0 | This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

+ The index value -1 can also be given to acquire driver information (section 2.2, page 11).

Return Value | Description

0

The operation succeeded.

<0

An error occurred. See error value description above.

Example

#include <stdio.h>

#include "adadio dsl.h"

int adadio_open dsl(int device, int share, int* fd)

{

int errs;
int ret;

ret =

adadio open(device, share, fd);

if (ret)
printf ("ERROR: adadio_open () returned $d\n", ret);

errs

= ret 21 : 0;

21
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

return (errs) ;
}

4.6.4.1. Access Modes

The value of the share argument determines the device access mode, as follows.

Shared Access Mode:

Shared Access Mode allows multiple applications to access the same device simultaneously. In this mode, the first
successful open request returns with the device in an initialized state. Subsequent successful Shared Access Mode
open requests do not affect the state of the device. Once opened in Shared Access Mode, the device access remains
in this mode until all Shared Access Mode accesses release the device with a close request.

Exclusive Access Mode:

Exclusive Access Mode allows a single application to acquire exclusive access to a device. In this mode, a
successful open request returns with the device in an initialized state. While open in this mode all subsequent open
requests will fail regardless of the access mode requested. Once opened in Exclusive Access Mode, the device
access remains in this mode until released by the application with a close request.

4.6.5. adadio_read()

This function is the entry point to reading data from an open ADADIO. This function should only be called after a
successful open of the respective device. The function reads up to bytes bytes from the device.

NOTE: If an open was performed using an index of -1, then read requests will acquire
information from the driver (section 2.2, page 11) rather than data from a device.

NOTE: For additional information refer to the 1/O Modes information (section 8.3, page 44).

Prototype

int adadio_read(int fd, void* dst, size t bytes);

Argument | Description

fd This is the file descriptor obtained from the open service (section 4.6.4, page 21).

dst The data read is put here.

This is the desired number of bytes to read. When reading from a device, this must be a

bytes multiple of four (4).

Return Value | Description

The operation succeeded. When reading from a device, a value less than bytes

0 tobytes indicates that the 1/O timeout period lapsed (section 4.7.29, page 34) before the entire
request could be satisfied.
<0 An error occurred. See error value description above.
Example

#include <stdio.h>
#include "adadio dsl.h"

int adadio_read dsl(int fd, void* dst, size t bytes, size t* gty)
{

22
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

int errs;
int ret;

ret = adadio read(fd, dst, bytes);

if (ret < 0)

printf ("ERROR: adadio read() returned %d\n", ret);

if (gty)
qty[0] = (ret < 0)

errs = (ret < 0) 21

return (errs) ;

}

4.6.6. ADADIO Write

? 0 : (size t) ret;

0;

A write function is not supported for generating analog output. Instead, applications must use the
ADADIO IOCTL AOUT CH X WRITE IOCTL services (section 4.7.9, page 26).

4.7. I0CTL Services

The ADADIO API Library and device driver implement the following IOCTL services. Each service is described
along with the applicable adadio ioctl () function arguments.

4.7.1. ADADIO_IOCTL_AIN_BUF_CLEAR
This service clears the data from the input buffer.

Usage

Argument | Description

request | ADADIO IOCTL AIN BUF CLEAR

arg Not used.

4.7.2. ADADIO_IOCTL_AIN_BUF_ENABLE
This service enables and disables the input buffer.

Usage

Argument | Description

request | ADADIO IOCTL AIN BUF ENABLE

arg s32%*

Valid argument values are as follows.

Value

Description

-1

This requests the current setting.

ADADIO AIN BUF ENABLE NO

This disables input to the buffer and clears the buffer content.

ADADIO AIN BUF ENABLE YES

This enables input to the buffer.

23

General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

4.7.3. ADADIO_IOCTL_AIN_BUF_SIZE

This service sets the size of the board’s virtual input buffer. The physical buffer size is 32K samples deep.

NOTE: The buffer fill level status flags refer to the virtual buffer size, not the physical buffer size.

NOTE: Input sample collection is halted while the virtual buffer is full.

Usage

Argument | Description

request | ADADIO IOCTL AIN BUF SIZE

arg s32%*

Valid argument values are as follows.

Value

Description

-1

This requests the current setting.

ADADIO AIN BUF SIZE 1

Set the Virtual Buffer size to one sample.

ADADIO AIN BUF SIZE 2

Set the Virtual Buffer size to two samples.

ADADIO AIN BUF SIZE 4

Set the Virtual Buffer size to four samples.

ADADIO AIN BUF SIZE 8

Set the Virtual Buffer size to eight samples.

ADADIO AIN BUF SIZE 16

Set the Virtual Buffer size to 16 samples.

ADADIO AIN BUF SIZE 32

Set the Virtual Buffer size to 32 samples.

ADADIO AIN BUF SIZE 64

Set the Virtual Buffer size to 64 samples.

ADADIO AIN BUF SIZE 128

Set the Virtual Buffer size to 128 samples.

ADADIO AIN BUF SIZE 256

Set the Virtual Buffer size to 256 samples.

ADADIO AIN BUF SIZE 512

Set the Virtual Buffer size to 512 samples.

ADADIO AIN BUF SIZE 1024

Set the Virtual Buffer size to 1,024 samples.

ADADIO AIN BUF SIZE 2048

Set the Virtual Buffer size to 2,048 samples.

ADADIO AIN BUF SIZE 4096

Set the Virtual Buffer size to 4,096 samples.

ADADIO AIN BUF SIZE 8192

Set the Virtual Buffer size to 8,192 samples.

ADADIO AIN BUF SIZE 16384

Set the Virtual Buffer size to 16,384 samples.

ADADIO AIN BUF SIZE 32768

Set the Virtual Buffer size to 32,768 samples, which is the
buffer’s physical size.

