18AI32SSCIM

18/16-bit, 32 channel, 1M S/S/Ch A/D Input

PMC66-18AI32SSC1M

Linux Device Driver
And API Library
User Manual

Manual Revision: October 7, 2024
Driver Release Version 2.8.111.50.0

General Standards Corporation
8302A Whitesburg Drive
Huntsville, AL 35802
Phone: (256) 880-8787
Fax: (256) 880-8788
URL.: http://www.generalstandards.com
E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

18AI132SSC1M, Linux Device Driver, User Manual

Preface

Copyright © 2009-2024, General Standards Corporation
Additional copies of this manual or other literature may be obtained from:

General Standards Corporation
8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or
software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Although extensive editing and reviews are performed before release, General Standards Corporation assumes no
responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are
made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this
documentation.

General Standards Corporation does not assume any liability arising out of the application or use of
documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or
any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or
errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,
software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.
GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

2
General Standards Corporation, Phone: (256) 880-8787

http://www.generalstandards.com/
mailto:sales@generalstandards.com

18AI132SSC1M, Linux Device Driver, User Manual

Table of Contents

IO 14 0o [0 T 1 o] o ISP 8
Lo PUIPOSE. 1.ttt ettt h bR R R R R R R R R R R Rt bt 8
L2, AACTONYIMS ...ttt bt e e h ke bttt E R AR b e st AR e AR e b e e Rt Rt R Rt bt 8
IR TR B) 11T 1 o] SO PRSP 8
1.4, SOTEWAIE OVEIVIBW ..ottt sttt ettt e ettt b e be bt e b e st e s beseeeb e e b e e bt e s e e m e e besbeebesbeebeeneenbenbeneeneas 8

1.4.1. BaSIC SOFtWAIe ATCHITECIUIE .. .cuiviiiitiiee ettt bbbttt e st ens 8
B N B o] - T Y2 TP PRRRPOO 9
1.4.3. DEVICE DIV ...ttt bbb bbb bbbt bRkttt b ket b e bttt et et b et et e neab et enes 9
1.5, HArOWAIE OVEIVIEWcveiviieiiitiieetiste ettt sttt sttt et etttk b s bt s e bt et e e bt et e e e bt n b et eb e et et e st b e e enes 9
1.6. RETEIENCE IMALEITALeeieeeeeiee ettt et bbbt et s b e bt sb e eb e e e et et nre e 9
O I oY 3 Yoo OSSR 10

P2 1151 = L] =L [0 o OSSPSR 11

N O e W Voo I T 0T BT U] o] o i SRS 11
2.1.1. 32-bit Support Under 64-bit ENVIFONMENTScviiiiiicciecceeceee ettt ae e 12
2.2. TR IPIOCT FIIE SYSIBIM ...ttt ettt e st e s te e s te et e e st e e ae e sseeste e ta e teeseeaseesneesreesteeseeenneenes 12
P T T L T TSSOSO 12
R B Y= Tod (o] VA 1 (0 Tox (1 =SSOSR 12
2.5, INSTAITALION ...t bttt bt bbbt e h et e bt bt e bt b £ e b e e Rt et e eb e b e s bt bt e b e e e e e nnenas 13
PG T (=T 0 010 1Y | PSS 13
2.7. OVEFAII IMBKE SCIIPL. ..ttt b b bbb bbbt bbbttt e 13
2.8. ENVIFONMENT VATTADIESecveieieee ettt ettt st ettt seena et esaentesseateeneeneeeeneeneas 14
2.8.1. GSC_API COMP_ FLAGS..ciiiiiiiiisietitetetesee ittt ettt b bbb b st 14
2.8.2. GSC_APT LINK FLAGS iiiiiiiiueuitetetiiieierireststsie et s s sttt s et e st e e 14
2.8.3. GSC_LIB COMP_ FLAGS .iiiiisuiuiuerereteieiisereristsestsse st sissssast st e sss bbb e s st st st st s e s e et nenennas 14
2.8.4. GSC_LIB LINK FLAGS ..ottt bbb bbb bbb 15
2.8.5. GSC_APP COMP_ FLAGS .iiiiiitiuiuerereeeteiiiererisesestsse ettt se st st e sttt sttt nennas 15
2.8.6. GSC_APP LINK FLAGS ..ottt ittt bbb bbbt 15

3. MaAIN INTEITACE FIIES....ociiiiiec ettt e e ae e sae e s be e srneene e 16
TN I Y T T Vo LT g LSS 16
3.2, IMIAIN LIDFANY FRIB ...ttt bbbttt b bt b bbbt et n s b e s 16

K I8 I =01 o RSOSSN 16
3.2.2. SYSLEIM LIDIAIIES ..ttt bbbt e bbbt et e b e st et e bbb e b bt e s e e b e e nae s 17
3.2.3. Shared Object Script: Build the Main Libraries as Shared Object FilesS.........ccceoeiiiiniiiiiiiiceceee 17

A APT LIDTATY ot b bbbt b et b e bbb 18
B0 RIS ittt ettt ettt h e ehe e be e be et be et ehaeahe e beebeeabeehbeebe e beebeerbearbesreeabeeereereenns 18
B2, BUIIO .o b e e h b bRt h e Lot b et oAt R et e Rt e te b et Re et et rente b renrenrans 18
4.3, LIDIAINY USE ..tttk b e bbb bRt bbbt b et bbbt 18
O |V - Vo 0 ST PRPR 18

3

General Standards Corporation, Phone: (256) 880-8787

4.41. I0CTL Services....
4.4.2. Registers...............

4.5, Data TYpeS......ccovvervennn

4.6. Functions...........ccoe.....
4.6.1. ai32ssclm_close()
4.6.2. ai32ssclm_init() ...

4.6.3. ai32ssc1m_ioctl()
4.6.4. ai32ssclm_open()

4.6.5. ai32ssclm_read()..
4.7. IOCTL Services..........

