24DSI16WRC

24-bit, 4 to 16 channel, 105KS/S/Ch Delta-Sigma A/D Input

PMC66-24DSI16WRC

Linux Device Driver
And API Library
User Manual

Manual Revision: August 20, 2024
Driver Release Version 2.7.111.50.0

General Standards Corporation
8302A Whitesburg Drive
Huntsville, AL 35802
Phone: (256) 880-8787
Fax: (256) 880-8788
URL.: http://www.generalstandards.com
E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

24DSI16WRC, Linux Device Driver, User Manual

Preface

Copyright © 2010-2024, General Standards Corporation
Additional copies of this manual or other literature may be obtained from:

General Standards Corporation
8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or
software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Although extensive editing and reviews are performed before release, General Standards Corporation assumes no
responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are
made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this
documentation.

General Standards Corporation does not assume any liability arising out of the application or use of
documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or
any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or
errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,
software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.
GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

2
General Standards Corporation, Phone: (256) 880-8787

http://www.generalstandards.com/
mailto:sales@generalstandards.com

24DSI16WRC, Linux Device Driver, User Manual

Table of Contents

IO 14 0o [0 T 1 o] o ISP 8
Lo PUIPOSE. 1.ttt ettt h bR R R R R R R R R R R Rt bt 8
L2, AACTONYIMS ...ttt bt e e h ke bttt E R AR b e st AR e AR e b e e Rt Rt R Rt bt 8
IR TR B) 11T 1 o] SO PRSP 8
1.4, SOTEWAIE OVEIVIBW ...ttt sttt ettt sttt ettt e e b et et e s be bt e b e st e s beseeeb e e b e e bt e s e e n e e tesb e st e sbeebeeseanbenbeneeneas 8

1.4.1. BaSIC SOFtWAIe ATCHITECIUIE .. .cuiviiiitiiee ettt bbbttt e st ens 8
B N B o] - T Y2 TP PRRRPOO 9
1.4.3. DEVICE DIV ...ttt bbb bbb bbbt bRkttt b ket b e bttt et et b et et e neab et enes 9
1.5, HArOWAIE OVEIVIEWcveiviieiiitiieetiste ettt sttt sttt et etttk b s bt s e bt et e e bt et e e e bt n b et eb e et et e st b e e enes 9
1.6. RETEIENCE IMALEITALeeieeeeeiee ettt et bbbt et s b e bt sb e eb e e e et et nre e 9
O I oY 3 Yoo OSSR 10

P2 1151 = L] =L [0 o OSSPSR 11

I O Vg To I T4 0] BT o] oo PSS 11
2.1.1. 32-bit Support Under 64-bit ENVIFONMENTScviiiiiicciecceeceee ettt ae e 12
2.2. TR IPIOCT FIIE SYSIBIM ...ttt ettt e st e s te e s te et e e st e e ae e sseeste e ta e teeseeaseesneesreesteeseeenneenes 12
P T T L T TSSOSO 12
R B Y= Tod (o] VA 1 (0 Tox (1 =SSOSR 12
2.5, INSTAITALION ...t bttt bt bbbt e h et e bt bt e bt b £ e b e e Rt et e eb e b e s bt bt e b e e e e e nnenas 13
PG T (=T 0 010 1Y | PSS 13
2.7. OVEFAII IMBKE SCIIPL. ..ttt b b bbb bbbt bbbttt e 13
2.8. ENVIFONMENT VATTADIESecveieieee ettt ettt st ettt seena et esaentesseateeneeneeeeneeneas 14
2.8.1. GSC_API COMP_ FLAGS..ciiiiiiiiisietitetetesee ittt ettt b bbb b st 14
2.8.2. GSC_APT LINK FLAGS iiiiiiiiueuitetetiiieierireststsie et s s sttt s et e st e e 14
2.8.3. GSC_LIB COMP_ FLAGS .iiiiisuiuiuerereteieiisereristsestsse st sissssast st e sss bbb e s st st st st s e s e et nenennas 14
2.8.4. GSC_LIB LINK FLAGS ..ottt bbb bbb bbb 15
2.8.5. GSC_APP COMP_ FLAGS .iiiiiitiuiuerereeeteiiiererisesestsse ettt se st st e sttt sttt nennas 15
2.8.6. GSC_APP LINK FLAGS ..ottt ittt bbb bbbt 15

3. MaAIN INTEITACE FIIES....ociiiiiec ettt e e ae e sae e s be e srneene e 16
TN I Y T T Vo LT g LSS 16
3.2, IMIAIN LIDFANY FRIB ...ttt bbbttt b bt b bbbt et n s b e s 16

K I8 I =01 o RSOSSN 16
3.2.2. SYSLEIM LIDIAIIES ..ttt bbbt e bbbt et e b e st et e bbb e b bt e s e e b e e nae s 17
3.2.3. Shared Object Script: Build the Main Libraries as Shard Object Files..........cccccooiiiiniiiniiiiceeee 17

A APT LIDTATY ot b bbbt b et b e bbb 18
B0 RIS ittt ettt ettt h e ehe e be e be et be et ehaeahe e beebeeabeehbeebe e beebeerbearbesreeabeeereereenns 18
B2, BUIIO .o b e e h b bRt h e Lot b et oAt R et e Rt e te b et Re et et rente b renrenrans 18
4.3, LIDIAINY USE ..tttk b e bbb bRt bbbt b et bbbt 18
O |V - Vo (0 1SR TR PSR 18

3

General Standards Corporation, Phone: (256) 880-8787

4.41. I0CTL Services...
4.4.2. Registers..............

4.5. Data TYpesS......cccoueene.

4.6. Functions...........cce.e.
4.6.1. dsiléwrc_close()
4.6.2. dsiléwrc_init()
4.6.3. dsiléwrc_ioctl()...

4.6.4. dsiléwrc_open()

4.6.5. dsil6wrc_read()...
4.7. 10CTL Services.........

24DSI16WRC, Linux Device Driver, User Manual

4.7.1. DSIT6WRC_IOCTL_ADC_MODEoiovveeeieeieeeeeeeeseeeeesessesseesessesseeseesseeseseesesseeseesessseseeseesse e
4.7.2. DSIT6WRC_IOCTL_AI_BUF_CLEARoooooiimeeeeeeeeeeeeeeeseeseeesesseseeeseeeeseseseeseeseeseeseesses s
4.7.3. DSIT6WRC_IOCTL_AI_BUF_ENABLEcesiovvoeeieeeeeeeeeeeeeeee oo esesseeeesessses s
4.7.4. DSIT6WRC_IOCTL_AI_ BUF_FILL LVL covooooioeeeeeeeeeeeeee e eeseesee e
4.7.5. DSI1I6WRC_IOCTL_AI_BUF_OVERFLOWoociioeveeessesseeeiesseseeessessessesssesssesesssssssesessssseesssneee
4.7.6. DSIT6BWRC_IOCTL_AI_ BUF_THR_STS ...ooooiiimveoeeisseeeeesessssseessssesseesssssessesessesssesessessssessssssseesssneee
4.7.7. DSII6BWRC_IOCTL_AI_BUF_THRESH........cisimvvoeeiiosieeeeeessesseeiesseseeeessssessessesesssesesssssseesessssssesssnnee
4.7.8. DSI1I6WRC_IOCTL_AI_BUF_UNDERFLOWcossivveeeeieeeeeeeeseeeeeessssesseesesssseessssesssessassssseesesnene
4.7.9. DSIT6WRC_IOCTL_AI_ CHANNEL _TAG.......oimvvoeiisieeeeeessssseesiessesseeessssessessssesssesessssssssssssssseesssneee
4.7.10. DSIZ6WRC_IOCTL_AI_IMODEovooooovveeeesseeeceeeeseseeesessesseeseesesseessessesseseesessseseesessseesesesssee s
4.7.11. DSITEWRC_IOCTL_AUTOCAL w..ovveooeeeeeee oo eeseeeee e sseees e ssee e sesse s
4.7.12. DSIT6WRC_IOCTL_AUTOCAL_STATUS ...oooeeeeeeeieeeeeeseeseeesesseseeeeseseeeseseesesseeseesesseesessessse e
4.7.13. DSILT6WRC_IOCTL_AUX_CLK_CTL_MODEiovveeeeeeeeeereeseeeeeeeeeseeeeeeesesseeseesessee s
4.7.14. DSIT6WRC_IOCTL_AUX_SYNC_CTL_MODE.........ooeieooeoreereeseeeeeeeeeesseeeesseseeseeseesesseessesessee e
4.7.15. DSILEWRC_IOCTL_BURSToooovveeeeeeeeeeeesseseeeeesseseeeeessesseesseesesseeeeessesseeeesessseseeseesseseesessee e
4.7.16. DSIT6WRC_IOCTL_BURST_RATE DIV ... iiivvoeeiisieeeoesseeeeeiesseeeeesssssessesssesssessssssssesassesseesssnnee
4.7.17. DSIL6WRC_IOCTL_BURST _SIZEoovvoeeesieeeeeesesesseesessesseesiessesseesssssssessesesssessssesssessessesssesssseees
4.7.18. DSIT6WRC_IOCTL_BURST _TIMERoociiimeeeeeieseseeeeessesseesessesseeeessessesessessseeessessseesesessseeessseee
4.7.19. DSIL6WRC_IOCTL_BURST_TRIGGERoovvveeiesieveeeessesseeiessesseessssseesesessesseesessessseeeessesseeesssnee
4.7.20. DSIZT6WRC_IOCTL_CHANNELS_READYcooooiiieveeeosseeeeeiesseseeeesesseesesesesseessssessseesessssseeessseee
4.7.21. DSILBWRC_IOCTL_CH_GRP_X SRC.....ooooiimeeeeeieseeeeeeesseeseeiessesseessessessessssesseesssssessseesassesseeseseeee
4.7.22. DSILT6WRC_IOCTL_CONTROL_MODEvvveeieieeveeeesseeeeesesseseeeeeesseesesssseeseeesessesseeesessessee e
4.7.23. DSIL6WRC_IOCTL_DATA_FORMAToooiiimvvreieseeeeeessesseeeessesseesesssessesessessseeseesessseesasessseeesseene
4.7.24. DSIT6WRC_IOCTL_DATA_WIDTH......ovoooeiioeeeeieseeeeeeeseeseeesesseeseeseesseeseeesesseesesseesseeeassessee e
4.7.25. DSILT6WRC_IOCTL_DIO_DIR_OUT ...oooooooeieeeeeieseeeeeeeseeseeeeesseseeeesesseesesessesseeeesessseeseseessee e
4.7.26. DSIL6WRC_IOCTL_DIO_READoo.oiovveeeeseeeeeeeeseseeeessesseeesee s sesseeesesseessesessseesaseesse e
4.7.27. DSILWRC_IOCTL_DIO_WRITE w.oooooovvoeeeeseeeeoeseseseeeeseesseees s sesseseesessseseseesseeeeseessee s
4.7.28. DSITEBWRC_IOCTL_EXT_CLK_SRCovveeoeoeeeeoeeeeeeeeseseeseeesessesseeeeeeeeeeeseesesseeseeseeseeseesessse e
4.7.29. DSITEBWRC_IOCTL_EXT_SYNC_IN w..ooooeoieeeeeeeeeeeeeese e seee e eeseesee e seesee e
4.7.30. DSITEWRC_IOCTL_INITIALIZE .ovooooooeveeeee oo s eeseesee e
4.7.31. DSITEWRC_IOCTL_IRQ_SEL ...oovvveeeoeeeeeeeeeseeeeeeeeeeeseeeseseeeseeesessesseeseeeeeeseeeesesseeseesessee e eseesee e
4.7.32. DSIT6WRC_IOCTL_MASTER_CLK_ADJ ... ovvooeoeeeeeeoeseeeeeeeeeeseeeeeseeeeeeeeseesesseeseeseesee s
4.7.33. DSILEWRC_IOCTL_NDIVooooooeoveeeeeeeeeeeee e eeeeeseee oo esee e
4.7.34. DSILOWRC_IOCTL_NREFimovoeeoeseeeeeiesseeeeeseesseseeeeessesseeese s seese s eesseeeeseessee s
4.7.35. DSILEWRC_IOCTL_NVCO........oiovoeeeeseeeeeiesseeeeeeseseseeeessesseeesessessee e sesse s eessee e
4.7.36. DSIL6WRC_IOCTL_QUERYoovvveeeimooeeeessseeeeeesseseeeeessesseessessesseeeeessesseessessseeeesesssee e esessse e
4.7.37. DSILEWRC_IOCTL_RANGEovvoeeeeeeeeeeiesseeeeeeeeseseeeeessesseeese e sesse s eessee s
4.7.38. DSIL6WRC_IOCTL_REG_MODiooveeeeeieeeeeeeeseeeeeeessesseeessesseeseesseeseseesessseesessesssee s
4.7.39. DSITEWRC_IOCTL_REG_READoouovveeeeeeeeeeeeeeeeeeeeseesesseesessesseeeeeeseeseseesessee e seeseeseesessse e
4.7.40. DSITEWRC_IOCTL_REG_WRITE w..coooiovoeoeeeeeeeeeeeseeeeeeeseeseeeeessesseeseeeeeeseseeseesee e sesseeseesesssee e
4.7.41. DSIT6WRC_IOCTL_RX_10 ABORTovveoeeeeeeeeeseeeeesesseeseesessesseeeeeseesseseeseeseeseesesseeseesessse e
4.7.42. DSIT6WRC_IOCTL_RX_1O_MODE............ciiooeeeeeeeeeeeeeeeseeeeeesessesseeseeeseeseseeseeseeseesesseeseesessee e
4.7.43. DSIT6WRC_IOCTL_RX_10_OVERFLOWovveooieeeeeeeeeeeeeeeeeeeeeeeeeee e seeseeseeseesesseeseeeesssee e
4.7.44. DSIT6WRC_IOCTL_RX_1O_TIMEOUTcootivveeeeeeeeeeeseseeeeeesesseeseeeeeeseeeeeseeseeseeseesesseeseesesesee e