4.7.4. ADADIO_IOCTL_AIN_BUF_STS

This service retrieves the fill level status of the virtual input buffer.

Usage

Argument | Description

request | ADADIO TOCTL AIN BUF STS

arg s32*

Valid argument values returned are as follows.

Value

Description

ADADIO AIN BUF STS EMPTY

The virtual buffer is empty.

ADADIO_AIN BUF_ STS_ ALMOST EMPTY | The buffer is less than half full, but it is not empty.

ADADIO AIN BUF_ STS_HALF FULL The buffer is at least half full, but it is not full.

ADADIO AIN BUF STS FULL

The virtual buffer is full.

24

General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

4.7.5. ADADIO_IOCTL_AIN_CHAN_LAST

This service configures the selection of the last channel to scan, which effectively sets the range and number of
channels to scan.

Usage

Argument | Description

request | ADADIO IOCTL AIN CHAN LAST

arg s32%*

Valid argument values are as follows.

Value | Description

-1 Retrieve the current setting.

0 Scan channel 0 only.

Scan channels 0-1.

Scan channels 0-2.

Scan channels 0-3.

Scan channels 0-4.

Scan channels 0-5.

Scan channels 0-6.

~N| o O W N

Scan channels 0-7.

4.7.6. ADADIO_IOCTL_AIN_MODE

This service configures the analog input mode.

Usage

Argument | Description

request | ADADIO IOCTL AIN MODE

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Passing in this value requests the current setting.

ADADIO AIN MODE DIFF BURST

This refers to Differential, burst input operation.

ADADIO AIN MODE DIFF CONT

This refers to Differential, continuous input operation.

ADADIO AIN MODE LB TEST

This refers to connection of a single output channel to all input
channels.

ADADIO AIN MODE SE BURST

This refers to Single Ended, burst input operation.

ADADIO AIN MODE SE CONT

This refers to Single Ended, continuous input operation.

ADADIO AIN MODE VREF TEST

This option connects the inputs to the +VREF reference voltage.

ADADIO AIN MODE ZERO TEST

This option connects the inputs to the zero-reference voltage.

4.7.7. ADADIO_IOCTL_AIN_NRATE

This service sets the NRATE divider value for input sample rate generation.

25

General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

Usage
Argument | Description
request | ADADIO IOCTL AIN NRATE
arg s32%*

Valid argument values are as follows.

Value

Description

-1

Passing in this value requests the current setting.

100 - OxFFFF | This is the range for 200K S/S boards

200 - OxFFFF | This is the range for 100K S/S boards

4.7.8. ADADIO_IOCTL_AIN_TRIGGER

This service initiates an input strobe operation.

Usage
Argument | Description
request | ADADIO IOCTL AIN TRIGGER
arg Not used.

4.7.9. ADADIO_IOCTL_AOUT_CH_X_WRITE

This refers to the below listed services.

Service

Description

ADADIO IOCTL AOUT CH 0 WRITE | Write to Output Channel 0.

ADADIO IOCTL AOUT CH 1 WRITE | Write to Output Channel 1.

ADADIO IOCTL AOUT CH 2 WRITE | Write to Output Channel 2.

ADADIO IOCTL AOUT CH 3 WRITE | Write to Output Channel 3.

These services write a value to their respective analog output channels.

Usage
Argument | Description
request | ADADIO IOCTL AOUT CH X WRITE
arg s32%*

Valid argument values are as follows.

Value

Description

-1

Passing in this value requests the current setting.

0x0000 - OxFFFF | Thisis the value to be applied to the output channel.

4.7.10. ADADIO_IOCTL_AOUT_ENABLE

This service enables or disables the analog outputs.

26
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

Usage

Argument | Description

request | ADADIO IOCTL AOUT ENABLE

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Passing in this value requests the current setting.

ADADIO AOUT ENABLE NO

Disable the outputs.

ADADIO AOUT ENABLE YES

Enable the outputs

4.7.11. ADADIO_IOCTL_AOUT_STROBE

This service initiates an output strobe operation.

Usage

Argument | Description

request | ADADIO TOCTL AQUT STROBE

arg Not used.

4.7.12. ADADIO_IOCTL_AOUT_STROBE_ENABLE

This service enables or disables output strobe operation.

Usage

Argument | Description

request | ADADIO IOCTL AOUT STROBE ENABLE

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Passing in this value requests the current setting.

ADADIO AOUT STROBE ENABLE NO

Disable output strobe operation. Values are posted to the
output immediately.

ADADIO_AOUT STROBE ENABLE YES

Enable output strobe operation. Values are posted to the
output only in response to an output strobe.

4.7.13. ADADIO_IOCTL_AUTOCAL

This service initiates an Autocalibration cycle.

NOTE: The driver performs an initialization after performing an autocalibration, as required by
the hardware. This is a complete initialization and is the same as is done with the
ADADIO IOCTL INITIALIZE IOCTL service (section 4.7.20, page 30).

NOTE: If the autocalibration service returns an error status, an error message will be posted to the
system log briefly describing the error condition.

27

General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

NOTE: When an error is encountered, the service writes a brief, descriptive error message to the

system log.
Usage
Argument | Description
request | ADADIO TOCTL AUTOCAL
arg Not used.

4.7.14. ADADIO_IOCTL_DATA_FORMAT

This service sets the analog input and output data encoding format.

Usage
Argument | Description
request | ADADIO IOCTL DATA FORMAT
arg s32%*

Valid argument values returned are as follows.

Value

-1

ADADIO DATA FORMAT 2S COMP
ADADIO DATA FORMAT OFF BIN

Description

This requests the current setting.

This refers to the Twos Compliment encoding format.
This refers to the Offset Binary encoding format.

4.7.15. ADADIO_IOCTL_DIO_PIN_READ

This service reads the dedicated digital input pin.