18AI132SSC1M, Linux Device Driver, User Manual

4.7.1. A132SSCIM_IOCTL_AIN_BUF_CLEARcoiivveeeeeeeeeeeseseesseesesseseeeeeeesseseseesesseeseesessses s
4.7.2. A132SSCIM_IOCTL_AIN_BUF_LEVEL w...oooiovoeeeeeeeeeeeeeeeeeeesesseseeeseeeeeeees s
4.7.3. A132SSCIM_IOCTL_AIN_BUF_OVERFLOW.........cessivveeeoeeeeeeeeeeseeeeeseeseeeeessesesseesessesseeseessssseseesneee
4.7.4. A132SSCIM_IOCTL_AIN_BUF_THR_LVL ...ooiovooeeeeeeeeeeeseeeeeeseeeeseeeeeeeeeeeeeseesesseeseesessee s
4.7.5. AI32SSCIM_IOCTL_AIN_BUF _THR_STS ...oomiiooovoeeeeesseeseeeeeeseeeeseeseeeeeesesseesessseeesssseessssee s
4.7.6. AI32SSCIM_IOCTL_AIN_BUF_UNDERFLOWcesmiirooeeeeeessesseseeeeeesesseeseseeeeseessseesssseee s
4.7.7. AI32SSCIM_IOCTL_AIN_MODEoovoveeeeeeieeeeeeceeesesseeeseeeeeseeeeeeeseseee e seeeesssee e seessssee e
4.7.8. AI32SSCIM_IOCTL_AIN_RANGEovvvvoeeeeieeeeeeceeeesseeeseeeeesesseeeeseeeeesesseesesseee s
4.7.9. AI32SSCIM_IOCTL_AUTOCALooimveveeeeeeeeeeeeeeeeeeeesseeeseeee s seseee e seeessssee s
4.7.10. AI32SSCIM_IOCTL_AUTOCAL_BG .oovooeeoooieeeeeeceeeesseeeseeeeesesseeeeseeeeesesseesessseessseeseessssee e
4.7.11. A132SSCIM_IOCTL_AUTOCAL_STATUS ..coeoeeeeeeeeeseseeeeeeseeseseeeeeeseeeeeseesesseeseesesseeesessessee s
4.7.12. A132SSCIM_IOCTL_AUX_CLK_MODEivvoeeieeieeeeeesseeeeeeesseseeeeseseseeeseesessseseesesseeseesesssee s
4.7.13. A132SSCIM_IOCTL_AUX_IN_POL ...ooovoeoeeoeeeeeeeseeeeeseseeeeeeseeseseeeseesseeseeeeseesee e seeseee e
4.7.14. A132SSCIM_IOCTL_AUX_NOISEooovvveeeieeeeeeeeseeeeeeeseeseeesesseeseeseesseeseseesessseseeseeseees s
4.7.15. A132SSCIM_IOCTL_AUX_OUT _POL w..ooooooiiieeeeeeeeeeeeeeeseeseeesesseseeeeeesseeseeeeseeseeseesesseeseesesssee e
4.7.16. AI32SSCIM_[OCTL_AUX_SYNC_MODE.........ooveeceiiesieeeeeeeeessseeseeseeeeeeseeseesesseeesesesseesssseee s
4.7.17. AI32SSCIM_IOCTL_BURST BUSY ..ooovooooooeieoeeeeceeeeeseeeseeeesessesesssseeesesseesessseesesesseessssee s
4.7.18. AI32SSCIM_IOCTL_BURST SIZE w..oovoveeeoeeieeeeeeceeeeeeeeeeeeeeseeseeeeseseeeeseeseesesseee e
4.7.19. AI32SSCIM_IOCTL_BURST _SYNC ..oovooooooieeeeeeceeeeeseeeeeeeeeseseeeeeseseeesesseesesssee s
4.7.20. AI32SSCIM_IOCTL_CHAN_ACTIVE c..o.oooooiioeeeeeceeeeeeseeeeeeeeseseeeeeseeeeesesseeeesesee s
4.7.21. AI32SSCIM_IOCTL_CHAN_FIRST ..ooovoooooeieeeeeeeeeeesseeeseeeeeseseeeeesseeeeeseeseeeesssee s seesessee e
4.7.22. A132SSCIM_IOCTL_CHAN_LAST ..oooooveeoeeeeeeeeeeeeeeeeeeeeeeseee e esee e eeseesee e eesee e
4.7.23. A132SSCIM_IOCTL_CHAN_SINGLEcoiovveeeeeeeeeeee oo eeseesee e
4.7.24. A132SSCIM_IOCTL_CLOCK_ENABLEivvoeeeeeeeeeeeseeeeeeeeeeeeseeeeeeeeeeeeeeesesseeseeseeseeseesessee e
4.7.25. A132SSCIM_IOCTL_DATA FORMATooiiioeeeeeeeeeeeeeeseeeeeeesesseeseeseee e seeseesee e seeseeseeeeesee e
4.7.26. A132SSCIM_IOCTL_DATA PACKINGiovveeeeeeeeeeeeseeeeeeeseeeeeeeeseeeeeeeeseeseesee e seesee e
4.7.27. A132SSCIM_IOCTL_DATA WIDTH w.ooooooeioeeeeeeeeeeeeeee oo seeseee e eeeee e eseesee e seeeeeseee e
4.7.28. AI32SSCIM_IOCTL_EXT_CLK_DIV_ENA ...oooooooieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeseseeeeseeeeseesessee e
4.7.29. AI32SSCIM_IOCTL_EXT_CLK_ DIV VAL .oooovoeoieioeeeeeeeeeeeseseeeeeeeeeeeesee s eeeesseesessee e
4.7.30. AI32SSCIM_IOCTL_INITIALIZE ...coovoveeeooeeeeeeeeece e seeeeeeeseeeee e eesssee s
4.7.31. AI32SSCIM_IOCTL_INPUT _SYNC woovoveeeeeoeieeeeeeceeeesseeeeeeeeeseeeeeeesseeeesesseeeesssee s
4.7.32. AI32SSCIM_IOCTL_IO_INV ooooooooieieeeeeeeeeeeeeeeeeeeeeesesseeeseeeee e seseeee e sesseee e seesessee s
4.7.33. A132SSCIM_IOCTL_IRQO_SEL ...ovveoeeeeeeeeeeseeeeeeeeseeeeeeseseesseesessesseeseessesseseeseeseeseesesseeseesessee e
4.7.34. A132SSCIM_IOCTL_IRQL_SEL .oovveoeeieeeeeeeseeeeeeeeeseeeeeesessesseesessessee e seeseseeseesee e eesseee e
4.7.35. AI132SSCIM_IOCTL_PRETRIGovveooeoeeeeeeeeeeeeeeeeseeeeesesseeseeeseesesseeeeesseeseseesesseeseesesseeseeeessee e
4.7.36. A132SSCIM_IOCTL_PRETRIG_COUNTooivvoeereeeeeeeeeseeeeeesesseeseeeeeeeeeeeseesesseesessesseeseesesssee e
4.7.37. A132SSCIM_IOCTL_PRETRIG_LATCH ...coiivveeeeeeeeeeeseseeeeeeeeeseseeeeeeeeeeeeeseeseeseeseesesseeseesessse e
4.7.38. AI32SSCIM_IOCTL_QUERY w...oooovoeoeeeeeeeieeseeeeeeeeeeeeeeeseesesseeeseesesseeseeeeeeseseeseesee e eesseeeseeeessee e
4.7.39. AI32SSCIM_[OCTL_RAG_ENABLEoieeeeeeceeeeeseeeeeeeeeseseeeeesseee s seeeeeseee e seesessee s
4.7.40. AI32SSCIM_IOCTL_RAG_NRATE ...ooovooeooeeieeeeeeeeeeeeeeeeseeeeeseseeeeesesee et seeeesese e sessee e
4.7.41. AI32SSCIM_IOCTL_RBG_CLK_SRC ...o.oooeoeieeeeeeeeeeeeeseeeseeeeeseseeeeesseeeeeeseeseeseesseeeseeeseessssees s
4.7.42. AI32SSCIM_[OCTL_RBG_ENABLEoisiiooeeeeceeeeeseeeeeeeeeseeseeeeseeeeeese e seesessees e
4.7.43. AI32SSCIM_IOCTL_RBG_NRATE ...oovvvooeoeeeieeeeeeceeeeeseeeseeeeeseeeeseeseeee e sesssee e sessee s
4.7.448. AI32SSCIM_IOCTL_REG_MODooiovvveeeoeeeseeeeeeeeeeeeeseeeseeeeseeeeeeeseseeee e eessee e sesseee s