General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

4.7.45. DSIT6WRC_IOCTL_RX_IO_UNDERFLOWociitiiiiiiiieieiieie ettt 40
4.7.46. DSITEWRC_TOCTL_SW_SYNC ..ottt sttt bbbttt 40
4.7.47. DSIT6WRC_IOCTL_SW_SYNC_MODEccectiiiiriiieirinieiessiee s 40
4.7.48. DSIT6WRC_IOCTL_WAIT_CANCEL......cotiitiiriieensiee et 41
4.7.49. DSIT6WRC_IOCTL_WAIT_EVENT ..ottt 41
4.7.50. DSIT6WRC_IOCTL_WAIT_STATUS. ...ttt 43
4.7.51. DSIT6WRC_IOCTL_XCVR_TYPEct ittt 44

ST I 0 [l B AV T RO PR TSP 45
TR R 1TSS 45
5.2, BUIIH ..o R R R Rt 45
TG T -1 (1] o F P PP SURU PSRRI PRI 45
5.3.1. Manual Driver Startup PrOCEAUIESccviiieieeeeieiestes e ste e s ae e e e sae e stesta s e e e esaessesteseestesseaneeseenseseessens 45
5.3.2. Automatic Driver Startup PrOCEAUIES.........viii i ciesti ettt ee s s te et et e st e et e steenteeteeseeaneeannes 46

5.4, VEITICAIION ...ttt e b e bR bRt b etk R e bt n et r et nr s 47
ST TV =1 £] TSRS T PP P PP PP 48

Eo TG T 111 (01 o PSSR 48
6. Document Source Code EXamMPIES.......cccooiiiiiiiiiciiee e 49
B. L. FHIES. ettt R R R R Rt r et r s 49
B.2. BUIIH ...ttt bbb bR R R R R R R Rt R Rt R bR bt 49
LT o] =Y - SRS 49
7. UTHITIES SOUICE COUE. ... eeiieiieeiieie ettt ettt et e e s e ste e e sreenbeeneenneennas 50
70 O -SSR 50
T.2. BUIIH <.t ek b bR R R bR R R R R bbbt R bbbt r e 50
S T I 1o =V U - OSSR 50
8. Operating INTOrMATIONoiiee et ste e e sreeeenneennas 51
8.1, DEDUGGING ATUS ...ttt bbb bbbt bbb bbbt bbbt bbbt bbbt bbb e 51
8.1.1. DeViICe IAENTIFICALIONe.veeiieiie ettt et ne e e st e tesaesteeseeneeseeneeeeneeas 51
8.1.2. Detailed REGISIEr DUMIP ..ottt b bbbt b bbb bbbttt b et nens 51

8.2. ANAIOG INPUL CONFIGUIALIONviviitiietctee ettt b ettt b bbbttt 51
8.3. Data TIaNSTEI IMOUES........e.veieitiecieir ettt ettt r bt e bbbt ns et b e r bt n bt nr et nb e 51
8.3.1. P10 - Programmed 1O ..ottt b e bbb e b bbb bt e b nre 52
8.3.2. BMDMA - BIOCK MOTE DIMA ...ttt bbbttt bbbttt 52
8.3.3. DMDMA - Demand MO8 DIMIA ...ttt bbbttt be bbb e e b e b 52

8.4. MUlti-B0oard SYNCRIONIZATIONoouiiiiiiieiee e bbbttt bbbttt e e et 52
8.4 L. SEAr CONTIGUIALION ...ttt b et e bt bbbt e bt e st e e e b sbesb e e beebe e s e e e ebesbens 52
8.4.2. Daisy Chain CONfIQUIALIONc..oiiiiiiiitiitiicierie ettt nb ettt e b s 53

8.5. Clearing the INPUL BUTTEE ..ottt bbbttt 53
8.5.1. Clear IMMEUIALEIYcueiuiieiiiiieeet bbbttt ettt bbbt bttt n et nnenes 54
8.5.2. Clear At @ SCAN BOUNUAIYc.eiuiiiiriiiitiiteiete ettt ettt sb ettt ettt bbbt eb et et n et et ens 54

9. SAMPIE APPHICATIONS ...ttt b eas 55

5

General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

9.1. billion - Billion Byte Read - .../DIlLION/c.ocuiiiiiiiiiiiiitiiteiei ettt 55
9.2..din - DIgital INPUL - ... QIN/ c.eeiii bbbt 55
9.3. dout - Digital QULIPUL = ... AOUL/ ..cveiuiiieciececiee sttt sttt e te e teese et e ese e tesbeareeneeneeseeneeran 55
9.4, fsamP - SAMPIE RALE - ... /FSAIMP/ ..cveverieiiiieiciiiiee ettt ettt b et e b et es e st e neens 55
9.5, 1d - 1dentify BOAIA - ... Q7 ..vecueeieieice sttt r ettt ere et e e nrenn 55
9.6. 11 — INTEITUPE TESES = ... /ITQ/ tovtvireetiiieietiete ettt sttt b bt b e bt b et e b b et et es et e nenes 55
9.7. mbsync — Multi-Board Synchronization - .../MDBSYNC/ccccuveiiiiiiiirisiseee e 55
0.8. 105 - REGISIEN ACCESS = .. ./TEES/ 1. eevevereetirieseetisteseete st ettt st a b st e besb et be st e e b e st et e bt st et ebe st e b abenb et enenbeeens 55
9.9. IXIate - RECEIVE RALE - .../TXIALE/ ...viveuiitiieeeictieteet ettt bbb bbbt b bbbt nb e 55
9.10. savedata - Save Acquired Data - .../SAVEAALA/coviiriiieiiriiieini s 56
9.11. signals - Digital SIgNals - .../SIZNALS/cviiriiiiiiiiiiire bbb 56
9.12. stream - Stream RX Data t0 DiSK - .../StrEaM/cueiiuiriiiiiiiiiieiinieeesi e 56
9.13. SW_SYNC - SOTIWAIE SYNC = .../SW_SYIIC/ .eveitireiriitiriesiitinteiete sttt ettt b bbb b ettt ab e 56
DOCUMENT HISTOTY ...ttt e e e e be e be e e e saeesteenesneesneeneeas 57
6

General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

Table of Figures

Figure 1 Basic architeCtural repreSENTALION.c.civiiieieiesiie et eiee e se s e ettt e te e ra e e e e e aesresbesreenee e eseeseesrennas 9

Figure 2 The star configuration with three or more boards requires a Clock Driver board............ccccoevviveiveieieinnnnns 53

Figure 3 The star configuration with only two boards does not require a Clock Driver board.ccccccevevveieienns 53

Figure 4 In this configuration the clock and sync signals are daisy chained from one board to the next. 53
7

General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

1. Introduction

1.1. Purpose
The purpose of this document is to describe the interface to the 24DSI16WRC API Library and to the underlying
Linux device driver. The API Library software provides the interface between "Application Software” and the

device driver. The driver software provides the interface between the API Library and the actual 24DSI16WRC
hardware. The API Library and driver interfaces are based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms | Description

ADC Analog-to-Digital Converter

API Application Programming Interface
BMDMA | Block Mode DMA

DMA Direct Memory Access

DMDMA | Demand Mode DMA

GSC General Standards Corporation

PCI Peripheral Component Interconnect
PIO Programmed 1/0O

PMC PCI Mezzanine Card

PMC66 This is a PMC formfactor device that can operate at up to 66MHz over the PCI bus.

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

This is a shortcut representation of the 24DSI16WRC installation directory or any of its
subdirectories.

24DSI16WRC | This is used as a general reference to any device supported by this driver.

API Library This is a library that provides application-level access to 24DSI16WRC hardware.

Application This is a user mode process, which runs in user space with user mode privileges.
Driver This is the 24DSI16WRC device driver, which runs in kernel space with kernel mode privileges.
Library This is usually a general reference to the API Library.

1.4. Software Overview
1.4.1. Basic Software Architecture

This section describes the general architecture for the basic components that comprise 24DSI16WRC applications.
The overall architecture is illustrated in Figure 1 below.

8
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

24DSI16WRC
Application
dsiléwrc_init()
3 dsi16wrc_open()
dsiléwrc_close()
L 24DSI16WRC . . . dsiléwrc_ioctl()
Application Level API Library ¢— lib24dsil6wrc_api.so dsi16wrc_read()
Kernel Level 24DSI16WRC 24dsil6wrc.ko or /proc/24dsiléwrc Informational
ermetteve Device Driver 24dsil6wrc.o /dev/24dsiléwrc.0 Device O
/dev/24dsiléwrc.1 Device 1
/dev/24dsil6wrc.X Device X
Hardware Level R BTS
Boards

Figure 1 Basic architectural representation.
1.4.2. API Library

The primary means of accessing 24DSI16WRC boards is via the 24DSIL6WRC API Library. This library forms a
layer between the application and the driver. Additional information is given in section 3.2.3 (page 17). With the
library, applications are able to open and close a device and, while open, perform I/O control and read operations.

1.4.3. Device Driver

The device driver is the host software that provides a means of communicating directly with 24DSI16WRC
hardware. The driver executes under control of the operating system and runs in Kernel Mode as a Kernel Mode
device driver. The driver is implemented as a standard dynamically loadable Linux device driver written in the C
programming language. While applications can access the driver directly without use of the API Library, it is
recommended that all access is made through the library.

1.5. Hardware Overview

The 24DSI16WRC is a high-performance, 24-bit analog input board that incorporates from four to 16 input
channels. The host side connection is PCI based and the form factor is according to the model ordered. The board is
capable of acquiring data at up to 105K samples per second over each channel. Internal clocking permits sampling
rates from 105K samples per second down to 200 samples per second. Onboard storage permits data buffering of up
to 256K samples, for all channels collectively, between the cable interface and the PCI bus. This allows the
24DSI16WRC to sustain continuous throughput from the cable interface independent of the PCI bus interface. The
24DSI16WRC also permits multiple boards to be synchronized so that all boards sample data in unison. In addition,
the board includes autocalibration capability.

1.6. Reference Material

The following reference material may be of particular benefit in using the 24DSI16WRC. The specifications provide
the information necessary for an in depth understanding of the specialized features implemented on this board.

e The applicable 24DSI16WRC User Manual from General Standards Corporation.

e The PCI9056 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

9
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA
Phone: 1-800-759-3735

WERB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE. txt in the root installation directory.

10
General Standards Corporation, Phone: (256) 880-8787

http://www.plxtech.com/

24DSI16WRC, Linux Device Driver, User Manual

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 6.x, 5.x, 4., 3., 2.6, 2.4 and 2.2 running on a PC
system with one or more x86 processors. This release of the driver supports the below listed kernels.

Kernel | Distribution
6.2.9 | Red Hat Fedora Core 38
6.0.7 | Red Hat Fedora Core 37

5.17.5 | Red Hat Fedora Core 36
5.14.10 | Red Hat Fedora Core 35
5.11.12 | Red Hat Fedora Core 34
5.8.15 | Red Hat Fedora Core 33
5.6.6 | Red Hat Fedora Core 32
5.3.7 | Red Hat Fedora Core 31
5.0.9 | Red Hat Fedora Core 30

4.18.16 | Red Hat Fedora Core 29
4.16.3 | Red Hat Fedora Core 28
4.13.9 | Red Hat Fedora Core 27
4.11.8 | Red Hat Fedora Core 26
4.8.6 | Red Hat Fedora Core 25
455 | Red Hat Fedora Core 24
4.2.3 | Red Hat Fedora Core 23
4.0.4 | Red Hat Fedora Core 22

3.17.4 | Red Hat Fedora Core 21
3.11.10 | Red Hat Fedora Core 20
3.9.5 | Red Hat Fedora Core 19
3.6.10 | Red Hat Fedora Core 18
3.3.4 | Red Hat Fedora Core 17
3.1.0 | Red Hat Fedora Core 16

2.6.38 | Red Hat Fedora Core 15
2.6.35 | Red Hat Fedora Core 14
2.6.33 | Red Hat Fedora Core 13
2.6.31 | Red Hat Fedora Core 12
2.6.29 | Red Hat Fedora Core 11
2.6.27 | Red Hat Fedora Core 10
2.6.25 | Red Hat Fedora Core 9
2.6.23 | Red Hat Fedora Core 8
2.6.21 | Red Hat Fedora Core 7
2.6.18 | Red Hat Fedora Core 6
2.6.15 | Red Hat Fedora Core 5
2.6.11 | Red Hat Fedora Core 4
2.6.9 | Red Hat Fedora Core 3

[2.4.18 | Red Hat 8.0 I

NOTE: Some older kernel versions are supported (the sources are maintained), but are not tested.