Usage
Argument | Description
request | ADADIO IOCTL DIO PIN READ
arg s32%*

Valid argument values returned are as follows.

Value
ADADIO DIO PIN CLEAR
ADADIO DIO PIN SET

Description
The dedicated input is low.
The dedicated input is high.

4.7.16. ADADIO_IOCTL_DIO_PIN_WRITE

This service sets the output level for the dedicated digital output pin.

Usage
Argument | Description
request | ADADIO IOCTL DIO PIN WRITE
arg s32*

Valid argument values are as follows.

28
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

Value Description

-1 This requests the current setting.
ADADIO DIO_PIN CLEAR | Set the output to a low level.
ADADIO DIO_PIN SET Set the output to a high level.

4.7.17. ADADIO_IOCTL_DIO_PORT_DIR
This service sets the direction of the 8-bit digital 1/0 port.

Usage

Argument | Description
request | ADADIO IOCTL DIO PORT DIR
arg s32%*

Valid argument values are as follows.

Value Description

-1 This requests the current setting.
ADADIO DIO_PORT DIR_INPUT | This selects the input direction.
ADADIO DIO_PORT DIR _OUTPUT | This selects the output direction.

4.7.18. ADADIO_IOCTL_DIO_PORT_READ

This service reads the value at the digital 1/O port. The value read is input data only if the port is configured as an
input. If the port is configured to output data, then this service retrieves the current output value.

Usage

Argument | Description
request | ADADIO IOCTL DIO PORT READ
arg s32%*

Valid argument values returned are as follows.

Value Description
0x00 - OxFF | Thisis an 8-bit port.

4.7.19. ADADIO_IOCTL_DIO_PORT_WRITE

This service sets the output value for the digital I/O port. The value provided appears at the digital 1/0 port only if
the port is configured as an output.

Usage

Argument | Description
request | ADADIO IOCTL DIO PORT WRITE
arg s32%*

Valid argument values are as follows.

29
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

Value

Description

-1

Passing in this value returns the last output value, if the port is configured as an
output. If the port is configured as an input, then this will retrieve the current input.

0x00 - OxFF | This is an 8-bit port.

4.7.20. ADADIO_IOCTL_INITIALIZE

This service returns all interface settings for the board to the state they were in when the board was first opened.
This includes both hardware-based settings and software-based settings.

NOTE: If the initialization service returns an error status, an error message will be posted to the
system log briefly describing the error condition.

Usage
Argument | Description
request | ADADIO IOCTL INITIALIZE
arg Not used.

4.7.21. ADADIO_IOCTL_IRQ_SEL

This service configures the source selection for firmware interrupts.

Usage
Argument | Description
request | ADADIO IOCTL IRQ SEL
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

ADADIO IRQ AUTOCAL_DONE This refers to the completion of an Autocalibration cycle.
ADADIO IRQ AIN BUF_EMPTY This refers to the Input Buffer becoming empty.
ADADIO IRQ AIN BUF_FULL This refers to the Input Buffer becoming full.

ADADIO IRQ AIN BUF_HALF FULL | This refers to the Input Buffer becoming half full.
ADADIO IRQ AIN BURST_DONE This refers to the completion of an input burst.

ADADIO TIRQ AOUT_STROBE_DONE | This refers to the completion of an output strobe.
ADADIO IRQ INIT DONE This refers to the completion of an initialization cycle.

4.7.22. ADADIO_IOCTL_LOOPBACK_CHANNEL

This service selects the output channel to use for the Loopback input mode selection.

Usage
Argument | Description
request | ADADIO IOCTL LOOPBACK CHANNEL
arg s32%*

Valid argument values are as follows.

30
General Standards Corporation, Phone: (256) 880-8787

4.7.23. ADADIO_

ADADIO, Linux Device Driver, User Manual

Value | Description

This requests the current setting.

0 Select channel 0 output as the input source.

Select channel 1 output as the input source.

Select channel 2 output as the input source.

WIN| -

Select channel 3 output as the input source.

IOCTL_QUERY

This service queries the driver for various pieces of information about the board and the driver.

Usage

Argument | Description
request | ADADIO IOCTL QUERY
arg s32%*

Valid argument values are as follows.

Value

Description

ADADIO QUERY AUTOCAL MS

This returns the maximum duration of the Autocalibration cycle
in milliseconds.

ADADIO QUERY COUNT

This returns the number of query options supported by the IOCTL
service.

ADADIO QUERY DEVICE TYPE

This returns the identifier value for the board’s type. This should
be GSC DEV_TYPE ADADIO.

ADADIO QUERY DMDMA

Does the board support Demand Mode DMA? (0 = no, 1 = yes)

ADADIO QUERY FIFO SIZE

This returns the size of the input buffer in 32-bit A/D values.

ADADIO QUERY FSAMP MAX

This gives the maximum FSAMP value in S/S.

ADADIO QUERY FSAMP MIN

This gives the minimum FsamP value in S/S.

ADADIO QUERY INIT MS

This returns the duration of a board initialization in milliseconds.

ADADIO QUERY MASTER CLOCK

This returns the master clock frequency in hertz.

ADADIO QUERY NRATE MASK

This returns the mask for the board’s NRATE fields.

ADADIO QUERY NRATE MAX

This returns the maximum supported NRATE value.

ADADIO QUERY NRATE MIN

This returns the minimum supported NRATE value.

ADADIO QUERY VRANGE

This returns the voltage range option supported by the board. See
below.

Valid return values are as indicated in the above table and as given in the below table.

Value

Description

ADADIO TOCTL QUERY ERROR

Either there was a processing error or the query option is
unrecognized.

Valid return values for the ADADIO QUERY VRANGE option are as follows.

Value

Description

ADADIO VRANGE 10

The board is configured for £10V.