General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

4.7.45. AI32SSCIM_IOCTL_REG_READccoi ittt ettt 40
4.7.46. AI32SSCIM_IOCTL_REG_WRITE ..ottt bbbt 40
4.7.47. AI32SSCIM_IOCTL_RX_IO_ABORTooiiiitiirisiceneciee et 41
4.7.48. AI32SSCIM_IOCTL_RX_IO_MODEccoiitiiriicencieensie et 41
4.7.49. AI32SSCIM_IOCTL_RX_IO_OVERFLOWcoiiiiiiieiisiee e 42
4.7.50. AI32SSCIM_IOCTL_RX_IO_TIMEOUToctiiriiiiincieinsiee st 42
4.7.51. AI32SSCIM_IOCTL_RX_IO_UNDERFLOWcccotiiitiiririiiiieenisieeesieie e 42
4.7.52. AI32SSCIM_IOCTL_SAMP_CLK_SRCcociiriiiiiiriiieinisiees et 43
4.7.53. AI32SSCIM_IOCTL_SCAN_MARKER ..ottt 43
4.7.54. AI32SSCIM_IOCTL_SCAN_MARKER_GETciitiiiiiiinieeiirieie sttt 43
4.7.55. AI32SSCIM_IOCTL_SCAN_MARKER _SET ...ttt 44
4.7.56. AI32SSCIM_IOCTL_WAIT_CANCEL ..ottt et 44
4.7.57. AI32SSCIM_IOCTL_WAIT_EVENT ..ottt bbb e 45
4.7.58. AI32SSCIM_IOCTL_WAIT_STATUS ..ottt bbbt 46
5. T DIFIVEL .t bbb bbbt b bbbt b bbb 48
DL LB, ettt b b E e E R R b £ R R R h R R E R b E e b bbbt b e n et e 48
ST = 1T (o TSSO 48
ST] = LU o F TP U TSP PP P PP PRSPPI 48
5.3.1. Manual Driver Startup PrOCEUUIEScoriiiirieieiirie ettt sttt 48
5.3.2. AUtomatic Driver Startup PrOCEAUIES..........oiiiiiietirieiete sttt 49
5.4, VEITICAIION ...ttt b e bR bRt b et e bRt e bt r e bt r et nr s 50
ST STV =] £] OSSOSO PP PP PP 51
5.8, SNULHOWN ...t e bRt R bt n e bR e bt n e st r et nr s 51
6. Document Source Code EXAMPIES.........coiiiiiiiiiiiieee e 52
B. L. FHIES. ettt b bbb E R E e b h R E R E £ b e bt e R bbbt b sttt 52
33078 = T (o TSSO R 52
8.3, LDIAIY USE ..ttt bbb bbb bbb bbb R E et bbb bbb bt bt en bt 52
7. UTIITIES SOUPCE COUE.......eiiiiiiiiitiiee ettt 53
7L FHIBS bbb b h b bR E kbR E £ E bR h e bt bRt bbbt b st n s 53
778 = 1 (o RSSO 53
7,30 LHDIAIY USE ..ttt bbb bbb bbb bbb R b e b bRt bbbttt b 53
8. Operating INfOrmMAatiONcccviiiii e nas 54
ST D= o TUTo o [T Lo AN o LTSSV PUR U 54
8.1.1. DeViICe TUENTITICALIONecvieiieitie et bbbttt b bbb 54
8.1.2. Detailed REGISIEr DUIMP ..ottt ettt ettt bbb et b e eb e b e st e st et et sbe b e e beebees e e e ebeneens 54
8.2. ANAIOG INPUL CONFIGUIALIONviviitiietetetee ettt bbbt bbbttt ens 54
8.3. AUXIIArY 1/0 CONFIGUIALION. ... cuiitiiieictcieete ettt b bt b ettt en et eens 54
8.4, Data TraNSTEE IMOUES.e ettt ettt bbbt b bbb bttt b bt eb et e b b et et en et e e enes 55
8.4.1. P1O - ProgramMEd /Ooiiiiiiiiiiieetest ettt sttt ettt et 55
8.4.2. BMDMA - BIOCK MOUE DIMA ...ttt sttt ettt e e et stestenneenaeneeneeneeneens 55
8.4.3. DMDMA - Demand MOTE DIMA ..ottt 55
5