NOTE: While only Red Hat Fedora distributions are listed, numerous other distributions are
supported and have been tested on an as needed basis.

NOTE: The driver will have to be built before being used as it is provided in source form only.

11
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

NOTE: The driver has not been tested with a non-versioned kernel.
NOTE: The driver is designed for SMP support, but has not undergone SMP specific testing.
2.1.1. 32-bit Support Under 64-bit Environments

This driver supports 32-bit applications under 64-bit environments. The availability of this feature in the kernel
depends on a 64-bit kernel being configured to support 32-bit application compatibility. Additionally, 2.6 kernels
prior to 2.6.11 implemented 32-bit compatibility in a way that resulted in some drivers not being able to take
advantage of the feature. (In these kernels a driver’s IOCTL command codes must be globally unique. Beginning
with 2.6.11 this requirement has been lifted.) If the driver is not able to provide 32-bit support under a 64-bit kernel,
the “32-bit support” field in the /proc/24dsiléwrc file will be “no”.

2.2. The /proc/ File System

While the driver is running, the text file /proc/24dsiléwzrc can be read to obtain information about the driver
and the boards it detects. Each file entry includes an entry name followed immediately by a colon, a space character,
and the entry value. Below is an example of what appears in the file, followed by descriptions of each entry.

version: 2.7.111.50
32-bit support: yes
boards: 1

models: 24DSI16WRC

Entry Description

version This gives the driver version number in the form x.x.x.x.

B

This reports the driver’s support for 32-bit applications. This will be either “yes” or “no’

32-bit t . .
+- SUPPOTE g0 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.
This gives a comma separated list of the basic model number for each board the driver
models detected. The model numbers are listed in the same order that the boards are accessed via

the API Library’s open function.

2.3. File List

This release consists of the below listed primary files. The archive content is described in following subsections.

File Description
24dsileéwrc.linux.tar.gz | This archive contains the driver, the API Library and all related files.
24dsilowrc linux um.pdf | Thisis a PDF version of this user manual, which is included in the archive.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory
structure is created and populated with the respective files.

Directory Description
24dsiléwrc/ This is the driver root directo_ry. It contgins th_e documentation, the Overall Make Script (section
2.7, page 13) and the below listed subdirectories.
../api/ This directory contains the API Library source files (section 3.2.3, page 17).
/d This directory contains the source files for the code samples given in this document (section 6,
../docsrc/ page 49).
../driver/ This directory contains the device driver source files (section 5, page 45).

../include/ | This directory contains the header files for the various libraries.

12
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

../1ib/ This directory contains all of the libraries built from the installed sources.
This directory contains the sample application subdirectories and all of their corresponding
../samples/ .)
source files (section 9, page 55).
Jutils/ This directory contains the source files for the utility libraries used by the sample applications

(section 7, page 50).

2.5. Installation

Perform installation following the below listed steps. This installs the device driver, the API Library and all related
sources and documentation.

1. Create and change to the directory where the files are to be installed, such as /usr/src/linux/drivers/.
(The path name may vary among distributions and kernel versions.)

2. Copy the archive file 24dsil6wrc.linux.tar.gz into the current directory.
3. Issue the following command to decompress and extract the files from the provided archive. This creates the
directory 24dsiléwrc in the current directory, and then copies all of the archive’s files into this new

directory.

tar -xzvf 24dsiléwrc.linux.tar.gz

2.6. Removal

Perform removal following the below listed steps. This removes the device driver, the API Library and all related
sources and documentation.

NOTE: The following steps may require elevated privileges.
1. Shutdown the driver as described in section 5.6 (page 48).

2. Change to the directory where the driver archive was installed, which may have been
/usr/src/linux/drivers/. (The path name may vary among distributions and kernel versions.)

3. Issue the below command to remove the driver archive and all of the installed driver files.
rm -rf 24dsil6wrc.linux.tar.gz 24dsiléwrc
4. lIssue the below command to remove all of the installed device nodes.
rm -f /dev/24dsilé6wrc.*
5. If the automatic startup procedure was adopted (section 5.3.2, page 46), then edit the system startup script

rc.local and remove the line that invokes the 24DSI16WRC’s start script. The file rc. 1ocal should be
located in the /etc/rc.d/ directory.

2.7. Overall Make Script

An Overall Make Script is included in the root installation directory. Executing this script will perform a make for
all build targets included in the release. The script also loads the driver and copies the API Library to /usr/1ib/.
The script is named make all. Follow the below steps to perform an overall make and to load the driver.

NOTE: The following steps may require elevated privileges.

13
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

1. Change to the driver root directory (.../24dsil6wrc/).

2. Remove existing build targets using the below command. This does not unload the driver.

./make all clean

3. Issue the following command to make all archive targets and to load the driver.

./make all

2.8. Environment Variables

Some build environments may require compiler or linker options not present in the provided make files. To
accommodate local environment specific requirements, the provided make files incorporate support for the
following set of GSC specific environment variables.

2.8.1. GSC_API_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the API Library. The compiler used by the API Library make file is “gcc”. The content of this environment variable
is noted in the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in
the table refers to the contents of the environment variable. This environment variable has no effect on compiling
any other distributed source files or linking of any object files.

. == Compiling: init.c
Undefined == Compiling: ioctl.c
or Empty s
== Compiling: open.c
. == Compiling: init.c (added '"xxx')
Bg{'gﬁ atnd == Compiling: ioctl.c (added 'xxx')
PY | == Compiling: open.c (added 'xxx')

2.8.2. GSC_API_LINK FLAGS

This environment variable accommodates adding linker command line options when linking object files for the API
Library. The linker used by the API Library make file is “1d”. The content of this environment variable is noted in
the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in the table
refers to the contents of the environment variable. This environment variable has no effect on compiling of any
source files or linking of any other object files.

Undefined | ____ . . _ . , , _ '
or Empty Linking: ../lib/lib24dsil6wrc_api.so

Definedand | ____ .. , . i] . ' : :
Not Empty | Linking: ../lib/lib24dsil6wrc_api.so (added 'xxx'")

2.8.3. GSC_LIB_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the utility libraries. The compiler used by the utility library make files is “gcc”. The content of this environment
variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The
“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on
compiling any other distributed source files or linking of any object files.

14
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

. == Compiling: close.c
L‘Jrngf:lmted == Compiling: init.c
Pty == Compiling: ioctl.c
== Compiling: close.c added ' !
Definedand | __ p-l l g- C (Y XX}?)
Not Empt == Compiling: init.c (added 'xxx')
P | Compiling: ioctl.c (added '"xxx'")

2.8.4.GSC_LIB_LINK FLAGS

This environment variable accommodates adding linker command line options when linking object files for the
utility libraries. The linker used by the utility library make files is “1d”. The content of this environment variable is
noted in the make files’ output to the screen. The table below shows a portion of the screen output. The “xxx” in the
table refers to the contents of the environment variable. This environment variable has no effect on compiling of any
source files or linking of any other object files.

Undefined ==== Linking: ../lib/24dsil6wrc utils.a

or Empty -

Definedand | ____ 1 ying: ../1ib/24dsil6wre utils.a (added 'xxx')
Not Empty -

2.8.5.GSC_APP_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the sample applications. The compiler used by the sample application make files is “gcc”. The content of this
environment variable is noted in the make files’ output to the screen. The table below shows a portion of the screen
output. The “xxx” in the table refers to the contents of the environment variable. This environment variable has no
effect on compiling any other distributed source files or linking of any object files.

Undefined == Compiling: main.c

or Empty == Compiling: perform.c

Definedand | == Compiling: main.c (added "xxx')

Not Empty | == Compiling: perform.c (added 'xxx')

2.8.6. GSC_APP_LINK FLAGS

This environment variable accommodates adding linker command line options when linking object files for the
sample applications. The linker used by the sample application make files is “gcc”. The content of this environment
variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The
“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on
compiling of any source files or linking of any other object files.

Undefined L 1] o

or Empty = Linking: id

Definedand | ____ ' :

Not Empty | Linking: id (added 'xxx')
15

General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

3. Main Interface Files

This section gives general information on the suggested device interface files to use when developing 24DSI16WRC
based applications.

3.1. Main Header File

Throughout the remainder of this document references are made to various header files included as part of the
24DSI16WRC driver installation. For ease of use it is suggested that applications include only the single header file
shown below rather than individually including those headers identified separately later in this document. Including
this header file pulls in all other pertinent 24DSI16WRC specific header files. Therefore, sources may include only
this one 24DSI16WRC header and make files may reference only this one 24DSI16WRC include directory.

Description | File Location
Header File | 24dsiléwrc main.h | ../include/

3.2. Main Library File

Throughout the remainder of this document references are made to various statically linkable libraries included as
part of the 24DSI16WRC driver installation. For ease of use it is suggested that applications link only the single
library file shown below rather than individually linking those libraries identified separately later in this document.
Linking this library file pulls in all other static libraries included with the driver. Therefore, make files may
reference only this one 24DSI16WRC static library and only this one 24DSI16WRC library directory.

Description | File Location
24dsiléwrc main.a
24dsiléwrc multi.a ~/1ib/

Static Library

NOTE: For applications using the 24DSI16WRC and no other GSC devices, link the
24dsil6wrc_main.a library. For applications using multiple GSC device types, link the
xxxx_main.a library for one of the devices and the xxxx multi.a library for the others.
Linking multiple xxxx main.a libraries may likely produce link errors due to duplicate
symbols being defined. While it may make little or no difference, it is recommended that one
choose the xxxx main.a library from the driver with the largest number in positions three
(x.x.X.x.X) and/or four (x.x.x.X.x) in the driver release version number.

NOTE: The 24DSI16WRC API Library is implemented as a shared library and is thus not linked
with the 24DSI16WRC Main Library. The API Library must be linked with applications by
adding the argument -124dsil6wrc_api to the linker command line.

3.2.1. Build

The main library is built via the Overall Make Script (section 2.7, page 13). However, the main library can be built
separately following the below steps.

1. Change to the directory where the main library resides (.../1ib/).
2. Remove existing build targets using the below command.
make clean

3. Build the main library by issuing the below command.

make

16
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

3.2.2. System Libraries

In addition to linking the static library named above, as well as the API Library shared object file, applications may
need to also link in additional system libraries as noted below.

Library gcc Link Flag
Math -1m

POSIX Thread | -1pthread
Real Time -1rt

3.2.3. Shared Object Script: Build the Main Libraries as Shard Object Files

The main libraries built via the Overall Make Script (section 2.7, page 13) are static library files. Some applications
however, require that the Main Libraries be accessed as shared object files. Generating shared object files require
that all of the static libraries be recompiled for this purpose and linked as .so files. This is done using the Shared
Object Script named below. When run, the script invokes the Overall Make Script to clean all existing build targets,
deletes the two shared object files named below, if they exist, defines an environment variable used by all of the
static library make files, invokes the Overall Make Script again to rebuild all existing build targets then invokes
make on the library make file (.../1ib/makefile) to link the shared object files. The required manual steps are as
follows.

1. Change to the directory where the main library files reside (.../1ib/).
2. Execute the below script.
./static_to shared.sh
Running the above-named Shared Object Script produces the files given in the table below. These shared object files

fulfill the same purpose as the similarly named static libraries as described in the note under section 3.2 above. Refer
to that note when selecting which shared object file to use.

Description File Location
lib24dsil6wrc _main.so
Shared Object Files | 1ib24dsiléwrc multi.so | ../1lib/
lib24dsiléwrc all.so ¥
+ This library includes all generated libraries, including the API Library shared object file content.

The shared object files can be linked via two different methods. In the first method, the application linker command
line can explicitly name the file in the same manner as is done were it a static library. This is the method used by the
sample applications, all of which use the 24DSI16WRC API Library, which itself is a shared object file. This file is
also found in the ../1ib/ subdirectory. In the second method, the .so files are copied to the /usr/lib/
subdirectory and are referenced on the application’s liker command line as given in the table below.

Library gcc Link Flag
lib24dsiléwrc main.so -124dsiléwrc main
1ib24dsil6wrc multi.so | ~124dsil6wrc multi
lib24dsiléwrc all.sot | -124dsiléwrc_all

+ This library includes all generated libraries, including the API Library shared object file content.

17
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

4. API Library

The 24DSI16WRC API Library is the software interface between user applications and the 24DSI16WRC device
driver. The interface is accessed by including the header file 24dsil6éwrc_api.h.

NOTE: Contact General Standards Corporation if additional library functionality is required.
4.1. Files

The library files are summarized in the table below.

Description | File Location

Source Files | *.c, *.h/api/

Header File | 24dsiléwrc api.h ../include/
../ 11

Library File | 1ib24dsiléwrc_api.so /ési%ib/ :

+ The shared object library is automatically copied to /usr/1ib/ when it is built.

4.2. Build

The API Library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the
below steps.

NOTE: The following steps may require elevated privileges.
1. Change to the directory where the library sources are installed (.../api/).
2. Remove existing build targets using the below command.
make clean

3. Compile the source files and build the library by issuing the below command. This step copies the API Library
fileto /usr/1ib/.

make

4.3. Library Use

The library is used at application compile time, at application link time and at application run time. At compile time
include the below listed header file in each source file using a component of the Library interface. Also, edit the
include file search path to locate the header file in the below listed directory. At link time the Library’s shared object
file is linked via the linker command line. This can be done by naming the .so file explicitly or by adding the below
linker command line argument. At run time the library is found in the directory /usr/1ib/. (The shared object
file is automatically copied to /usr/1ib/ when itis built.)