ADADIO VRANGE 25 5 10

The board is configured for 2.5V, £5V or £10V.

4.7.24. ADADIO_IOCTL_REG_MOD

This service performs a read-modify-write operation on a board register. This includes only the firmware registers,
as the PCI and PLX Feature Set registers are read-only.

31

General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

Usage
Argument | Description
request | ADADIO IOCTL REG MOD
arg gsc reg t*

Definition

typedef struct
{

u32 reg; // range: any valid register definition
u32 value; // range: 0x0-O0xFFFFFFFF
u32 mask; // range: 0x0-0xFFFFFFFF

} gsc _reg t;

Fields | Description

reg This is the register to access. Refer to section 4.4.2 on page 18 for additional information.
value | This is the value to write to the specified register. Only the bits set in the map are applied.

This is a map of the bits to modify. If a bit is set, then the corresponding register bit is set
mask | according the content of the value field. If a bit here is zero, then that register bit is

unmodified.

4.7.25. ADADIO_IOCTL_REG_READ

This service reads the value of an ADADIO register. This includes the PCI registers, the PLX Feature Set registers
and the firmware registers.

Usage
Argument | Description
request | ADADIO IOCTL REG READ
arg gsc reg t*

Definition

typedef struct
{

u32 reg; // range: any valid register definition
u32 value; // range: 0x0-0xFFFFFFFF
u32 mask; // range: O0x0-0xFFFFFFFF

} gsc _reg t;

Fields | Description
reg This is the register to read from. Refer to section 4.4.2 on page 18 for additional information.

value | This is the value read from the specified register.
mask | This is ignored for read requests.

4.7.26. ADADIO_IOCTL_REG_WRITE

This service writes a value to a board register. This includes only the firmware registers, as the PCI and PLX Feature
Set registers cannot be modified.

32
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

Usage
Argument | Description
request | ADADIO IOCTL REG WRITE
arg gsc reg t*
Definition
typedef struct
{
u32 reg; // range: any valid register definition
u32 value; // range: 0x0-O0xFFFFFFFF
u32 mask; // range: 0x0-0xFFFFFFFF

} gsc _reg t;

Fields | Description

reg This is the register to write to. Refer to section 4.4.2 on page 18 for additional information.
value | This is the value to write to the specified register.

mask | This is ignored for write requests.

4.7.27. ADADIO_IOCTL_RX_IO_ABORT

This service aborts an ongoing adadio read () request.

Usage

Argument | Description

request | ADADIO IOCTL RX IO ABORT

arg

sS32%*

The results are reported as one of the following values.

Value

Description

ADADIO_ IO _ABORT NO | Aread request was not aborted as none were ongoing.

ADADIO_IO_ABORT YES | Anongoing read request was aborted.

4.7.28. ADADIO_IOCTL_RX_IO_MODE

This service selects the data transfer mode for I/O operations. Refer to the adadio read () service for additional
information (section 4.6.5 on page 22).

Usage

Argument | Description

request | ADADIO IOCTL RX IO MODE

arg

S32%*

Valid argument values are as follows.

Value

Description

-1

This requests the current setting.

GSC_ 10 MODE_ BMDMA

This refers to Block Mode DMA in which the DMA is initiated only after the
data becomes available.

33
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

This refers to Demand Mode DMA in which the transfer occurs as the data

GSC 10 MODE DMDMA . L _ .
- = - become available. This is the most efficient option for most 1/O requests.

This refers to PIO in which data is transferred by repetitive register accesses.
This is preferred for very small transfer requests. This is the default.

GSC_IO MODE_PIO

NOTE: Demand Mode DMA is not available on boards with older firmware. Refer to the board
hardware manual for details, or to the ADADIO QUERY DMDMA query option (section 4.7.23,
page 31).

4.7.29. ADADIO_IOCTL_RX_10_TIMEOUT

This service sets the timeout limit for 1/0 requests. The limit is specified in seconds.

Usage

Argument | Description
request | ADADIO IOCTL RX IO TIMEOUT
arg s32%*

Valid argument values are in the range from zero to 3600, -1, and ADADIO IO TIMEOUT INFINITE. A value
of zero tells the driver not to sleep in order to wait for more data, and should only be used with PIO mode reads. A
value of -1 is used to retrieve the current setting. If the option ADADIO IO TIMEOUT INFINITE is used, then
the driver will wait indefinitely rather than timing out. The default is 10 seconds.

4.7.30. ADADIO_IOCTL_WAIT_CANCEL
This service resumes all threads blocked via ADADIO IOCTL WAIT EVENT IOCTL calls (section 4.7.31, page
35), according to the provided criteria. When a blocked thread is waiting for any event specified in the structure,

then the thread is resumed.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver
initiated waits are unaffected by application cancel requests.

Usage
Argument | Description
request | ADADIO IOCTL WAIT CANCEL
arg gsc wait t*

Definition

typedef struct
{

u32 flags;
u32 main;
u32 gsc;
u32 alt;
u32 io;

u32 timeout ms;
u32 count;
} gsc_wait t;

34
General Standards Corporation, Phone: (256) 880-8787

4.7.31. ADADIO_IOCTL_

ADADIO, Linux Device Driver, User Manual

Fields Description

flags This is unused by wait cancel operations.

main This specifies the set of GSC_WAIT MAIN * events whose wait requests are to be
cancelled. Refer to section 4.7.31.2 on page 36.

gsc This specifies the set of ADADIO WAIT GSC_* events whose wait requests are to be
cancelled. Refer to section 4.7.31.3 on page 36.

alt This is unused with the ADADIO board and should be zero.

i This specifies the set of ADADIO WAIT IO * events whose wait requests are to be
cancelled. Refer to section 4.7.31.4 on page 36.

timeout ms | Thisis unused by wait cancel operations.

count Upon return this indicates the number of waits that were cancelled.