General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

T T g o] (30 AN o] o] [oF 1 o] o S OSSR 56
9.1, id - 1dentify BOAId - ... Q7 ..uecuveieiece ettt ettt a et reereene e e nrern 56
0.2. 105 - REGISIEN ACCESS = .. ./TEES/ 1. eevevereetirieseetistes et st ettt ettt et st et e sb et sb e b e st et e b e st et ebe st e abe st et anenbeeenes 56
0.3. IXIate - RECEIVE RALE - .. ./TXTALE/ ...iiviiteitieieeieie sttt sttt sttt ettt st et be et e s e st et e sbesbesbeebeeneeneeeeneeeas 56
9.4. savedata - Save Acquired Data - .../SAVEAALA/eoviiriiiiiiriieisee s 56
9.5. shtest - Single BOArd TESt - .../SDEEST/eiveuiieiieiiieiit ettt 56
9.6. signals - Digital SIgNalS - .../SIGNALS/cuiieieiiieie ettt ettt se bbbt nae e 56

DOCUMENT HISTOTY ...ttt e st e st e e e e be e beesaesreesteeneenneenneeneeas 57

6

General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

Table of Figures

Figure 1 Basic architeCtural repreSENTALION.c.civiiieieiesise e eee ettt e e te e ra e e e e e aesresbesreene e e enseseenrenrs

7
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

1. Introduction

1.1. Purpose
The purpose of this document is to describe the interface to the 18AI32SSC1M API Library and to the underlying
Linux device driver. The API Library software provides the interface between "Application Software" and the

device driver. The driver software provides the interface between the API Library and the actual 18AI32SSC1M
hardware. The API Library and driver interfaces are based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms | Description

ADC Analog-to-Digital Converter

API Application Programming Interface
BMDMA | Block Mode DMA

DMA Direct Memory Access

DMDMA | Demand Mode DMA

GSC General Standards Corporation

PCI Peripheral Component Interconnect
PIO Programmed 1/0O

PMC PCI Mezzanine Card

PMC66 This is a PMC formfactor device that can operate at up to 66MHz over the PCI bus.
RAG Rate-A Generator

RBG Rate-B Generator

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

This is a shortcut representation of the 18AI32SSC1M installation directory or any of its
subdirectories.

18AI32SSCIM | This is used as a general reference to any device supported by this driver.

API Library This is a library that provides application-level access to 18A132SSC1M hardware.

Application This is a user mode process, which runs in user space with user mode privileges.

Driver This is the 18AI32SSC1M device driver, which runs in kernel space with kernel mode
privileges.

Library This is usually a general reference to the API Library.

1.4. Software Overview
1.4.1. Basic Software Architecture

This section describes the general architecture for the basic components that comprise 18AI32SSC1M applications.
The overall architecture is illustrated in Figure 1 below.

8
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

18AI32SSC1M
Application ai32ssclm_init()
ai32ssclm_open()
¢ ai32ssclm_close()
ai32ssclm_ioctl()
Application Level 18A|32.8501M -«— |ib18ai32ssc1im_api.so ai32ssclm_read()
API Library . -
ai32ssclm_write()
Kernel Level 18AI32SSC1IM 18ai32ssclm.ko or /proc/18ai32ssclm Informational
Device Driver 18ai32ssclm.o /dev/18ai32ssc1m.0 Device 0
/dev/18ai32sscim.1 Device 1
¢ /dev/18ai32sscim.X Device X
Hardware Level s e
Boards

Figure 1 Basic architectural representation.
1.4.2. API Library

The primary means of accessing 18AI32SSC1M boards is via the 18 AI32SSC1M API Library. This library forms a
layer between the application and the driver. Additional information is given in section 3.2.3 (page 17). With the
library, applications are able to open and close a device and, while open, perform I/O control and read operations.

1.4.3. Device Driver

The device driver is the host software that provides a means of communicating directly with 18AI32SSC1M
hardware. The driver executes under control of the operating system and runs in Kernel Mode as a Kernel Mode
device driver. The driver is implemented as a standard dynamically loadable Linux device driver written in the C
programming language. While applications can access the driver directly without use of the API Library, it is
recommended that all access is made through the library.

1.5. Hardware Overview

The 18AI32SSC1M is a high-performance, 18-bit analog input board that incorporates up to 32 input channels. The
host side connection is PCI based and the form factor is according to the model ordered. The board is capable of
acquiring data at up to 1M samples per second over each channel. Internal clocking permits sampling rates from 1M
samples per second down to less than one sample per second. Onboard storage permits data buffering of up to 256K
samples, for all channels collectively, between the cable interface and the PCI bus. When sampling data at 16-bits of
resolution, data packing within the onboard buffer permits data buffering of up to 512K samples. This allows the
18AI132SSC1M to sustain continuous throughput from the cable interface independent of the PCI bus interface. The
18AI32SSC1M also permits multiple boards to be synchronized so that all boards sample data in unison. In addition,
the board includes autocalibration capability. For lower sampling rates autocalibration can be performed in the
background, thus permitting continuous autocalibration.