Description File Location Linker Argument
Header File 24dsiléwrc api.h ../include/

./1ib/
Shared Object Library | 1ib24dsiléwrc _api.so Just/1ib/ | ~124dsiléwre api

4.4. Macros

The API Library and driver interfaces include the following macros, which are defined in 24dsiléwrc.h.

18
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

4.4.1. 10CTL Services

The IOCTL macros are documented in section 4.7 (page 24).

4.4.2. Registers

The following gives the complete set of 24DSI16WRC registers.

4.4.2.1. GSC Registers

The following table gives the complete set of GSC specific 24DSI1L6WRC registers. Please note that the set of
registers supported by any given device may vary according to model and firmware version. For the set of supported

registers and their detailed definitions refer to the appropriate 24DSI16WRC User Manual.

NOTE: Refer to the output of the “id” sample application (.../1d/) for a complete list of the
registers supported by the device being accessed.

Macro Description
DSI16WRC_GSC_ASIOCR | Aux Sync I/O Control Register (ASIOCR)
DSI16WRC GSC AVR Autocal Values Register (AVR)

DST16WRC GSC BCFGR | Board Configuration Register (BCFGR)
DSTI16WRC GSC BCTLR | Board Control Register (BCTLR)
DSI16WRC_GSC_BUFCR | Buffer Control Register (BUFCR)
DSI16WRC_GSC_BUFSR | Buffer Size Register (BUFSR)
DSI16WRC_GSC_CSAR Clock Source Assignment Register (CSAR)

DSI16WRC_GSC_IDBR Input Data Buffer Register (IDBR)
DSI16WRC_GSC_MCAR Master Clock Adjust Register (MCAR)
DSI16WRC GSC RCR Rate Control Register (RCR)
DST16WRC GSC RDR Rate Divisors Register (RDR)

4.4.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of the PCI
register identifiers refer to the driver header file gsc pci9056.h, which is automatically included via
24dsiléwrc_api.h.

4.4.2.3. PLX Feature Set Registers
Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX

register identifiers refer to the driver header file gsc pci9056.h, which is automatically included via
24dsiléwrc_api.h.

4.5. Data Types

The data types used by the API Library are described with the IOCTL services with which they are used. For
additional information refer to section 4.7 (page 24).

4.6. Functions

The interface includes the following functions. The return values reflect the completion status of the requested
operation. A return value less than zero always reflects an error condition. The table below summarizes the error
status values. For the I/O function, read, non-negative return values reflect the number of bytes transferred between
the application and the interface. A value equal to the requested transfer size indicates complete success. Return

19
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

values less than the requested transfer size indicate that the 1/0 timeout expired. For the other API function calls a
return value of zero indicates success.

Return Value | Description
<0 This is the value “ (-errno)” (see errno.h).

4.6.1. dsiléwrc_close()

This function is the entry point to close a connection made via the API’s open call (section 4.6.4, page 22). The
device is put in an initialized state before this call returns.

Prototype

int dsiléwrc_close (int £d);

Argument | Description

fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
Return Value | Description
0 The operation succeeded.
<0 An error occurred. See error value description above.
Example

#include <stdio.h>
#include "24dsilé6wrc dsl.h"
int dsiléwrc close dsl(int £fd)
{

int errs;

int ret;

ret = dsiléwrc close (fd);

if (ret)
printf ("ERROR: dsiléwrc close() returned %d\n", ret);

errs =ret 21 : 0;
return (errs) ;
}

4.6.2. dsiléwrc_init()
This function is the entry point to initializing the 24DSI16WRC API Library and must be the first call into the
Library. This function may be called more than once, but only the first successful call actually initializes the library.
Subsequent calls perform no operation at all. All other API calls return a failure status when the API Library is not
initialized.
Prototype

int dsiléwrc_init (void);

20
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

Return Value | Description

0 The operation succeeded.

<0 An error occurred. See error value description above.
Example

#include <stdio.h>

#include "24dsil6wrc dsl.h"

int dsilé6wrc init dsl (void)

{

int errs;
int ret;

ret =

dsilébwrc init();

if (ret)
printf ("ERROR: dsilé6wrc init () returned %d\n", ret);

errs

=ret 2 1 : 0;

return (errs) ;

}

4.6.3. dsiléwrc_ioctl()

This function is the entry point to performing setup and control operations on a 24DSI16WRC. This function should
only be called after a successful open of the respective device. The specific operation performed varies according to
the request argument. The request argument also governs the use and interpretation of the arg argument. The
set of supported options for the request argument consists of the IOCTL services supported by the driver, which

are defined in section 4.7 (page 24).

NOTE: IOCTL operations are not supported for an open on device index -1.

NOTE: Some of the driver’s IOCTL services wait for the board’s Ready Bit in the Board Control
Register to become set after applying the requested settings. If the respective board feature
requires a clock source and the clock source is absent or disabled, then the service may fail with a

timeout error. This is most likely to occur if the required clock source is disabled or if the external
source is not providing a clock.

Prototype

int dsiléwrc _ioctl (int fd, int request, void* argqg);

Argument | Description

fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
request | This specifies the desired operation to be performed (section 4.7, page 24).

arg This is specific to the IOCTL operation specified by the request argument.

Return Value | Description

0

The operation succeeded.

<0

An error occurred. See error value description above.

21
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

Example
#include <stdio.h>
#include "24dsil6wrc dsl.h"
int dsilé6wrc ioctl dsl(int fd, int request, void* argq)
{
int errs;
int ret;

ret = dsil6wrc ioctl (fd, request, arg);

if (ret)
printf ("ERROR: dsilé6wrc ioctl() returned %d\n", ret);

errs =ret 2 1 : 0;
return (errs) ;
}
4.6.4. dsiléwrc_open()

This function is the entry point to open a connection to a 24DSI16WRC board. Before returning, the initialize
IOCTL service is called to reset all hardware and software settings to their defaults.

Prototype

int dsiléwrc_open (int device, int share, int* fd);

Argument | Description
device This is the zero-based index of the 24DSI16WRC to access.
share Open the device in Shared Access_ M(_)de? If non-zero thg device is opened in Shared Access
Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).
The device handle is returned here. The pointer cannot be NULL. Values returned are as
follows.
fd Value | Description
>= 0 | This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

+ The index value -1 can also be given to acquire driver information (section 2.2, page 12).

Return Value | Description
0 The operation succeeded.
<0 An error occurred. See error value description above.

Example
#include <stdio.h>
#include "24dsil6wrc dsl.h"
int dsiléwrc open dsl (int device, int share, int* £d)

{

int errs;

22
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

int ret;
ret = dsil6wrc open(device, share, fd);

if (ret)
printf ("ERROR: dsil6bwrc open() returned $d\n", ret);

errs =ret 2 1 : 0;
return (errs) ;
}
4.6.4.1. Access Modes

The value of the share argument determines the device access mode, as follows.

Shared Access Mode:

Shared Access Mode allows multiple applications to access the same device simultaneously. In this mode, the first
successful open request returns with the device in an initialized state. Subsequent successful Shared Access Mode
open requests do not affect the state of the device. Once opened in Shared Access Mode, the device access remains
in this mode until all Shared Access Mode accesses release the device with a close request.

Exclusive Access Mode:

Exclusive Access Mode allows a single application to acquire exclusive access to a device. In this mode, a
successful open request returns with the device in an initialized state. While open in this mode all subsequent open
requests will fail regardless of the access mode requested. Once opened in Exclusive Access Mode, the device
access remains in this mode until released by the application with a close request.

4.6.5. dsiléwrc_read()

This function is the entry point to reading data from an open connection. The function reads up to bytes bytes.

NOTE: If an open was performed using an index of -1, then read requests will acquire
information from the driver (section 2.2, page 12) rather than data from a device.

NOTE: For additional information refer to the Data Transfer Modes section (section 8.3, page
51).

Prototype

int dsiléwrc_read(int fd, void* dst, size t bytes);

Argument | Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
dst The data read is put here.
b This is the desired number of bytes to read. When reading from a device, this must be a
ytes .
multiple of four (4).

Return Value | Description

The operation succeeded. When reading from a device, a value less than bytes

0 tobytes indicates that the 1/0 timeout period lapsed (section 4.7.44, page 39) before the entire
request could be satisfied.
<0 An error occurred. See error value description above.
23

General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

Example
#include <stdio.h>
#include "24dsilé6wrc dsl.h"
int dsiléwrc read dsl (int fd, void* dst, size t bytes, size t* qty)
{
int errs;
int ret;

ret = dsiléwrc read(fd, dst, bytes);

if (ret < 0)
printf ("ERROR: dsiléwrc read() returned %d\n", ret);

if (qty)
gty[0] = (ret < 0) 2 0 : (size_t) ret;

errs = (ret < 0) 21 : 0;

return (errs) ;

}

4.7. IOCTL Services

The 24DSI16WRC API Library and device driver implement the following IOCTL services. Each service is
described along with the applicable dsil6éwrc ioctl () function arguments.

4.7.1. DSI16WRC_IOCTL_ADC_MODE

This service configures the ADC operating mode.
NOTE: Before returning the driver will wait for up to 800 milliseconds for the Channels Ready
bit to become set. If the bit does not become set during this period, then the driver will post an

error message to the system log.

Usage

Argument | Description
request | DSI16WRC IOCTL ADC MODE
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

This option selects the high-resolution mode, in which the

DSI16WRC ADC MODE HI RE . .
ST1OWRC_ADC_MODE_HI_RES sampling rate is from 200 to 52,500 S/S.

This option selects the high-speed mode, in which the sampling

DSILOWRC_ADC_MODE _HI SPEED rate is from 400 to 105,000 S/S and offers lower noise.

4.7.2. DSII6WRC_IOCTL_AI_BUF_CLEAR

This service immediately clears the current content from the input buffer. It also clears the associated overflow and
underflow status bits. This service does not halt sampling.

24
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

NOTE: Before returning the driver will wait for up to 25 milliseconds for the Channels Ready bit
to become set. If the bit does not become set during this period, then the driver will post an error

message to the system log.

Usage
Argument | Description
request | DSI16WRC IOCTL AI BUF CLEAR
arg Not used.

4.7.3. DSI1I6WRC_IOCTL_AI_BUF_ENABLE

This service enables or disables input to the analog input buffer.

Usage
Argument | Description
request | DSI16WRC IOCTL AI BUF ENABLE
arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

DSI16WRC AI BUF ENABLE NO

This option disables input to the input buffer.

DSI16WRC AI BUF ENABLE YES

This option enables input to the input buffer.

NOTE: With this service the buffer input stream is affected immediately. This is not timed to
occur at a scan boundary and may result in a partial scan entering the buffer. For additional

information on clearing the input buffer refer to section 8.5 on page 53.

4.7.4. DSI1IBWRC_IOCTL_Al_ BUF_FILL_LVL

This service reports the analog input buffer’s current fill level.

Usage

Argument | Description
request | DSI16WRC IOCTL AI BUF FILL LVL
arg s32%*

Valid return values are from zero to 0x40000 (256K).

4.7.5. DSI1I6BWRC_IOCTL_Al_BUF_OVERFLOW

This service operates on the Analog Input Overflow status.

Usage

Argument | Description
request | DSI16WRC IOCTL AI BUF OVERFLOW
arg s32*

Valid argument values provided to the service are as follows.

25

General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

Value

Description

DSI16WRC AI BUF OVERFLOW CLEAR

This option clears the overflow status.

DSI16WRC AI BUF OVERFLOW TEST

This option reports if an overflow has occurred.

Valid returned values are as follows.

Value Description

DSI16WRC AI BUF OVERFLOW NO | An overflow did not occur.

DSI16WRC AI BUF OVERFLOW YES | An overflow did occur.

4.7.6. DSI16WRC_IOCTL_AI_BUF_THR_STS

This service reports the input buffer threshold status. The status is active (or asserted or set) while the buffer fill
level exceeds the buffer threshold setting. The status is idle (or negated or clear) while the buffer fill level is equal to

or below the buffer threshold setting.

Usage

Argument | Description

request | DSI16WRC IOCTL AI BUF THR STS

arg s32%*

Valid returned values are as follows.

Value

Description

DSI16WRC AI BUF THR STS ACTIVE

The threshold flag is set.

DSI16WRC AI BUF THR STS IDLE

The threshold flag is not set.

4.7.7. DSII6WRC_IOCTL_AIl_BUF_THRESH

This service sets the fill level at which the input buffer threshold status is asserted.

Usage

Argument | Description

request | DSI16WRC IOCTL AI BUF THRESH

arg s32%*

Valid argument values are from zero to 0x40000, and -1. A value of -1 will return the current threshold level

setting.

4.7.8. DSI1I6WRC_IOCTL_AIl_BUF_UNDERFLOW

This service operates on the Analog Input Underflow status.

Usage

Argument | Description

request | DSI16WRC IOCTL AI BUF UNDERFLOW

arg s32*

Valid argument values are as follows.

26

General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

Value

Description

DSI16WRC AI BUF UNDERFLOW CLEAR

Clear the underflow status.

DSI16WRC AI BUF UNDERFLOW TEST

Report if an underflow has occurred.