WAIT_EVENT

This service blocks a thread until any one of a specified set of events occurs, or until a timeout lapses, whichever
occurs first. The set of possible events to wait for are specified in the structure’s main, gsc, alt and io fields. All
field values must be valid and at least one event must be specified. If the thread is resumed because one of the
referenced events has occurred, then the bit for the respective event is the only event bit that will be set. All other
event bits and fields will be zero. (Multiple event bits will be set only if the events occur simultaneously.)

Usage
Argument | Description
request | ADADIO IOCTL WAIT EVENT
arg gsc wait t*

Definition

NOTE: The service waits only for the first of the specified events, not for all specified events.

NOTE: A wait timeout is reported via the gsc_wait t structure’s flags field having the
GSC WAIT FLAG TIMEOUT flag set, rather than via an ETIMEDOUT errofr.

typedef struct

{

u32 flags;

u32 main;

u32 gsc;

u32 alt;

u32 io;

u32 timeout ms;
u32 count;

} gsc_wait t;

Fields Description
flags This must initially be zero. Upon return this indicates the reason that the thread was
resumed. Refer to section 4.7.31.1on page 36.
main This specifies any number of GSC_WAIT MAIN * events that the thread is to wait for.
Refer to section 4.7.31.2 on page 36.
This specifies any number of ADADIO WAIT GSC * events that the thread is to wait
gsc . - — —
for. Refer to section 4.7.31.3 on page 36.
alt This is unused with the ADADIO hoard and must be zero.
. This specifies any number of ADADTIO WAIT IO * events that the thread is to wait
io . — - =
for. Refer to section 4.7.31.4 on page 36.

35
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

This specified the maximum amount of time, in milliseconds, that the thread is to wait
timeout_ms | for any of the referenced events. A value of zero means do not timeout at all. If non-
zero, then upon return the value will be the approximate amount of time actually waited.

count This is unused by wait event operations and must be zero.

4.7.31.1. gsc_wait t.flags Options

Upon return from a wait request the wait structure’s flags field will indicate the reason that the thread was
resumed. Only one of the below options will be set.

Fields Description

GSC_WAIT FLAG_CANCEL | The wait request was cancelled.

GSC_WAIT FLAG DONE One of the referenced events occurred.

GSC_WAIT_ FLAG_TIMEOUT | The timeout period lapsed before a referenced event occurred.

4.7.31.2. gsc_wait t.main Options

The wait structure’s main field may specify any of the below primary interrupt options. These interrupt options are
supported by the ADADIO and other General Standards products.

Fields

Description

GSC WAIT MAIN DMAD

This refers to the DMA Done interrupt on DMA engine number zero.

GSC WAIT MAIN DMA1

This refers to the DMA Done interrupt on DMA engine number one.

GSC_ WAIT MAIN GSC

This refers to any of the Interrupt Control/Status Register interrupts.

GSC_WAIT MAIN OTHER

This generally refers to an interrupt generated by another device sharing the
same interrupt as the ADADIO.

GSC WAIT MAIN PCI

This refers to any interrupt generated by the ADADIO.

GSC WAIT MAIN SPURIOUS

This refers to board interrupts which should never be generated.

GSC WAIT MAIN UNKNOWN

This refers to board interrupts whose source could not be identified.

4.7.31.3. gsc_wait t.gsc Options

The wait structure’s gsc field may specify any combination of the below interrupt options. These are the interrupt
options referenced in the Board Control Register. Applications are responsible for selecting the desired interrupts.
Refer to ADADIO IOCTL IRQ SEL (section 4.7.21, page 30).

Value Description

ADADIO WAIT GSC AIN BUF EMPTY This refers to the Input Buffer becoming empty.
ADADIO WAIT GSC AIN BUF FULL This refers to the Input Buffer becoming full.

ADADIO WAIT GSC_AIN BUF HALF FULL | This refers to the Input Buffer becoming half full.
ADADIO WAIT GSC AIN BURST DONE This refers to the completion of an input burst.

ADADIO WAIT GSC AOUT STROBE DONE | This refers to the completion of an output strobe.
ADADIO WAIT GSC AUTOCAL DONE This refers to the completion of an Autocalibration cycle.
ADADIO WAIT GSC INIT DONE This refers to the completion of an initialization cycle.

4.7.31.4. gsc_wait t.io Options

The wait structure’s 1o field may specify any of the below event options. These events are generated in response to

application board data read requests.

Fields

Description

ADADIO WAIT IO RX ABORT

This refers to read requests which have been aborted.

ADADIO WAIT IO RX DONE

This refers to read requests which have been satisfied.

36

General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

ADADIO WAIT IO RX ERROR

This refers to read requests which end due to an error.

ADADIO WAIT IO RX TIMEOUT

This refers to read requests which end due to the timeout period lapse.

4.7.32. ADADIO_IOCTL_WAIT_STATUS

This service count all threads blocked via the ADADIO IOCTL WAIT EVENT IOCTL service (section 4.7.31,
page 35), according to the provided criteria. A match is made when a waiting thread’s wait criteria matches any of
the criteria specified in the structure passed to this service.

Usage
Argument | Description
request | ADADIO IOCTL WAIT STATUS
arg gsc wait t*

Definition

NOTE: The driver itself makes use of the wait services for various internal operations. Driver
initiated waits are ignored by application status requests.

typedef struct

{
u32 flags;
u32 main;
u32 gsc;
u32 alt;
u32 io;
u32 timeout ms;
u32 count;

} gsc_wait t;

Fields Description

flags This is unused by wait status operations.

main This specifies the set of GSC_ WAIT MAIN * events whose wait requests are to be
counted. Refer to section 4.7.31.2 on page 36.

gsc This specifies the set of ADADIO WAIT GSC_* events whose wait requests are to be
counted. Refer to section 4.7.31.3 on page 36.

alt This is unused with the ADADIO board and should be zero.

io This specifies the set of ADADIO WAIT IO_* events whose wait requests are to be

counted. Refer to section 4.7.31.4 on page 36.

timeout ms

This is unused by wait status operations.

count

Upon return this indicates the number of waits that met any of the specified criteria.