1.6. Reference Material

The following reference material may be of particular benefit in using the 18AI32SSC1M. The specifications
provide the information necessary for an in depth understanding of the specialized features implemented on this
board.

e The applicable 18AI32SSC1M User Manual from General Standards Corporation.

9
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

e The PCI9056 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA
Phone: 1-800-759-3735

WERB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE. txt in the root installation directory.

10
General Standards Corporation, Phone: (256) 880-8787

http://www.plxtech.com/

18AI132SSC1M, Linux Device Driver, User Manual

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 6.x, 5.x, 4.x, 3.x, 2.6, 2.4 and 2.2 running on a PC
system with one or more x86 processors. This release of the driver supports the below listed kernels.

Kernel | Distribution
6.2.9 | Red Hat Fedora Core 38
6.0.7 | Red Hat Fedora Core 37

5.17.5 | Red Hat Fedora Core 36
5.14.10 | Red Hat Fedora Core 35
5.11.12 | Red Hat Fedora Core 34
5.8.15 | Red Hat Fedora Core 33
5.6.6 | Red Hat Fedora Core 32
5.3.7 | Red Hat Fedora Core 31
5.0.9 | Red Hat Fedora Core 30

4.18.16 | Red Hat Fedora Core 29
4.16.3 | Red Hat Fedora Core 28
4.13.9 | Red Hat Fedora Core 27
4.11.8 | Red Hat Fedora Core 26
4.8.6 | Red Hat Fedora Core 25
455 | Red Hat Fedora Core 24
4.2.3 | Red Hat Fedora Core 23
4.0.4 | Red Hat Fedora Core 22

3.17.4 | Red Hat Fedora Core 21
3.11.10 | Red Hat Fedora Core 20
3.9.5 | Red Hat Fedora Core 19
3.6.10 | Red Hat Fedora Core 18
3.3.4 | Red Hat Fedora Core 17
3.1.0 | Red Hat Fedora Core 16

2.6.38 | Red Hat Fedora Core 15
2.6.35 | Red Hat Fedora Core 14
2.6.33 | Red Hat Fedora Core 13
2.6.31 | Red Hat Fedora Core 12
2.6.29 | Red Hat Fedora Core 11
2.6.27 | Red Hat Fedora Core 10
2.6.25 | Red Hat Fedora Core 9
2.6.23 | Red Hat Fedora Core 8
2.6.21 | Red Hat Fedora Core 7
2.6.18 | Red Hat Fedora Core 6
2.6.15 | Red Hat Fedora Core 5
2.6.11 | Red Hat Fedora Core 4
2.6.9 | Red Hat Fedora Core 3

[2.4.18 | Red Hat 8.0 I

NOTE: Some older kernel versions are supported (the sources are maintained), but are not tested.

NOTE: While only Red Hat Fedora distributions are listed, numerous other distributions are
supported and have been tested on an as needed basis.

NOTE: The driver will have to be built before being used as it is provided in source form only.

11
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

NOTE: The driver has not been tested with a non-versioned kernel.
NOTE: The driver is designed for SMP support, but has not undergone SMP specific testing.
2.1.1. 32-bit Support Under 64-bit Environments

This driver supports 32-bit applications under 64-bit environments. The availability of this feature in the kernel
depends on a 64-bit kernel being configured to support 32-bit application compatibility. Additionally, 2.6 kernels
prior to 2.6.11 implemented 32-bit compatibility in a way that resulted in some drivers not being able to take
advantage of the feature. (In these kernels a driver’s IOCTL command codes must be globally unique. Beginning
with 2.6.11 this requirement has been lifted.) If the driver is not able to provide 32-bit support under a 64-bit kernel,
the “32-bit support” field in the /proc/18ai32ssclm file will be “no”.

2.2. The /proc/ File System

While the driver is running, the text file /proc/18ai32ssclm can be read to obtain information about the driver
and the boards it detects. Each file entry includes an entry name followed immediately by a colon, a space character,
and the entry value. Below is an example of what appears in the file, followed by descriptions of each entry.

version: 2.8.111.50
32-bit support: yes
boards: 1

models: 18AI32SSC1M

Entry Description

version This gives the driver version number in the form x.x.x.x.

B

This reports the driver’s support for 32-bit applications. This will be either “yes” or “no’

32-bit t . .
+- SUPPOTE g0 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.
This gives a comma separated list of the basic model number for each board the driver
models detected. The model numbers are listed in the same order that the boards are accessed via

the API Library’s open function.

2.3. File List

This release consists of the below listed primary files. The archive content is described in following subsections.

File Description
18ai32ssclm.linux.tar.qgz | This archive contains the driver, the API Library and all related files.
18ai32ssclm linux um.pdf | Thisisa PDF version of this user manual, which is included in the archive.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory
structure is created and populated with the respective files.

Directory Description
18ai32sscim/ This is the driver root directory. It contains the documentation, the Overall Make Script
(section 2.7, page 13) and the below listed subdirectories.
../api/ This directory contains the API Library source files (section 3.2.3, page 17).
This directory contains the source files for the code samples given in this document (section 6,
../docsrc/ page 52)
../driver/ This directory contains the device driver source files (section 5, page 48).
../include/ This directory contains the header files for the various libraries.
12

General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

../1ib/ This directory contains all of the libraries built from the installed sources.

This directory contains the sample application subdirectories and all of their corresponding

. 1 . -
/samples/ source files (section 9, page 56).

This directory contains the source files for the utility libraries used by the sample applications

../utils/ (section 7, page 53).

2.5. Installation

Perform installation following the below listed steps. This installs the device driver, the API Library and all related
sources and documentation.

1. Create and change to the directory where the files are to be installed, such as /usr/src/linux/drivers/.
(The path name may vary among distributions and kernel versions.)