Valid returned values are as follows.

Value

Description

DSI16WRC AI BUF UNDERFLOW NO

An underflow did not occur.

DSI16WRC AI BUF UNDERFLOW YES

An underflow did occur.

4.7.9. DSI16WRC_IOCTL_AI_CHANNEL_TAG

This service configures the appearance of the channel tag in the input data stream.

Usage

Argument | Description
request | DSI16WRC IOCTL AI CHANNEL TAG
arg s32%*

Valid argument values are as follows.

Value

Description

-1

Request the current setting.

DSI16WRC AI CHANNEL TAG DISABLE

This option causes the channel tag to not appear.

DSI16WRC AI CHANNEL TAG ENABLE

This option causes the channel tag to appear.

4.7.10. DSI1I6WRC_IOCTL_AI_MODE

This service configures the analog input mode.

Usage

Argument | Description
request | DSI16WRC IOCTL AI MODE
arg s32%*

Valid argument values are as follows.

Value Description

-1

Retrieve the current setting.

DSI16WRC AI MODE DIFF

This option selects differential operation.

DSI16WRC AI MODE VREF

This option connects the input channels to the onboard VREF signal.

DSI16WRC AI MODE ZERO

signal.

This option connects the input channels to the onboard zero voltage

4.7.11. DSI1I6WRC_IOCTL_AUTOCAL

This service initiates an autocalibration cycle. Most configuration setting should be made before running an

autocalibration cycle. The driver waits for the operation to complete before returning.

NOTE: This service overwrites the current interrupt selection in order to detect the

Autocalibration Done interrupt.

27

General Standards Corporation, Phone: (256) 880-8787

Usage

24DSI16WRC, Linux Device Driver, User Manual

Argument | Description

request | DSI16WRC IOCTL AUTOCAL

arg Not used.

4.7.12. DSI16WRC_IOCTL_AUTOCAL_STATUS

This service reports the autocalibration status.

Usage

NOTE: When an error is encountered, the service writes a brief, descriptive error message to the
system log.

Argument | Description

request | DSI16WRC IOCTL AUTOCAL STATUS

arg s32%*

Valid argument values returned are as follows.

Value Description

DSI16WRC_AUTOCAL_STATUS ACTIVE | An autocalibration cycle is in progress.

DSI16WRC_AUTOCAL_STATUS FAIL The most recent autocalibration cycle failed.

DSI16WRC AUTOCAL STATUS PASS The most recent autocalibration cycle passed.

4.7.13. DSI16WRC_IOCTL_AUX_CLK_CTL_MODE

This service configures the Auxiliary Clock Control Mode.

Usage

Argument | Description

request | DSI16WRC IOCTL AUX CLK CTL MODE

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

DSI16WRC AUX CLK CTL MODE INACTIVE

This option configures the signal to be inactive.

DSI16WRC AUX CLK CTL MODE INPUT

This option configures the signal to be an input.

DSI16WRC AUX CLK CTL MODE OUTPUT

This option configures the signal to be an output.

4.7.14. DSI16WRC_IOCTL_AUX_SYNC_CTL_MODE

This service configures the Auxiliary Sync Control Mode.

Usage

Argument | Description

request | DSI16WRC IOCTL AUX SYNC CTL MODE

arg s32%*

28

General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

DSI16WRC AUX SYNC CTL MODE INACTIVE

This option configures the signal to be inactive.

DSI16WRC AUX SYNC CTL MODE INPUT

This option configures the signal to be an input.

DSI16WRC AUX SYNC CTL MODE OUTPUT

This option configures the signal to be an output.

4.7.15. DSI1I6WRC_IOCTL_BURST
This service enables or disables input bursting.

Usage

Argument | Description
request | DSI16WRC IOCTL BURST
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

DSI16WRC_BURST DISABLE | This option disables input bursting.

DSI16WRC_BURST_ENABLE | This option enables input bursting.

4.7.16. DSI1I6WRC_IOCTL_BURST_RATE_DIV
This service adjusts the Burst Rate Divisor.

Usage

Argument | Description

request | DSI16WRC IOCTL BURST RATE DIV

arg s32%*

Valid argument values are from zero to OxFFFFFF, and -1. The value -1 retrieves the current setting.

4.7.17. DSI1I6WRC_IOCTL_BURST_SIZE

This service adjusts the Burst Size, which is the number of scans in a single burst operation.

Usage

Argument | Description

request | DSI16WRC IOCTL BURST SIZE

arg s32*

Valid argument values are from zero to OXFFFFFF, and -1. The value -1 retrieves the current setting.

4.7.18. DSI16WRC_IOCTL_BURST_TIMER

This service enables or disables the input bursting timer.

29

General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

Usage

Argument | Description
request | DSI16WRC IOCTL BURST TIMER

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
DSI16WRC_BURST_ TIMER DISABLE | This option disables the input burst timer.
DSI16WRC_BURST_ TIMER ENABLE | This option enables the input burst timer.

4.7.19. DSI16WRC_IOCTL_BURST_TRIGGER
This service initiates a burst operation.

Usage

Argument | Description
request | DSI16WRC IOCTL BURST TRIGGER

arg Not used.

4.7.20. DSI1I6WRC_IOCTL_CHANNELS_READY
This service operates on the Channel Ready status.

Usage

Argument | Description
request | DSI16WRC IOCTL CHANNELS READY

arg s32%*

Valid argument values are as follows.

Value Description

DSI16WRC_CHANNELS READY TEST | This reports if the status is ready.

This requests that the driver wait for the status to become

DSI16WRC CHANNELS READY WAIT i .
- - - ready. The driver waits for up to one second.

Valid returned values are as follows.

Value Description
DSI16WRC CHANNELS READY NO | The status is not ready.
DSI16WRC CHANNELS READY YES | The status is ready.

4.7.21. DSI1I6WRC_IOCTL_CH_GRP_Xx SRC
This service configures the clocking source for the respective channel group.

NOTE: Refer to the board user manual for additional information.

30
General Standards Corporation, Phone: (256) 880-8787

Usage

24DSI16WRC, Linux Device Driver, User Manual

Value Description
DSI16WRC_TIOCTL_CH GRP_0_SRC | This refers to Channel Group 0.
DSI16WRC_TIOCTL_CH GRP_1 SRC | This refers to Channel Group 1.

NOTE: Before returning the driver will wait for up to 25 milliseconds for the Channels Ready bit
to become set. If the bit does not become set during this period, then the driver will post an error
message to the system log.

Argument | Description
request | DSI16WRC IOCTL CH GRP X SRC
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

DSI16WRC_CH GRP_SRC_DIR_EXTERN | This option selects the Direct External configuration.
DSI16WRC_CH GRP_SRC_DISABLE This option disables the respective channel group.
DSI16WRC_CH GRP_SRC_EXTERN This option selects the External configuration.
DSI16WRC_CH GRP_SRC RATE GEN This option selects the internal Rate Generator.

4.7.22. DSI1I6WRC_IOCTL_CONTROL_MODE

This service configures the board for initiator or target mode operation.

Usage

Argument | Description
request | DSI16WRC IOCTL CONTROL MODE
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
DSI16WRC_CONTROL MODE_INITIATOR | This option selects initiator mode operation.
DSI16WRC_CONTROL_MODE_TARGET This option selects target mode operation.

4.7.23. DSI16WRC_IOCTL_DATA_FORMAT

This service configures the data encoding format.

Usage

Argument | Description
request | DSI16WRC IOCTL DATA FORMAT
arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
31

General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

DSI16WRC_DATA_ FORMAT_2S_COMP | This option selects the Twos Compliment data format.
DSI16WRC_DATA_FORMAT_OFF_BIN | This option selects the Offset Binary encoding format.

4.7.24. DSI1I6WRC_IOCTL_DATA_WIDTH
This service configures the bit width of the converted input data.

Usage

Argument | Description
request | DSI16WRC IOCTL DATA WIDTH
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
DSI16WRC_DATA WIDTH 16 | This option selects 16-bits of resolution.
DSI16WRC_DATA WIDTH 18 | This option selects 18-bits of resolution.
DSI16WRC_DATA WIDTH 20 | This option selects 20-bits of resolution.
DSI16WRC_DATA WIDTH 24 | This option selects 24-bits of resolution.

4.7.25. DSI1I6WRC_IOCTL_DIO_DIR_OUT
This service sets the Digital 1/0 Port pins as either input or output.

Usage

Argument | Description
request | DSI16WRC IOCTL DIO DIR OUT
arg s32%*

Valid argument values are from zero to 0xF, and -1. A value of -1 will return the current setting. A port pin is an
output if the bit is set and it is an input if the bit is clear. Bit DO refers to port pin zero.

4.7.26. DSI1I6WRC_IOCTL_DIO_READ
This service reads the value of the Digital 1/0 Port pins. If a pin is configured as an output the value returned is the
output value. If a pin is configured as an input the value returned in the value on the pin at the cable interface. Bit

DO refers to port pin zero.

Usage

Argument | Description
request | DST16WRC IOCTL DIO READ
arg s32*

Valid values returned are from zero to 0xF.
4.7.27. DSIL6WRC_IOCTL_DIO_WRITE

This service writes to the Digital 1/0O Port pins.

32
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

Usage

Argument | Description
request | DSI16WRC IOCTL DIO WRITE
arg s32%*

Valid argument values are from zero to 0xF, and -1. A value of -1 will return the current setting. Writes to output
pins appear immediately at the cable interface. Writes to input pins are latched and will appear when the pin is
subsequently configured as an output. Bit DO refers to port pin zero.

4.7.28. DSI16WRC_IOCTL_EXT_CLK_SRC

This service configures the source for the external clock output.

Usage

Argument | Description
request | DSI16WRC IOCTL EXT CLK SRC

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
DSI16WRC_EXT CLK SRC_GEN This option selects the internal Rate Generator.
DSI16WRC_EXT CLK_SRC_GRP_0 | This option selects the Channel Group 0 sample clock.

4.7.29. DSI1I6WRC_IOCTL_EXT_SYNC_IN
This service configures the External SYNC Input at the cable interface.

Usage

Argument | Description
request | DSI16WRC IOCTL EXT SYNC IN

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
DSI16WRC EXT SYNC IN DISABLE | This option disables the input.
DSI16WRC EXT SYNC IN ENABLE | This option enables the input.

4.7.30. DSI1I6WRC_IOCTL_INITIALIZE

This service resets all hardware and software settings to their defaults.
NOTE: Before returning the driver will wait for up to 25 milliseconds for the Channels Ready bit
to become set. If the bit does not become set during this period, then the driver will post an error

message to the system log.

NOTE: If the initialization service returns an error status, an error message will be posted to the
system log briefly describing the error condition.

33
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

Usage
Argument | Description
request | DSI16WRC IOCTL INITIALIZE
arg Not used.

4.7.31. DSI1I6WRC_IOCTL_IRQ_SEL

This service selects which firmware interrupt source may generate an interrupt.

Usage
Argument | Description
request | DSI16WRC IOCTL IRQ SEL
arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

DSI16WRC_IRQ AI BUF THRESH H2L

This refers to a high-to-low transition of the input buffer
threshold flag.

DSI16WRC_IRQ AI BUF THRESH L2H

This refers to a low-to-high transition of the input buffer
threshold flag.

DSI16WRC IRQ AUTOCAL DONE This refers to autocalibration completion.
DSI16WRC IRQ CHAN READY This refers to assertion of the Channel Ready status.
DSI16WRC IRQ AI BURST DONE This refers to completion of a burst operation.

4.7.32. DSI1I6WRC_IOCTL_MASTER_CLK_ADJ

This service adjusts the master clock frequency to the degree indicated by the argument. Read the hardware user
manual for additional information.

Usage
Argument | Description
request | DSI16WRC IOCTL MASTER CLK ADJ
arg s32%*

Valid argument values are from zero to OXFFFF, and -1. The value -1 retrieves the current setting. The midrange
value is 0x8000. The value 0x0000 lowers the reference frequency by up to 50 to 80 PPM from nominal. The
value OxFFFF raises the reference frequency by up to 50 to 80 PPM from nominal.

4.7.33. DSI1I6WRC_IOCTL_NDIV

This service configures the internal rate generator’s NDIV value.

NOTE: Before returning the driver will wait for up to 25 milliseconds for the Channels Ready bit
to become set. If the bit does not become set during this period, then the driver will post an error
message to the system log.

34
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

Usage
Argument | Description
request | DSI16WRC IOCTL NDIV
arg s32%*

Valid argument values are from one to 300, and -1. The value -1 returns the current setting.
4.7.34. DSI16WRC_IOCTL_NREF
This service configures the internal rate generator’s NREF value.
NOTE: Before returning the driver will wait for up to 25 milliseconds for the Channels Ready bit

to become set. If the bit does not become set during this period, then the driver will post an error
message to the system log.

Usage
Argument | Description
request | DSI16WRC IOCTL NREF
arg s32%*

Valid argument values are from 25 to 300, and -1. The value -1 returns the current setting.
4.7.35. DSI1I6WRC_IOCTL_NVCO
This service configures the internal rate generator’s NVvCO value.
NOTE: Before returning the driver will wait for up to 25 milliseconds for the Channels Ready bit

to become set. If the bit does not become set during this period, then the driver will post an error
message to the system log.