37
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

5. The Driver

NOTE: Contact General Standards Corporation if additional driver functionality is required.

5.1. Files

The device driver files are summarized in the table below.

Description | Files Location
Source Files | *.c, *.h ...
Header File | adadio.h
adadio.ko T
adadio.o i
+ This is for kernel versions 2.6 and later.
1 This is for kernel versions 2.4 are earlier.

../driver/
Driver File

5.2. Build
NOTE: Building the driver requires installation of the kernel headers.
Follow the below steps to build the driver.
1. Change to the directory where the driver and its sources are installed (.../driver/).
2. Remove existing build targets using the below command.
make clean
3. Build the driver by issuing the below command.
make
NOTE: Due to the differences between the many Linux distributions some build errors may

occur. These errors may include system header location differences, which should be easily
corrected.

5.3. Startup

NOTE: The driver will have to be built before being used as it is provided in source form only.
The startup script used in this procedure is designed to load the device driver and create fresh device nodes. This is
accomplished by unloading the current driver, if loaded, and then loading the accompanying device driver. In
addition, the script deletes and recreates the device nodes. This is done to ensure that the device nodes in use have
the same major number as assigned dynamically to the driver by the kernel, and so that the number of device nodes
corresponds to the number of boards identified by the driver.
5.3.1. Manual Driver Startup Procedures

Start the driver manually by following the below listed steps.

NOTE: The following steps may require elevated privileges.

38
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

1. Change to the directory where the driver sources are installed (.../driver/).

2. Install the driver module and create the device nodes by executing the below command. If any errors are
encountered then an appropriate error message will be displayed.

./start

NOTE: This script must be executed each time the host is rebooted.

NOTE: The ADADIO device node major number is assigned dynamically by the kernel. The
minor numbers and the device node suffix numbers are index numbers beginning with zero, and
increase by one for each additional board installed.

3. Verify that the device driver module has been loaded by issuing the below command and examining the output.
The module name adadio should be included in the output.

lsmod

4. Verify that the device nodes have been created by issuing the below command and examining the output. The
output should include one node for each installed board.

ls -1 /dev/adadio.*
5.3.2. Automatic Driver Startup Procedures
Start the driver automatically with each system reboot by following the below listed steps.

1. Locate and edit the system startup script rc. local, which should be inthe /etc/rc.d/ directory. Modify
the file by adding the below line so that it is executed with every reboot. The example is based on the driver
being installed in /usr/src/linux/drivers/, though it may have been installed elsewhere.

/usr/src/linux/drivers/adadio/driver/start

NOTE: For systemd installations the file rc.local may be located under the /etc/
directory rather than under /etc/rc.d/.

2. Load the driver and create the required device nodes by rebooting the system.

3. Verify that the driver is loaded and that the device nodes have been created. Do this by following the
verification steps given in the manual startup procedures.

5.3.2.1. File rc.local Not Present

Some distributions may not install a default version of rc.local. Some may not even create the directory
/etc/rc.d/. If the directory is not present, then it may be created. The directory must be created with the owner
and group set to root. The directory permissions must be set to rwxr-xr-x. If the file /etc/rc.d/rc.local
is not present, then it too may be created. The file must also be created with the owner and group set to root.
Additionally, the file permissions must also be set to rwxr-xr-x. After the directory and file are created as
described, reboot to verify boot time loading of the driver. Here is an example of a default version of rc.local.

39
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

#!/bin/bash

Add your local content here.

5.3.2.2. Default rc.local File Permissions

The rc.local script may fail to run at boot time because some distributions install a default version of the file
without execute permissions. Without execute permissions, boot time invocation of the script fails, which inhibits
boot time loading of the driver. If this is the case, then change the file permissions to rwxr-xr-x. After the file
permissions are adjusted as described, reboot to verify boot time loading of the driver.

5.3.2.3. systemd Installations

With the advent of the systemd startup implementation, rc.local may be accessed via a systemd startup
service. The service name may be rc-local, rc-local.service or something similar. This service may or
may not be enabled by default. If the service is disabled, then the script will not execute, which prevents boot time
loading of the driver. The service can be enabled with the below command line. After the service is enabled, reboot
to verify boot time loading of the driver.

systemctl enable rc-local

NOTE: For systemd installations the file rc.local may be located under the /etc/
directory rather than under /etc/rc.d/.

5.3.2.4. systemd and rc.local Timing

If the above steps have been performed but the driver still does not start then examine the dmesg output for driver
messages. If the output shows that the driver starts and immediately stops, then the problem may be timing. That is,
since systemd doesn’t serialize startup initialization as done in the past, driver loading may fail if required services
have not completed their own initialization. If this is the problem, then it may be corrected simply by inserting a
delay in rc. local prior to it calling the driver’s start script (i.e., sleep for one or more seconds).