2. Copy the archive file 18ai32ssclm.linux.tar.gz into the current directory.
3. Issue the following command to decompress and extract the files from the provided archive. This creates the
directory 18ai32ssclm in the current directory, and then copies all of the archive’s files into this new

directory.

tar —-xzvf 18ai32ssclm.linux.tar.gz

2.6. Removal

Perform removal following the below listed steps. This removes the device driver, the API Library and all related
sources and documentation.

NOTE: The following steps may require elevated privileges.
1. Shutdown the driver as described in section 5.6 (page 51).

2. Change to the directory where the driver archive was installed, which may have been
/usr/src/linux/drivers/. (The path name may vary among distributions and kernel versions.)

3. Issue the below command to remove the driver archive and all of the installed driver files.
rm -rf 18ai32ssclm.linux.tar.gz 18ai32ssclm
4. lIssue the below command to remove all of the installed device nodes.
rm -f /dev/18ai32ssclm.*
5. If the automatic startup procedure was adopted (section 5.3.2, page 49), then edit the system startup script

rc.local and remove the line that invokes the 18AI32SSCIM’s start script. The file rc.local should
be located inthe /etc/rc.d/ directory.

2.7. Overall Make Script

An Overall Make Script is included in the root installation directory. Executing this script will perform a make for
all build targets included in the release. The script also loads the driver and copies the API Library to /usr/1ib/.
The script is named make all. Follow the below steps to perform an overall make and to load the driver.

NOTE: The following steps may require elevated privileges.

13
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

1. Change to the driver root directory (.../18ai32ssclm/).

2. Remove existing build targets using the below command. This does not unload the driver.

./make all clean

3. Issue the following command to make all archive targets and to load the driver.

./make all

2.8. Environment Variables

Some build environments may require compiler or linker options not present in the provided make files. To
accommodate local environment specific requirements, the provided make files incorporate support for the
following set of GSC specific environment variables.

2.8.1. GSC_API_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the API Library. The compiler used by the API Library make file is “gcc”. The content of this environment variable
is noted in the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in
the table refers to the contents of the environment variable. This environment variable has no effect on compiling
any other distributed source files or linking of any object files.

. == Compiling: init.c
Undefined == Compiling: ioctl.c
or Empty s
== Compiling: open.c
. == Compiling: init.c (added '"xxx')
Bg{'gﬁ atnd == Compiling: ioctl.c (added 'xxx')
PY | == Compiling: open.c (added 'xxx')

2.8.2. GSC_API_LINK FLAGS

This environment variable accommodates adding linker command line options when linking object files for the API
Library. The linker used by the API Library make file is “1d”. The content of this environment variable is noted in
the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in the table
refers to the contents of the environment variable. This environment variable has no effect on compiling of any
source files or linking of any other object files.

Undefined | ____ . . . : : . .

or Empty Linking: ../1lib/1ibl8ai32ssclm api.so

Definedand | ____ ;. . . : . : . , ,
Not Empty | Linking: ../1ib/1ibl8ai32ssclm api.so (added 'xxx')

2.8.3. GSC_LIB_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the utility libraries. The compiler used by the utility library make files is “gcc”. The content of this environment
variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The
“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on
compiling any other distributed source files or linking of any object files.

14
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

. == Compiling: close.c
L‘Jrngf:lmted == Compiling: init.c
Pty == Compiling: ioctl.c
== Compiling: close.c added ' !
Definedand | __ p-l l g- C (Y XX}?)
Not Empt == Compiling: init.c (added 'xxx')
P | Compiling: ioctl.c (added '"xxx'")

2.8.4.GSC_LIB_LINK FLAGS

This environment variable accommodates adding linker command line options when linking object files for the
utility libraries. The linker used by the utility library make files is “1d”. The content of this environment variable is
noted in the make files’ output to the screen. The table below shows a portion of the screen output. The “xxx” in the
table refers to the contents of the environment variable. This environment variable has no effect on compiling of any
source files or linking of any other object files.

Undefined ==== Linking: ../1ib/18ai32ssclm utils.a

or Empty —

Definedand | ____ 1:,ying: ../1ib/18ai32ssclm utils.a (added 'xxx')
Not Empty —

2.8.5.GSC_APP_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the sample applications. The compiler used by the sample application make files is “gcc”. The content of this
environment variable is noted in the make files’ output to the screen. The table below shows a portion of the screen
output. The “xxx” in the table refers to the contents of the environment variable. This environment variable has no
effect on compiling any other distributed source files or linking of any object files.

Undefined == Compiling: main.c

or Empty == Compiling: perform.c

Definedand | == Compiling: main.c (added "xxx')

Not Empty | == Compiling: perform.c (added 'xxx')

2.8.6. GSC_APP_LINK FLAGS

This environment variable accommodates adding linker command line options when linking object files for the
sample applications. The linker used by the sample application make files is “gcc”. The content of this environment
variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The
“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on
compiling of any source files or linking of any other object files.

Undefined L 1] o

or Empty = Linking: id

Definedand | ____ ' :

Not Empty | Linking: id (added 'xxx')
15

General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

3. Main Interface Files

This section gives general information on the suggested device interface files to use when developing
18AI32SSC1M based applications.

3.1. Main Header File

Throughout the remainder of this document references are made to various header files included as part of the
18AI32SSC1M driver installation. For ease of use it is suggested that applications include only the single header file
shown below rather than individually including those headers identified separately later in this document. Including
this header file pulls in all other pertinent 18 AI32SSC1M specific header files. Therefore, sources may include only
this one 18A132SSC1M header and make files may reference only this one 18Al32SSC1M include directory.

Description | File Location
Header File | 18ai32ssclm main.h | ../include/

3.2. Main Library File

Throughout the remainder of this document references are made to various statically linkable libraries included as
part of the 18AI32SSC1M driver installation. For ease of use it is suggested that applications link only the single
library file shown below rather than individually linking those libraries identified separately later in this document.
Linking this library file pulls in all other static libraries included with the driver. Therefore, make files may
reference only this one 18AI32SSC1M static library and only this one 18A132SSC1M library directory.