Usage
Argument | Description
request | DSI16WRC IOCTL NVCO
arg s32%*

Valid argument values are from 25 to 300, and -1. The value -1 returns the current setting.
4.7.36. DSI16WRC_IOCTL_QUERY

This service queries the driver for various pieces of information about the board and the driver.

Usage
Argument | Description
request | DSI16WRC IOCTL QUERY
arg s32%*

Valid argument values are as follows.

Value Description

DSI16WRC QUERY AUTOCAL MS

This returns the maximum duration of the autocalibration cycle

35
General Standards Corporation, Phone: (256) 880-8787

The values returned for the DSI16WRC_QUERY V

24DSI16WRC, Linux Device Driver, User Manual

in milliseconds.

DSI16WRC QUERY CHANNEL MAX

This returns the maximum number of input channels supported
by all boards of the same model as the board accessed.

DSI16WRC QUERY CHANNEL QTY

This returns the actual number of input channels on the current
board.

DSI16WRC_QUERY COUNT

This returns the number of query options supported by the
IOCTL service.

DSI16WRC_QUERY DEVICE TYPE

This returns the identifier value for the board’s type. The value
should equal GSC DEV TYPE 24DSI16WRC.

DSI16WRC QUERY EXT SYNC IN

This indicates if the External SYNC Input feature is supported.

DSI16WRC_QUERY FGEN MAX

This returns the maximum rate generator output (FGEN) in
hertz.

DSI16WRC_QUERY FGEN MIN

This returns the minimum rate generator output (FGEN) in
hertz.

DSI16WRC QUERY FIFO SIZE

This returns the size of the input buffer in samples.

DSI16WRC QUERY FILTER FREQ

This returns the installed filter frequency in hertz. The value
zero is returned if no filter is installed and -1 is returned if the
filter frequency is not known to the driver.

DSI16WRC QUERY FREF DEFAULT

This gives the default reference frequency (FREF) in hertz.

DSI16WRC QUERY FSAMP MAX

This gives the maximum sample rate (FSAMP) in S/S.

DSI16WRC QUERY FSAMP MIN

This gives the minimum sample rate (FSAMP) in S/S.

DSI16WRC_QUERY INIT MS

This returns the duration of a board initialization in
milliseconds.

DSI16WRC QUERY NDIV MAX

This returns the maximum supported NDIV value.

DSI16WRC QUERY NDIV MIN

This returns the minimum supported NDIV value.

DSI16WRC QUERY NREF MAX

This returns the maximum supported NREF value.

DSI16WRC QUERY NREF MIN

This returns the minimum supported NREF value.

DSI16WRC QUERY NVCO MAX

This returns the maximum supported Nvco value.

DSI16WRC QUERY NVCO MIN

This returns the minimum supported Nvco value.

DSI16WRC_QUERY V_RANGE

This returns the board’s factory configured voltage range. See
the options values below.

RANGE query option are as follows.

Value

Description

DSI16WRC QUERY V RANGE 10 BY 2

+
o1

The board supports the voltage ranges of +10 volts, +
volts, +2.5 volts and +1.25 volts.

DSI16WRC QUERY V RANGE 10 BY 10

+

The board supports the voltage ranges of +10 volts, +1
volt, +0.1 volts and +0.01 volts.

4.7.37. DSI16WRC_IOCTL_RANGE

This service configures the analog input voltage range.

Usage

Argument | Description
request | DSI16WRC IOCTL RANGE
arg s32*

Valid argument values are as follows.

Value

Description

-1 Retrieve the current setting.

36

General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

DSI16WRC_RANGE_10MV | This option selects the +0.01 volt range. T
DSTI16WRC_RANGE_100MV | This option selects the +0.1 volt range. T
DSI16WRC_RANGE_ 1V This option selects the £1 volt range. f
DSI16WRC_RANGE_1_25V | This option selects the +1.25 volts range.
DSI16WRC_RANGE_2 5V | This option selects the +2.5 volts range.
DSI16WRC_RANGE_ 5V This option selects the £5 volts range. }
DSI16WRC RANGE 10V This option selects the £10 volts range.

+ This option is available only on boards factory configured for ranges of £10V, £1V, £0.1V and +0.01V.
1 This option is available only on boards factory configured for ranges of +10V, 5V, 2.5V and +1.25V.

4.7.38. DSI16WRC_IOCTL_REG_MOD

This service performs a read-modify-write of a 24DSI16WRC register. This includes only the GSC firmware
registers. The PCI and PLX Feature Set Registers are read-only. Refer to 24dsiléwrc.h for a complete list of
the GSC firmware registers.

Usage
Argument | Description
request | DSI16WRC IOCTL REG MOD
arg gsc reg t*

Definition

typedef struct
{
u32 reg;
u32 value;
u32 mask;
} gsc _reg t;

Fields | Description

reg This is set to the identifier for the register to access.

value | This contains the value for the register bits to modify.

This specifies the set of bits to modify. If a bit here is set, then the respective register bit is

k Lo o e
nas modified. If a bit here is zero, then the respective register bit is unmodified.

4.7.39. DSI1I6WRC_IOCTL_REG_READ

This service reads the value of a 24DSI16WRC register. This includes the PCI registers, the PLX Feature Set
Registers and the GSC firmware registers. Refer to 24dsil6éwrc.h and gsc pci9056.h for the complete list
of accessible registers.

Usage
Argument | Description
request | DST1I6WRC IOCTL REG READ
arg gsc _reg t*

Definition

typedef struct

{
u32 regqg;

37
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

u32 value;
u32 mask;
} gsc _reg t;

Fields | Description

reg This is set to the identifier for the register to access.
value | This is the value read from the specified register.
mask | Thisis ignored for read request.

4.7.40. DSI1I6WRC_IOCTL_REG_WRITE

This service writes a value to a 24DSI16WRC register. This includes only the GSC firmware registers. The PCI and
PLX Feature Set Registers are read-only. Refer to 24dsiléwrc.h for a complete list of the GSC firmware

registers.

Usage
Argument | Description
request | DSI16WRC IOCTL REG WRITE
arg gsc_reg t*

Definition

typedef struct
{
u32 regqg;
u32 value;
u32 mask;
} gsc _reg t;

Fields | Description

reg This is set to the identifier for the register to access.
value | This is the value to write to the specified register.
mask | This is ignored for write request.

4.7.41. DSI1I6WRC_IOCTL_RX_IO_ABORT

This service aborts an ongoing read () request. The service will wait for up to the read I/O timeout period for the
request to complete.

Usage

Argument | Description
request | DSI16WRC IOCTL RX IO ABORT

arg s32*

The results are reported as one of the following values.

Value Description
DSI16WRC_IO_ABORT_NO | A read() request was not aborted as none were ongoing.

DSI16WRC_IO ABORT_YES | Anongoing read () requestwas aborted.

38
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

4.7.42. DSI1I6WRC_IOCTL_RX_10_MODE

This service sets the 1/0 mode used for data read requests.
NOTE: Applications may experience improved responsiveness with read requests by coordinating
the Buffer Threshold with the number of samples requested. Refer to the

DSI16WRC IOCTL AIN BUF THRESH service of section 4.7.6 on page 26.

Usage

Argument | Description
request | DSI16WRC IOCTL RX IO MODE
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

GSC_IO_MODE_BMDMA | Use Block Mode DMA.

GSC_IO_MODE_DMDMA | Use Demand Mode DMA (transfer data as it becomes possible to do so).
GSC_IO MODE_PIO Use P10 mode, which is repetitive register access.

4.7.43. DSI1I6WRC_IOCTL_RX_IO0_OVERFLOW

This service configures the read service to check for a data buffer overflow before performing read operations.
Sampled data is lost when there is an overflow

Usage

Argument | Description
request | DSI16WRC IOCTL RX IO OVERFLOW
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

DSI16WRC_IO OVERFLOW_CHECK | This option specifies that the check be performed.
DSI16WRC_IO_ OVERFLOW_IGNORE | This option specifies that the check not be performed.

4.7.44. DSII6WRC_IOCTL_RX_IO_TIMEOUT
This service sets the timeout limit for read requests. The value is expressed in seconds.

Usage

Argument | Description
request | DSI16WRC IOCTL RX IO TIMEOUT
arg s32*

Valid argument values are in the range from zero to 3600, -1, and DSI16WRC_IO TIMEOUT INFINITE. A
value of zero tells the driver not to sleep in order to wait for more data, and should only be used with PIO mode
reads. A value of -1 is used to retrieve the current setting. If the option DSI16WRC_ IO TIMEOUT INFINITE is
used, then the driver will wait indefinitely rather than timing out. The default is 10 seconds.

39
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

4.7.45. DSI16WRC_IOCTL_RX_IO_UNDERFLOW

This service configures the read service to check for a data buffer underflow before performing read operations.
Indeterminate data is returned when there is an underflow

Usage

Argument | Description

request | DSI16WRC IOCTL RX IO UNDERFLOW

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

DSI16WRC IO UNDERFLOW CHECK

This option specifies that the check be performed.

DSI16WRC IO UNDERFLOW IGNORE

This option specifies that the check not be performed.

4.7.46. DSI1I6WRC_IOCTL_SW_SYNC

This service initiates an ADC sync operation and, if in initiator mode, also generates an external sync output. The
result of issuing a sync is dependent on the DSI16WRC_IOCTL SW_ SYNC MODE setting (refer to section 4.7.47
on page 40). When initiating this operation, it is the application’s responsibility to wait for the Channel Ready bit to
be asserted.

Usage

NOTE: Before returning the driver will wait for up to 1,100 milliseconds for the Channels Ready
bit to become set. If the bit does not become set during this period, then the driver will post an
error message to the system log.

Argument | Description

request | DSI16WRC IOCTL SW SYNC

arg Not used.

4.7.47. DSI1I6WRC_IOCTL_SW_SYNC_MODE

This service sets the context of the Software Sync operation.

Usage

Argument | Description

request | DSI1I6WRC IOCTL SW SYNC MODE

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

DSI16WRC_SW_SYNC MODE CLR_BUF

This option causes a sync to clear the input buffer when
there is a Software Sync request. The clearing of the buffer
is timed to occur on a scan boundary. Refer to section 8.5
on page 53 for addition buffer clearing information.

DSI16WRC SW SYNC MODE SYNC

Synchronize input channel scanning when there is a

40

General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

| | Software Sync request.

4.7.48. DSI16WRC_IOCTL_WAIT_CANCEL

This service resumes all threads blocked via the DSI16WRC IOCTL WAIT EVENT IOCTL service (section

4.7.49, page 41), according to the provided criteria. When a blocked thread is waiting for any event specified in the
structure, then the thread is resumed.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver
initiated waits are unaffected by application cancel requests.

Usage
Argument | Description
request | DSI16WRC IOCTL WAIT CANCEL
arg gsc wait t*

Definition

typedef struct
{

u32 flags;
u32 main;
u32 gsc;
u32 alt;
u32 io;

u32 timeout ms;
u32 count;
} gsc_wait t;

Fields Description

flags This is unused by wait cancel operations.

main This specifies the set of GSC_ WAIT MAIN * events whose wait requests are to be
cancelled. Refer to section 4.7.49.2 on page 42.

gsc This specifies the set of DST16WRC WAIT GSC_* events whose wait requests are to

be cancelled. Refer to section 4.7.49.3 on page 43.

alt This is unused by the 24DSI16WRC driver and should be zero.

This specifies the set of GSC WAIT IO * events whose wait requests are to be

O cancelled. Refer to section 4.7.49.4 on page 43.

timeout ms | Thisis unused by wait cancel operations.

count Upon return this indicates the number of waits that were cancelled.

4.7.49. DSI1I6WRC_IOCTL_WAIT_EVENT

This service blocks a thread until any one of a specified set of events occurs, or until a timeout lapses, whichever
occurs first. The set of possible events to wait for are specified in the structure’s main, gsc, alt and io fields. All
field values must be valid and at least one event must be specified. If the thread is resumed because one of the
referenced events has occurred, then the bit for the respective event is the only event bit that will be set. All other
event bits and fields will be zero. (Multiple event bits will be set only if the events occur simultaneously.)

NOTE: The service waits only for the first of the specified events, not for all specified events.

NOTE: A wait timeout is reported via the gsc_wait t structure’s £lags field having the
GSC_WAIT FLAG TIMEOUT flag set, rather than via an ETIMEDOUT error.

41
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

Usage
Argument | Description
request | DSI16WRC IOCTL WAIT EVENT
arg gsc wait t*

Definition

typedef struct

{
u32
u32
u32
u32
u32
u32
u32

flags;
main;

gsc;

alt;

io;

timeout ms;
count;

} gsc_wait t;

Fields Description

flags This must initially be_ zero. Upon return this indicates the reason that the thread was
resumed. Refer to section 4.7.49.1on page 42.

main This specifies any number of GSC_WAIT MAIN * events that the thread is to wait for.
Refer to section 4.7.49.2 on page 42.

gsc This specifies any number of DSI16WRC WAIT GSC_* events that the thread is to
wait for. Refer to section 4.7.49.3 on page 43.

alt This is unused by the 24DSI16WRC driver and must be zero.

io This specifies any number of GSC_WAIT IO * events that the thread is to wait for.
Refer to section 4.7.49.4 on page 43.
This specified the maximum amount of time, in milliseconds, that the thread is to wait

timeout ms | for any of the referenced events. A value of zero means do not timeout at all. If non-
zero, then upon return the value will be the approximate amount of time actually waited.

count This is unused by wait event operations and must be zero.