5.3.2.5. SElinux Implications

If not disabled, then SElinux may prevent boot time loading of the driver. If this is the case, then it can be verified
and corrected using SElinux related tools and utilities. First, install the necessary software using the below
command. (As necessary, replace the yum command line with that which is available for your distribution.)

yum install setroubleshoot setools

Next, run the below command to determine if SElinux is preventing the driver from loading at boot time.

sealert -a /var/log/audit/audit.log

If SElinux is preventing the driver from loading, then the output from the above command should include a
reference to the driver’s start script, the insmod command that loads the driver or the name of the driver
executable. If so, then the output should also indicate the commands necessary to resolve the issue. The following is
an example of the instructions given when the culprit is insmod, which is the start script command that loads the
driver. After running these commands reboot the system to verify boot time loading of the driver.

ausearch -c 'insmod' --raw | auditZallow -M my-insmod
semodule -X 300 -i my-insmod.pp

40
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

5.4. Verification
Follow the below steps to verify that the driver has been properly installed and started.

1. Verify that the file /proc/adadio is present. If the file is present then the driver is loaded and running.
Verify the file’s presence by viewing its content with the below command.

cat /proc/adadio

5.5. Version
The driver version number can be obtained in a variety of ways. It is reported by the driver both when the driver is
loaded and when it is unloaded (depending on kernel configuration options, this may be visible only in places such

as /var/log/messages). Itis reported in the text file /proc/adadio while the driver is loaded and running.
The version number is also given in the file release. txt in the root install directory.

5.6. Shutdown
Shutdown the driver following the below listed steps.
NOTE: The following steps may require elevated privileges.
1. If the driver is currently loaded then issue the below command to unload the driver.
rmmod adadio

2. Verify that the driver module has been unloaded by issuing the below command. The module nhame adadio
should not be in the listed output.

lsmod

41
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

6. Document Source Code Examples
The source code examples included in this document are built into a statically linkable library usable with console
applications. The purpose of these files is to verify that the documentation samples compile and to provide a library

of working sample code to assist in a user’s learning curve and application development effort.

6.1. Files

The library files are summarized in the table below.

Description | Files Location
Source Files | *.c,*.h/docsrc/
Header File | adadio dsl.h | ../include/
Library File | adadio dsl.a | ../lib/

6.2. Build

The library is built via the Overall Make Script (section 2.7, page 12), but can be built separately following the
below steps.

1. Change to the directory where the documentation sources are installed (.../docsrc/).
2. Remove existing build targets using the below command.

make clean
3. Compile the sample files and build the library by issuing the below command.

make

4. Rebuild the Main Library (section 3.2, page 15).

6.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above
listed header file in each source file using a component of the library interface. At link time include the above listed
static library file with the objects being linked with the application.

42
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

7. Utilities Source Code

The driver archive includes a body of utility source code designed to aid in the understanding and use of the API
calls and the IOCTL services. The utility services provide wrappers, mostly visual, around the respective services.
Utility sources are also included for device independent and common, general-purpose services. The aim of all the
visual wrappers is to facilitate structured console output for the sample applications. The utility services are used
extensively by the sample applications. An additional purpose of these utility services is to provide a library of
working sample code to assist in a user’s learning curve and application development effort.

7.1. Files

The utility files are summarized in the table below.

Description | Files Location
Source Files | *.c, *.h/utils/
Header File | adadio utils.h |../include/
adadio utils.a
gsc _utils.a

os utils.a

plx utils.a

Library Files ../1ib/

7.2. Build

The libraries are built via the Overall Make Script (section 2.7, page 12), but can be built separately following the
below steps.

1. Change to the directory where the utility sources are installed (.../utils/).
2. Remove existing build targets using the below command.
make clean
3. Compile the sample files and build the library by issuing the below command.
make

4. Rebuild the Main Library (section 3.2, page 15).

7.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above
listed header file in each source file using a component of the library interface. At link time include the above listed
static library file with the objects being linked with the application.

43
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

8. Operating Information

This section explains some basic operational procedures for using the ADADIO. This is in no way intended to be a
comprehensive guide. This is simply to address a very few issues relating to their use.

8.1. Debugging Aids

The driver package includes the following items useful for development and/or debugging aids.

8.1.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id
example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as
follows.

Description | File | Location
Application | id | ../id/

8.1.2. Detailed Register Dump

Among the utility services provided is a function to generate a detailed listing of the device registers to the console.
When used, the function is typically used to verify the device configuration. In these cases, the function should be
called just prior to the first read operation. When intended for sending to GSC tech support, please set the detail
argument to 1. The function arguments are as follows. The utility location is given in the subsequent table.

Argument | Description
fd This is the file descriptor used to access the device.
detail If non-zero the GSC register dump will include details of each register field.

Description | File/Name Location
Function adadio _reg list() | Source File
Source File | reg.c ./utils/
Header File | adadio utils.h ../include/
Library File | adadio utils.a ../1ib/

8.2. Analog Input Configuration

The basic steps for Analog Input configuration are illustrated in the utility function noted below. The table also gives
the location of the source file, the header file and the corresponding library containing the executable code.

Item Name/File Location
Function adadio config ai () | Source File
Source File | config ai.c ../utils/
Header File | adadio utils.h ../include/
Library File | adadio utils.a ../1ib/

8.3. 1/0 Modes

All device I/O requests move data through an intermediate driver buffer on its way between the device and
application memory. The data is processed in chunks no larger than the size of this intermediate buffer. The process
used to perform this transfer is according to the 1/0O mode selection. Movement of data between the application
buffers and an intermediate driver buffer is performed by the kernel.

44
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

8.3.1. PIO - Programmed 1/O

This mode involves repetitive register accesses. In this mode the driver will write data to the output buffer one value
at a time. As needed, the driver will repeatedly sleep for one system time tick in order to wait for addition space in
the output buffer. This process is repeated until the data is exhausted or the I/O timeout expires, whichever occurs
first.

8.3.2. BMDMA - Block Mode DMA

This mode is intended for data transfers that do not exceed the size of the ADADIO input buffer. Here, the board’s
DMA engine is used to perform a hardware-controlled transfer which does not require processer intervention to
move the data. In this mode the DMA transfer is initiated only when the input buffer contains sufficient data to
fulfill the request. This is a very efficient /O method. However, for small requests P10 is more efficient.