Description | File Location
18ai32ssclm main.a ,
18ai32ssclm multi.a ~/1ib/

Static Library

NOTE: For applications using the 18AI32SSC1M and no other GSC devices, link the
18ai32ssclm main.a library. For applications using multiple GSC device types, link the
xxxx_main.a library for one of the devices and the xxxx multi.a library for the others.
Linking multiple xxxx main.a libraries may likely produce link errors due to duplicate
symbols being defined. While it may make little or no difference, it is recommended that one
choose the xxxx main.a library from the driver with the largest number in positions three
(x.x.X.x.X) and/or four (x.x.x.X.x) in the driver release version number.

NOTE: The 18AI32SSC1M API Library is implemented as a shared library and is thus not linked
with the 18AI32SSC1IM Main Library. The API Library must be linked with applications by
adding the argument -118ai32ssclm api to the linker command line.

3.2.1. Build

The main library is built via the Overall Make Script (section 2.7, page 13). However, the main library can be built
separately following the below steps.

1. Change to the directory where the main library resides (.../1ib/).
2. Remove existing build targets using the below command.
make clean

3. Build the main library by issuing the below command.

make

16
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

3.2.2. System Libraries

In addition to linking the static library named above, as well as the API Library shared object file, applications may
need to also link in additional system libraries as noted below.

Library gcc Link Flag
Math -1m

POSIX Thread | -1pthread
Real Time -1rt

3.2.3. Shared Object Script: Build the Main Libraries as Shared Object Files

The main libraries built via the Overall Make Script (section 2.7, page 13) are static library files. Some applications
however, require that the Main Libraries be accessed as shared object files. Generating shared object files require
that all of the static libraries be recompiled for this purpose and linked as .so files. This is done using the Shared
Object Script named below. When run, the script invokes the Overall Make Script to clean all existing build targets,
deletes the two shared object files named below, if they exist, defines an environment variable used by all of the
static library make files, invokes the Overall Make Script again to rebuild all existing build targets then invokes
make on the library make file (.../1ib/makefile) to link the shared object files. The required manual steps are as
follows.

1. Change to the directory where the main library files reside (.../1ib/).
2. Execute the below script.
./static_to shared.sh
Running the above-named Shared Object Script produces the files given in the table below. These shared object files

fulfill the same purpose as the similarly named static libraries as described in the note under section 3.2 above. Refer
to that note when selecting which shared object file to use.

Description File Location
1ibl8ai32ssclm main.so
Shared Object Files | 1ib18ai32ssclm multi.so | ../1ib/
1libl8ai32ssclm all.so ¥

+ This library includes all generated libraries, including the API Library shared object file content.

The shared object files can be linked via two different methods. In the first method, the application linker command
line can explicitly name the file in the same manner as is done were it a static library. This is the method used by the
sample applications, all of which use the 18AI32SSC1M API Library, which itself is a shared object file. This file is
also found in the ../1ib/ subdirectory. In the second method, the .so files are copied to the /usr/lib/
subdirectory and are referenced on the application’s liker command line as given in the table below.

Library gcc Link Flag
lib18ai32ssclm main.so -118ai32ssclm main
1ib18ai32ssclm multi.so | ~118ai32ssclm multi
1ibl8ai32ssclm all.sof | -118ai32ssclm all

+ This library includes all generated libraries, including the API Library shared object file content.

17
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

4. API Library

The 18AI32SSC1M API Library is the software interface between user applications and the 18A132SSC1M device
driver. The interface is accessed by including the header file 18ai32ssclm api.h.

NOTE: Contact General Standards Corporation if additional library functionality is required.
4.1. Files

The library files are summarized in the table below.

Description | File Location
Source Files | *.c, *.h/api/
Header File | 18ai32ssclm api.h ../include/

../1ib/
/usr/lib/ T
1 The shared object library is automatically copied to /usr/1ib/ when it is built.

Library File | 1ib18ai32ssclm api.so

4.2. Build

The API Library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the
below steps.

NOTE: The following steps may require elevated privileges.
1. Change to the directory where the library sources are installed (.../api/).
2. Remove existing build targets using the below command.
make clean

3. Compile the source files and build the library by issuing the below command. This step copies the API Library
fileto /usr/1ib/.

make

4.3. Library Use

The library is used at application compile time, at application link time and at application run time. At compile time
include the below listed header file in each source file using a component of the Library interface. Also, edit the
include file search path to locate the header file in the below listed directory. At link time the Library’s shared object
file is linked via the linker command line. This can be done by naming the .so file explicitly or by adding the below
linker command line argument. At run time the library is found in the directory /usr/1ib/. (The shared object
file is automatically copied to /usr/1ib/ when itis built.)

Description File Location Linker Argument
Header File 18ai32ssclm api.h ../include/

./1ib/
Shared Object Library | 1ib18ai32ssclm api.so Just/1ib/ | —118ai32sscim apl

4.4. Macros

The API Library and driver interfaces include the following macros, which are defined in 18ai32ssclm.h.

18
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

4.4.1. 10CTL Services

The IOCTL macros are documented in section 4.7 (page 24).

4.4.2. Registers

The following gives the complete set of 18AI132SSC1M registers.

4.4.2.1. GSC Registers

The following table gives the complete set of GSC specific 18AI32SSC1M registers. Please note that the set of
registers supported by any given device may vary according to model and firmware version. For the set of supported

registers and their detailed definitions refer to the appropriate 18A132SSC1M User Manual.

NOTE: Refer to the output of the “id” sample application (.../1d/) for a complete list of the
registers supported by the device being accessed.