4.7.49.1. gsc_wait t.flags Options

Upon return from a

wait request the wait structure’s flags field will indicate the reason that the thread was

resumed. Only one of the below options will be set.

Fields

Description

GSC_WAIT FLAG _CANCEL | The wait request was cancelled.

GSC_WAIT FLAG DONE One of the referenced events occurred.

GSC_WAIT FLAG_TIMEOUT | The timeout period lapsed before a referenced event occurred.

4.7.49.2. gsc_wait t.main Options

The wait structure’s main field may specify any of the below primary interrupt options. These interrupt options are
supported by the 24DSI16WRC and other General Standards products.

Fields Description

GSC_WAIT MAIN DMAO This refers to the DMA Done interrupt on DMA engine number zero.
GSC_WAIT MAIN DMA1 This refers to the DMA Done interrupt on DMA engine number one.
GSC_WAIT MAIN GSC This refers to any of the Interrupt Control/Status Register interrupts.

42
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

This generally refers to an interrupt generated by another device sharing the

WAIT MAIN OTHER :
G5C_ - - same interrupt as the 24DSI16WRC.

GSC WAIT MAIN PCI This refers to any interrupt generated by the 24DSI16WRC.

GSC_WAIT MAIN SPURIOUS | This refers to board interrupts which should never be generated.

GSC_WAIT MAIN UNKNOWN | This refers to board interrupts whose source could not be identified.

4.7.49.3. gsc_wait t.gsc Options

The wait structure’s gsc field may specify any combination of the below interrupt options. These are the interrupt
options referenced in the Board Control Register. Applications are responsible for selecting the desired interrupt
options. Refer to DSI16WRC_IOCTL IRQ SEL (section 4.7.31, page 34).

Value Description
DST16HRC WAIT GSC AT BUF THRESH H2L This refers to a high-to-low transition of the input buffer
_ IR AL PYE_ — threshold flag.

This refers to a low-to-high transition of the input buffer

DSI16WRC WAIT GSC AI BUF THRESH L2H
- - - - = - threshold flag.

DSI16WRC WAIT GSC AUTOCAL DONE This refers to autocalibration completion.
DSI16WRC WAIT GSC CHAN READY This refers to completion of an input burst operation.
DSI16WRC WAIT GSC CHAN READY This refers to assertion of the Channel Ready status.
DSI16WRC WAIT GSC INIT DONE This refers to initialization completion.

4.7.49.4. gsc_wait t.io Options

The wait structure’s io field may specify any of the below event options. These events are generated in response to
application read requests.

Fields Description

GSC_WAIT IO _RX ABORT This refers to read requests which have been aborted.

GSC_WAIT IO RX DONE This refers to read requests which have been satisfied.

GSC_WAIT IO RX ERROR This refers to read requests which end due to an error.
GSC_WAIT IO _RX TIMEOUT | This refers to read requests which end due to the timeout period lapse.

4.7.50. DSI16WRC_IOCTL_WAIT_STATUS

This service count all threads blocked via the DSI16WRC IOCTL WAIT EVENT IOCTL service (section 4.7.49,
page 41), according to the provided criteria. A match is made when a waiting thread’s wait criteria matches any of
the criteria specified in the structure passed to this service.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver
initiated waits are ignored by application status requests.

Usage
Argument | Description
request | DSI16WRC IOCTL WAIT STATUS
arg gsc wait t*

Definition

typedef struct

{
u32 flags;
u32 main;

43
General Standards Corporation, Phone: (256) 880-8787

u32
u32
u32
u32
u32

24DSI16WRC, Linux Device Driver, User Manual

gsc;

alt;

io;

timeout ms;
count;

} gsc_wait t;

Fields Description

flags This is unused by wait status operations.

main This specifies the set of GSC_WAIT MAIN * events whose wait requests are to be
counted. Refer to section 4.7.49.2 on page 42.

gsc This specifies the set of DST16WRC WAIT GSC_* events whose wait requests are to
be counted. Refer to section 4.7.49.3 on page 43.

alt This is unused by the 24DSI16WRC driver and should be zero.

io This specifies the set of GSC WAIT IO * events whose wait requests are to be

counted. Refer to section 4.7.49.4 on page 43.

timeout ms

This is unused by wait status operations.

count

Upon return this indicates the number of waits that met any of the specified criteria.

4.7.51. DSI1I6WRC_IOCTL_XCVR_TYPE

This service configures the transceiver type for the digital interface signals.

Usage

Argument | Description
request | DSI16WRC IOCTL XCVR TYPE
arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

DSI16WRC XCVR TYPE LVDS

This option selects LVDS signaling.

DSI16WRC XCVR TYPE TTL

This option selects TTL signaling.

44
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

5. The Driver

NOTE: Contact General Standards Corporation if additional driver functionality is required.

5.1. Files

The device driver files are summarized in the table below.

Description | Files Location
Source Files | *.c, *.h ...

Header File | 24dsiléwrc.h
24dsiléwrc.ko T
24dsiléwrc.o i
+ This is for kernel versions 2.6 and later.
1 This is for kernel versions 2.4 are earlier.

../driver/
Driver File

5.2. Build
NOTE: Building the driver requires installation of the kernel headers and possibly other packages.

The device driver is built via the Overall Make Script (section 2.7, page 13), but can be built separately following
the below steps.

1. Change to the directory where the driver and its sources are installed (.../driver/).
2. Remove existing build targets by issuing the below command.
make clean
3. Build the driver by issuing the below command.
make
NOTE: Due to the differences between the many Linux distributions some build errors may

occur. These errors may include system header location differences, which should be easily
corrected.

5.3. Startup

NOTE: The driver will have to be built before being used as it is provided in source form only.
The startup script used in this procedure is designed to load the device driver and create fresh device nodes. This is
accomplished by unloading the current driver, if loaded, and then loading the accompanying driver executable. In
addition, the script deletes and recreates the device nodes. This is done to ensure that the device nodes in use have
the same major number as assigned dynamically to the driver by the kernel, and so that the number of device nodes
corresponds to the number of boards identified by the driver.
5.3.1. Manual Driver Startup Procedures

Start the driver manually by following the below listed steps.

NOTE: The following steps may require elevated privileges.

45
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

1. Change to the directory where the driver sources are installed (.../driver/).

2. Install the driver module and create the device nodes by executing the below command. If any errors are
encountered then an appropriate error message will be displayed.

./start
NOTE: This script must be executed each time the host is booted.
NOTE: The 24DSI16WRC device node major number is assigned dynamically by the kernel. The
minor numbers and the device node suffix numbers are index numbers beginning with zero, and

increase by one for each additional board installed.

3. Verify that the device driver module has been loaded by issuing the below command and examining the output.
The module name 24dsi16wrc should be included in the output.

lsmod

4. Verify that the device nodes have been created by issuing the below command and examining the output. The
output should include one node for each installed board.

1ls -1 /dev/24dsiléwrc.*

5.3.2. Automatic Driver Startup Procedures

Start the driver automatically with each system reboot by following the below listed steps.

1. Locate and edit the system startup script rc.local, which should be in the /etc/rc.d/ directory. Modify
the file by adding the below line so that it is executed with every reboot. The example is based on the driver
being installed in /usr/src/linux/drivers/, though it may have been installed elsewhere.

/usr/src/linux/drivers/24dsiléwrc/driver/start

NOTE: For systemd installations the file rc.local may be located under the /etc/
directory rather than under /etc/rc.d/.

2. Load the driver and create the required device nodes by rebooting the system.

3. Verify that the driver is loaded and that the device nodes have been created. Do this by following the
verification steps given in the manual startup procedures.

5.3.2.1. File rc.local Not Present

Some distributions may not install a default version of rc.local. Some may not even create the directory
/etc/rc.d/. If the directory is not present, then it may be created. The directory must be created with the owner
and group set to root. The directory permissions must be set to rwxr-xr-x. If the file /etc/rc.d/rc.local
is not present, then it too may be created. The file must also be created with the owner and group set to root.
Additionally, the file permissions must also be set to rwxr-xr-x. After the directory and file are created as
described, reboot to verify boot time loading of the driver. Here is an example of a default version of rc.local.

#!/bin/bash

Add your local content here.

46
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

5.3.2.2. Default rc.local File Permissions

The rc.local script may fail to run at boot time because some distributions install a default version of the file
without execute permissions. Without execute permissions, boot time invocation of the script fails, which inhibits
boot time loading of the driver. If this is the case, then change the file permissions to rwxr-xr-x. After the file
permissions are adjusted as described, reboot to verify boot time loading of the driver.

5.3.2.3. systemd Installations

With the advent of the systemd startup implementation, rc.local may be accessed via a systemd startup
service. The service name may be rc-local, rc-local.service or something similar. This service may or
may not be enabled by default. If the service is disabled, then the script will not execute, which prevents boot time
loading of the driver. The service can be enabled with the below command line. After the service is enabled, reboot
to verify boot time loading of the driver.

systemctl enable rc-local

NOTE: For systemd installations the file rc.local may be located under the /etc/
directory rather than under /etc/rc.d/.

5.3.2.4. systemd and rc.local Timing

If the above steps have been performed but the driver still does not start then examine the dmesg output for driver
messages. If the output shows that the driver starts and immediately stops, then the problem may be timing. That is,
since systemd doesn’t serialize startup initialization as done in the past, driver loading may fail if required services
have not completed their own initialization. If this is the problem, then it may be corrected simply by inserting a
delay in rc. local prior to it calling the driver’s start script (i.e., sleep for one or more seconds).

5.3.2.5. SElinux Implications
If not disabled, then SElinux may prevent boot time loading of the driver. If this is the case, then it can be verified
and corrected using SElinux related tools and utilities. First, install the necessary software using the below
command. (As necessary, replace the yum command line with that which is available for your distribution.)

yum install setroubleshoot setools
Next, run the below command to determine if SElinux is preventing the driver from loading at boot time.

sealert —-a /var/log/audit/audit.log
If SElinux is preventing the driver from loading, then the output from the above command should include a
reference to the driver’s start script, the insmod command that loads the driver or the name of the driver
executable. If so, then the output should also indicate the commands necessary to resolve the issue. The following is
an example of the instructions given when the culprit is insmod, which is the start script command that loads the

driver. After running these commands reboot the system to verify boot time loading of the driver.

ausearch -c 'insmod' --raw | audit2allow -M my-insmod
semodule -X 300 -i my-insmod.pp

5.4. Verification

Follow the below steps to verify that the driver has been properly installed and started.

47
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

1. Verify that the file /proc/24dsilewrc is present. If the file is present then the driver is loaded and running.
Verify the file’s presence by viewing its content with the below command.

cat /proc/24dsiléwrc
5.5. Version
The driver version number can be obtained in a variety of ways. It is reported by the driver both when the driver is
loaded and when it is unloaded (depending on kernel configuration options, this may be visible only in places such

as /var/log/messages). It is reported in the text file /proc/24dsil6wrc while the driver is loaded and
running. The version number is also given in the file release. txt in the root install directory.

5.6. Shutdown
Shutdown the driver following the below listed steps.
NOTE: The following steps may require elevated privileges.
1. If the driver is currently loaded then issue the below command to unload the driver.
rmmod 24dsiléwrc

2. Verify that the driver module has been unloaded by issuing the below command. The module name
24dsilewrc should not be in the listed output.

lsmod

48
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

6. Document Source Code Examples
The source code examples included in this document are built into a statically linkable library usable with console

applications. The purpose of these files is to verify that the documentation samples compile and to provide a library
of working sample code to assist in a user’s learning curve and application development effort.

6.1. Files

The library files are summarized in the table below.

Description | Files Location
Source Files | *.c,*.h/docsrc/
Header File | 24dsil6wrc dsl.h | ../include/
Library File | 24dsiléwrc dsl.a | ../1lib/

6.2. Build

The library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the
below steps.

1. Change to the directory where the documentation sources are installed (.../docsrc/).
2. Remove existing build targets by issuing the below command.

make clean
3. Compile the sample files and build the library by issuing the below command.

make

4. Rebuild the Main Library (section 3.2.1, page 16).

6.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above
listed header file in each source file using a component of the library interface. At link time include the above listed
static library file with the objects being linked with the application.

49
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

7. Utilities Source Code

The API Library installation includes a body of utility source code designed to aid in the understanding and use of
the interface calls and IOCTL services. Utility sources are also included for device independent and common,
general-purpose services. Most of the utilities are implemented as visual wrappers around the corresponding services
to facilitate structured console output for the sample applications. The utility sources are compiled and linked into
static libraries to simplify their use. An additional purpose of these utility services is to provide a library of working
sample code to assist in a user’s learning curve and application development effort.

For each API function there is a corresponding utility source file with a corresponding utility service. As an
example, for the API function dsiléwrc open () there is the utility file open. c containing the utility function
dsiléwrc_open util (). The naming pattern is as follows: APl function dsiléwrc xxxx (), utility file
name xxxx.c, utility function dsiléwrc xxxx util (). Additionally, for each IOCTL code there is a
corresponding utility source file with a corresponding utility service. As an example, for IOCTL code
DSI16WRC _IOCTL QUERY there is the utility file util query.c containing the utility function
dsiléwrc_query (). The naming pattern is as follows: IOCTL code DSI16WRC IOCTL XXXX, utility file
name util xxxx.c, utility function dsiléwrc xxxx ().