8.3.3. DMDMA - Demand Mode DMA

This DMA transfer mode is similar to the block mode, except that a transfer for the entire amount of data is initiated
immediately and is not limited to the size of the virtual FIFO. Here however, the actual movement of data occurs as
the data becomes available in the input buffer. This is the most efficient method supported. However, for small
requests P1O is more efficient.

45
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

9. Sample Applications

The driver archive includes a variety of sample and test applications. While they are provided without support and
without any external documentation, any problems reported will be addressed as time permits. The applications are
command line based and produce text output for display on a console. All of the applications are built via the
Overall Make Script (section 2.7, page 12), but each may be built individually by changing to its respective directory

and issuing the commands “make clean” and “make all”. The initial output from each application includes
information on its supported command line arguments. The following gives a brief overview of each application.

9.1. aout - Analog Output - .../aout/

This application outputs a repeating pattern on the four output channels. The pattern is different for each channel,
though they are synchronized at the same modest rate.

9.2. din - Digital Input - .../din/

This application reads the cable’s digital I/O signals and reports the values read to the console.
9.3. dout - Digital Output - .../dout/

This application writes a pattern to the cable’s digital output lines as it is displayed to the console.
9.4.id - Identify Board - .../id/

This application reports detailed board identification information. This can be used with tech support to help identify
as much technical information about the board as possible from software.

9.5. regs - Register Access - ...Iregs/

This application provides menu based interactive access to the board’s registers, and reports other pertinent
information to the console.

9.6. rxrate - Receive Rate - .../rxrate/

This application configures the board for its highest ADC sample rate then reads the input as fast as possible. The
purpose is to measure the peak sustainable input rate for the host, per the provided command line arguments.

9.7. savedata - Save Acquired Data - .../savedatal/

This application configures the board for a modest sample rate, reads a megabyte of data, then saves the data to a
hex file.

9.8. sbtest - Single Board Test - .../sbtest/

This application performs functional testing of the driver and a user specified board, at least to the extent possible
with just a single board and no additional equipment.

46
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

Document History

Revision

Description

September 27, 2024

Updated to version 4.10.111.50.0. Updated the kernel support table. Updated the
description of the Autocalibration service. Minor editorial changes. Removed the prefix
“util ” from the utility source files. Renamed all Auto_Cal* content to Autocal.

January 30, 2023

Updated to version 4.9.102.44.0. Updated the kernel support table. Added section on
environment variables. Updated the information for the open and close calls. Minor
editorial modifications.

March 8, 2022

Updated to version 4.8.97.38.0. Updated the kernel support table. Expanded automatic
startup information. Minor editorial changes.

January 28, 2020

Updated to version 4.7.90.30.1.

January 20, 2020

Updated to version 4.7.90.30.0. Minor editorial changes.

December 5, 2019

Updated to version 4.6.89.29.0. Minor editorial changes. Added a licensing subsection.
Added WAIT_EVENT note. Added support for the ADADIO2.

June 25, 2019

Updated to version 4.5.86.28.0. Updated the kernel support table. Minor editorial changes.
Some document reorganization.

February 7, 2019

Updated to version 4.4.81.26.0. Updated the inside cover page. Updated the CPU and
kernel support section. Minor editorial changes. Updated Block Mode DMA macro and
associated information. Document reorganization.

December 5, 2016

Updated to version 4.3.68.18.0. Updated the kernel support table. Added support for infinite
1/0 timeouts. Updated the operating information section. Made various miscellaneous
updates. Some document reorganization.

Updated to version 4.2.66.14.0. Organized sample applications alphabetically. Added the
IOCTL service ADADIO IOCTL AIN BUF CLEAR. Updated the usage of the Wait

June 9, 2016 Event timeout ms field. Updated material on the open call. Added open access mode
descriptions. Updated the kernel support table.
May 4, 2016 Updated to version 4.1.66.13.0. Removed the built field from the /proc file. Updated

the kernel support table.

September 16, 2015

Updated to version 4.0.60.8.0. Updated the device node name to include a period before the
device index. Removed double underscore that prefaced various data types.

September 4, 2014

Updated to version 3.8.55.0.

February 28, 2014

Updated to version 3.7.52.0. Updated the kernel support data.

January 8, 2014

Updated to version 3.6.51.0. Updated the kernel support data.

November 6, 2013

Updated to version 3.6.48.0. Removed the sample application testapp from the release.

July 7, 2013

Updated to version 3.6.45.0. Updated the kernel support data.

July 23, 2012

Updated to version 3.6.39.0. Updated the kernel support data.

December 20, 2011

Updated to version 3.5.34.0.

November 10, 2011

Updated to version 3.4.32.0.

March 21, 2011

Updated to version 3.3.22.0. Various editorial changes. Removed the IRQ_ENABLE
IOCTL service — local interrupts are always enabled. Removed the IRQ_STATUS IOCTL
service. Updated the CPU and Kernel Support information. Updated the comments for the
Initialize IOCTL service. Changed the spelling of various Autocalibration related software
items.

December 28, 2009

Updated to version 3.2.13.0.

July 29, 2009 Updated to version 3.1.9.0. Minor change to kernel support table.
April 17, 2009 Updated to version 3.0.5.0.
April 10, 2009 Updated to version 3.0.4.0. Extensive interface changes. Added sample applications.

September 2, 2008

Updated to version 2.1.0. Numerous modifications.

November 2, 2004

Updated to version 2.0.0.

February 11, 2003

Ported the driver to the 2.4 kernel.

February 10, 2003

The test application now uses ADADIODocSrcLib. Some code examples were updated.

February 7, 2003

Added notes about mmap () of GSC registers when they aren’t on a page boundary. The
documentation sources are now included as a library.

47
General Standards Corporation, Phone: (256) 880-8787

ADADIO, Linux Device Driver, User Manual

| June 13, 2002 | Initial release.

48
General Standards Corporation, Phone: (256) 880-8787