7.1. Files

The utility files are summarized in the table below.

Description | Files Location
Source Files | *.c, *.h/utils/
Header File | 24dsiléwrc utils.h | ../include/
24dsilewrc_utils.a
gsc_utils.a

os _utils.a

plx utils.a

Library Files ../1ib/

7.2. Build

The libraries are built via the Overall Make Script (section 2.7, page 13), but can be built separately following the
below steps.

1. Change to the directory where the utility sources are installed (.../utils/).
2. Remove existing build targets by issuing the below command.
make clean
3. Compile the sample files and build the library by issuing the below command.
make
4. Rebuild the Main Library (section 3.2.1, page 16).
7.3. Library Use
The library is used both at application compile time and at application link time. At compile time include the above

listed header file in each source file using a component of the library interface. At link time include the above listed
static library file with the objects being linked with the application.

50
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

8. Operating Information

This section explains some basic operational procedures for using the 24DSI16WRC. This is in no way intended to
be a comprehensive guide. This is simply to address a very few issues relating to their use.

8.1. Debugging Aids

The driver package includes the following items useful for development and/or debugging aids.

8.1.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id
example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as
follows.

Description | File | Location
Application | id | ../id/

8.1.2. Detailed Register Dump

Among the utility services provided is a function to generate a detailed listing of device registers to the console.
When used, the function is typically used to verify device configuration. In these cases, the function should be called
after complete device configuration and before the first 1/0 call. When intended for sending to GSC tech support,
please set the detail arguments to 1. The function arguments are as follows. The utility location is given in the
subsequent table.

Argument | Description
fd This is the file descriptor used to access the device.
detail If non-zero the register dump will include details of each register field.

Description | File/Name Location
Function dsiléwrc_reg list () | Source File
Source File | util reg.c ./utils/

Header File | 24dsiléwrc utils.h | ../include/
Library File | 24dsiléwrc utils.a |../lib/

8.2. Analog Input Configuration

The basic steps for Analog Input configuration are illustrated in the utility function noted below. The table also gives
the location of the source file, the header file and the corresponding library containing the executable code. The
referenced files are included via the Main Header and Main Library.

Item Name/File Location
Function dsilé6wrc config ai() | Source File
Source File | util config ai.c ../utils/
Header File | 24dsil6wrc utils.h ../include/
Library File | 24dsilé6wrc utils.a ../1ib/

8.3. Data Transfer Modes
All device 1/0O requests move data through intermediate driver buffers on its way between the device and application

memory. The data is processed in chunks no larger than the size of this intermediate buffer. The process used to

51
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

perform this transfer is according to the I/0 mode selection. Movement of data between the application buffers and
the intermediate driver buffers is performed by the kernel.

8.3.1. PIO - Programmed 1/O

In this mode data is transferred using repetitive register accesses. This is most applicable for low throughput
requirements or for small transfer requests. The driver continues the operation until either the 1/0 request is fulfilled
or the 1/O timeout expires, whichever occurs first. This is generally the least efficient mode, but for very small
transfers it is more efficient than DMA.

8.3.2. BMDMA - Block Mode DMA

For Block Mode DMA the driver initiates DMA transfers only after a sufficient volume of data has been received
into the input buffer. After that amount of data is in the input buffer the driver initiates a DMA then sleeps until the
DMA Done interrupt is received. Using this DMA mode, a user request is typically satisfied via a number of smaller
DMA transfers.

8.3.3. DMDMA - Demand Mode DMA

This DMA mode is similar to the Block Mode, except that the DMA transfer is initiated immediately. Here however,
the actual movement of data occurs as the data becomes available in the input buffer instead of after it has been
received. Using this DMA mode, a user request is divided into smaller DMA transfers only if the request exceeds
the size of the driver’s transfer buffer.

8.4. Multi-Board Synchronization

Multi-board synchronization is a feature of the 24DSI16WRC that enables two or more boards to sample analog
input data in lock-step. Exercising this feature requires the boards to operate synchronously from the same clock
source. This is done using the clock and sync signals on the cable interface. Though there are numerous varying
ways of configuring the boards and of wiring the signals, the two basic configurations are described below.

8.4.1. Star Configuration

The star configuration generally permits all boards in the setup to operate with the least possible phase shift from
one board to the next. This is accomplished by configuring all the boards in an identical manner and by wiring the
clock and sync signals so that they follow as identical a path as possible from the initiator’s output to the input of the
initiator and the targets. If there are three or more boards in the setup, then the clock and sync signal must go
directly from the initiator’s output to a Clock Driver board, as illustrated in Figure 2. If there are only two boards in
the setup, then a Clock Driver board is not needed, as illustrated in Figure 3. The table below shows the board
programming that is specific to the star configuration. See the Multi- Board Sync sample application source code for
additional programming requirements (section 9, page 55).

Setting Initiator Target(s)
Control Mode Initiator Initiator
Channel Group Clock Source | Direct External | Direct External
External Clock Output Source | Rate Generator | N/A

52
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

Clock
> Driver

 Clock |

| Initiator
B Sync

Clock Ayl

1l | Targetl
Sync "
f»

Target 2
—

—————

Figure 2 The star configuration with three or more boards requires a Clock Driver board.

\ 4

Clock >

Sync

Initiator

Clock

Sync

Target

Figure 3 The star configuration with only two boards does not require a Clock Driver board.

8.4.2. Daisy Chain Configuration

The daisy chain configuration generally permits the most flexible placement of boards and wiring, and does not
require a Clock Driver board. This is accomplished by configuring the boards and the wiring so that the clock and
sync signals go from the initiator to the first target, then sequentially from the first target to the second and so on.
This setup is applicable for any number of boards, as illustrated in Figure 4. The table below shows the board
programming that is specific to the daisy chain configuration.

Setting

Initiator

Target(s)

Control Mode

Initiator

Target

Channel Group Clock Source

Rate Generator | Direct External

External Clock Output Source | Group 0 N/A (signals are passed through automatically)
Clock Clock | Clock j=========- !

Initiator | Targetl | Target? \ Target X !
Sync Sync "S_y_nE"L __________ [

Figure 4 In this configuration the clock and sync signals are daisy chained from one board to the next.

8.5. Clearing the Input Buffer

The subsections below address a few of the basic options for input buffer clearing.

53

General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

8.5.1. Clear Immediately

One method of clearing the buffer is to wuse the Clear Buffer IOCTL service (see
DSI16WRC IOCTL AI BUF CLEAR in section 4.7.2 on page 24). This service immediately clears the input
buffer of any content. However, since this feature is not timed to occur at a scan boundary, it can result in the input
buffer containing a partial scan. This method is typically applicable when the input does not need to be cleared at a
scan boundary and when only a single board is to be affected.

8.5.2. Clear At a Scan Boundary

Another method of clearing the input buffer is to request that it occur at a scan boundary. This method uses a
number of services together. First, configure the board as an Initiator (see DST16WRC IOCTL CONTROL MODE
in section 4.7.22 on page 31). Second, configure the board to clear the buffer when there is a Software Sync pulse
(see DSI16WRC_IOCTL SW _SYNC MODE in section 4.7.47 on page 40). Finally, to clear the buffer, initiate a
Software Sync pulse (see DSI16WRC IOCTL SW_SYNC in section 4.7.46 on page 40). After initiating the
Software Sync pulse wait for the Channels Ready bit to be set. This method of clearing the input buffer is applicable
either when using a single board, to simplify some data stream processing, or when multiple boards are configured
for synchronized operation. (For multi-board synchronization refer to section 8.4 on page 52.)

54
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

9. Sample Applications

The driver archive includes a variety of sample and test applications located under the samples subdirectory.
While they are provided without support and without any external documentation, any problems reported will be
addressed as time permits. The applications are command line based and produce text output for display on a
console. All of the applications are built via the Overall Make Script (section 2.7, page 13), but each may be built
individually by changing to its respective directory and issuing the commands “make clean” and “make”. The
initial output from each application includes information on its supported command line arguments. The following
gives a brief overview of each application.

9.1. billion - Billion Byte Read - .../billion/

This application configures the designated board then reads in a billion bytes. The data is discarded after it is read.
9.2. din - Digital Input - .../din/

This application reads the cable’s digital I/O signals and reports the values read to the console.

9.3. dout - Digital Output - .../dout/

This application writes a pattern to the cable’s digital output lines as it is displayed to the console.

9.4. fsamp - Sample Rate - .../fsamp/

This application reports the device configuration required to produce a user specified sample rate.

9.5.id - Identify Board - .../id/

This application reports detailed board identification information. This can be used with tech support to help identify
as much technical information about the board as possible from software.

9.6. irq — Interrupt Tests - .../lirg/
This application tests the board’s interrupts and reports the results to the screen.
9.7. mbsync — Multi-Board Synchronization - .../mbsync/

This application demonstrates how to synchronize input sampling across two or more boards using either the Daisy
Chain configuration or the Star configuration.

9.8. regs - Register Access - .../regs/

This application provides menu based interactive access to the board’s registers, and reports other pertinent
information to the console.

9.9. rxrate - Receive Rate - .../rxrate/

This application configures the board for its highest ADC sample rate then reads the input as fast as possible. The
purpose is to measure the peak sustainable input rate for the host, per the provided command line arguments.

55
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

9.10. savedata - Save Acquired Data - .../savedata/

This application configures the board for a modest sample rate, reads a megabyte of data, then saves the data to a
hex file.

9.11. signals - Digital Signals - .../signals/

This application configures the board to drive the digital output signals for a user specified period of time. This is
done to facilitate setup of test equipment to capture those signals during actual use.

9.12. stream - Stream Rx Data to Disk - .../stream/
This application uses multiple threads with an intermediate buffer manager to stream data from the device to a data

file. Numerous options are available for measuring performance of device reads, disk writes and buffer handling.
Refer to the application file readme . txt for example information.

9.13. sw_sync - Software Sync - .../sw_sync/

This application repetitively activates the board’s Software Sync feature and drives the output clock signal for a user
specified period of time. This is done to facilitate setup of test equipment to capture those signals during actual use.

56
General Standards Corporation, Phone: (256) 880-8787

24DSI16WRC, Linux Device Driver, User Manual

Document History

Revision

Description

August 20, 2024

Updated to version 2.7.111.50.0. Numerous, minor editorial changes. Updated the kernel
support table. Updated the description of the Input Buffer Clear service. Updated the
description of the Autocalibration service. All Auto Cal content is renamed to Autocal. All
Auto Cal Sts content is renamed to Autocal Status.

April 21, 2023

Updated to version 2.6.102.45.1. Various editorial changes.

March 1, 2023

Updated to version 2.6.102.45.0. Updated the kernel support table. Added section on
environment variables. Updated the information for the open and close calls.

August 16, 2021

Updated to version 2.5.94.36.0. Added stream sample application.

Updated to version 2.5.93.36.0. Updated the kernel support table. Minor editorial changes.
Added WAIT_EVENT note. Expanded automatic startup information. Added the irg
sample application. Added the mbsync sample application. Added the sbtest sample

April 30, 2021 application. Added query option DSI16WRC QUERY EXT SYNC IN. Added IOCTL
service DSI16WRC_IOCTL EXT SYNC_ IN. Added noted about various services waiting
for the Channels Ready bit.

July 24, 2019 Updated to version 2.4.87.28.0. Updated the kernel support table. Minor editorial changes.

Added a licensing subsection. Some reorganization.

January 29, 2019

Updated to version 2.3.81.26.0. Updated the inside cover page. Updated the CPU and
kernel support section. Minor editorial changes. Updated Block Mode DMA macro and
associated information. Added dsiléwrc init () documentation. Minor editorial
changes.

September 14, 2017

Updated to version 2.2.72.20.0.

August 22, 2017

Updated to version 2.2.71.20.0. Document, interface and directory restructured.

December 5, 2016

Updated to version 2.1.68.18.0. Removed the built field from the /proc/ file. Updated
the kernel support table. Updated the command line arguments for the din, fsamp and
rxrate, savedata sample applications. Organized sample applications alphabetically.
Removed all references to the sbtest sample application as it was never developed.
Updated the usage of the Wait Event timeout ms field. Updated material on the open
call. Added open access mode descriptions. Added support for infinite 1/0 timeouts.
Updated the operating information section. Made various miscellaneous updates. Some
document reorganization.

September 15, 2015

Updated to version 2.0.60.8. Updated the device node name to include a period before the
device index. Removed double underscore that prefaced various data types.

February 28, 2014

Updated to version 1.5.52.0. Updated the kernel support data.

January 8, 2014

Updated to version 1.4.51.0. Updated the kernel support data.

November 6, 2013

Updated to version 1.4.48.0.

July 18, 2013 Updated to version 1.4.45.0. Updated the kernel support data.

July 23, 2012 Updated to version 1.4.39.0.

May 22, 2012 Updated to version 1.3.37.0.

May 3, 2012 Updated to version 1.2._37.(_). Updated the kernel support data. Added arguments to the
‘ savedata sample application. Updated the upper input buffer threshold limit value.

April 3, 2011 Updated to version 1.1.23.0. Various editorial changes. Removed some IOCTL services and

added others.

November 24, 2010

Initial release.

57
General Standards Corporation, Phone: (256) 880-8787