Macro

Description

AI32SSC1M GSC ACAR

Active Channel Assignment Register

AI325SCIM GSC ASIOCR

Auxiliary Sync 1/0 Control Register

AI32SSCIM GSC AVR

Autocal Values Register

AI32SSCIM GSC ARWR

Auxiliary Read/Write Register

AI32SSCIM GSC BCFGR

Board Configuration Register

AI32SSCIM GSC BCTLR

Board Control Register

AI32SSCIM GSC BSTSR

Burst Size Register

AI32SSCIM GSC BUFSR

Buffer Size Register

AI32SSCIM GSC DITR

Disable Initial Trigger Register

AI32SSC1M GSC ECDR

External Clock Divisor Register

AI32SSCIM GSC IBCR

Input Buffer Control Register

AI32SSCIM GSC IBDR

Input Buffer Data Register

AI32SSCIM GSC ICR

Interrupt Control Register

AT32SSCIM GSC PTCHR

Pretrigger Counter High Register

AT32SSCIM GSC PTCLR

Pretrigger Counter Low Register

AI32SSCIM GSC RAGR

Rate-A Generator Register

AI32SSCIM GSC RBGR

Rate-B Generator Register

AI32SSCIM GSC TUR

Test Utility Register

AI32SSC1M GSC SMLWR

Scan Marker Lower Word Register

AI32SSCIM GSC_ SMUWR

Scan Marker Upper Word Register

AI32SSCIM GSC SSCR

Scan & Sync Control Register

4.4.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of the PCI
register identifiers refer to the driver header file gsc pci9056.h, which is automatically included via

18ai32ssclm_api.h.

4.4.2.3. PLX Feature Set Registers

Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX
register identifiers refer to the driver header file gsc pci9056.h, which is automatically included via

18ai32ssclm api.h.

19

General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

4.5. Data Types

The data types used by the API Library are described with the IOCTL services with which they are used. For
additional information refer to section 4.7 (page 24).

4.6. Functions

The interface includes the following functions. The return values reflect the completion status of the requested
operation. A return value less than zero always reflects an error condition. The table below summarizes the error
status values. For the I/O function, read, non-negative return values reflect the number of bytes transferred between
the application and the interface. A value equal to the requested transfer size indicates complete success. Return
values less than the requested transfer size indicate that the 1/0 timeout expired. For the other API function calls a
return value of zero indicates success.

Return Value | Description
<0 This is the value “ (-errno)” (see errno.h).

4.6.1. ai32ssc1m_close()

This function is the entry point to close a connection made via the API’s open call (section 4.6.4, page 22). The
device is put in an initialized state before this call returns.

Prototype

int ai32ssclm close(int fd);

Argument | Description

fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
Return Value | Description
0 The operation succeeded.
<0 An error occurred. See error value description above.
Example

#include <stdio.h>
#include "18ai32ssclm dsl.h"
int ai32ssclm close dsl(int £d)
{

int errs;

int ret;

ret = ai32ssclm close(fd);

if (ret)
printf ("ERROR: ai32ssclm close() returned %d\n", ret);

errs = ret 21 : 0;
return (errs) ;

20
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

4.6.2. ai32ssc1im_init()
This function is the entry point to initializing the 18AI32SSC1M API Library and must be the first call into the
Library. This function may be called more than once, but only the first successful call actually initializes the library.

Subsequent calls perform no operation at all. All other API calls return a failure status when the API Library is not
initialized.

Prototype

int ai32ssclm init (void);

Return Value | Description

0 The operation succeeded.

<0 An error occurred. See error value description above.
Example

#include <stdio.h>
#include "18ai32ssclm dsl.h"
int ai32ssclm _init dsl(void)
{

int errs;

int ret;

ret = ai32ssclm init();

if (ret)
printf ("ERROR: ai32ssclm init () returned %d\n", ret);

errs =ret 2 1 : 0;
return (errs);
}
4.6.3. ai32ssc1lm_ioctl()

This function is the entry point to performing setup and control operations on a 18AI32SSC1M. This function
should only be called after a successful open of the respective device. The specific operation performed varies
according to the request argument. The request argument also governs the use and interpretation of the arg
argument. The set of supported options for the request argument consists of the IOCTL services supported by the
driver, which are defined in section 4.7 (page 24).

NOTE: IOCTL operations are not supported for an open on device index -1.
Prototype

int ai32ssclm ioctl (int fd, int request, void* arg);

Argument | Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
request | This specifies the desired operation to be performed (section 4.7, page 24).
arg This is specific to the IOCTL operation specified by the request argument.
21

General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

Return Value | Description
0 The operation succeeded.
<0 An error occurred. See error value description above.

Example
#include <stdio.h>
#include "18ai32ssclm dsl.h"
int ai3Zssclm ioctl dsl (int fd, int request, void* arg)
{
int errs;
int ret;

ret = ai3d2ssclm ioctl(fd, request, arg);

if (ret)
printf ("ERROR: ai32ssclm ioctl() returned %d\n", ret);

errs =ret 2 1 : 0;
return (errs) ;

}

4.6.4. ai32ssc1lm_open()

This function is the entry point to open a connection to a 18AI32SSC1M board. Before returning, the initialize
IOCTL service is called to reset all hardware and software settings to their defaults.

Prototype

int ai32ssclm open (int device, int share, int* fd);

Argument | Description

device This is the zero-based index of the 18 AI32SSCIM to access. T

Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

h > . ;
share Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).
The device handle is returned here. The pointer cannot be NULL. Values returned are as
follows.
fd

Value | Description
>= 0 | This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

+ The index value —1 can also be given to acquire driver information (section 2.2, page 12).

Return Value | Description
0 The operation succeeded.
<0 An error occurred. See error value description above.

Example
#include <stdio.h>

#include "18ai32ssclm dsl.h"

22
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

int ai32ssclm open dsl(int device, int share, int* £fd)

{

int errs;
int ret;

ret =

ai32ssclm open (device, share, £fd);

if (ret)
printf ("ERROR: ai3Zssclm open () returned $d\n", ret);

errs

=ret 2 1 : 0;

return (errs) ;

}

4.6.4.1. Access Modes

The value of the share argument determines the device access mode, as follows.

Shared Access Mode:

Shared Access Mode allows multiple applications to access the same device simultaneously. In this mode, the first
successful open request returns with the device in an initialized state. Subsequent successful Shared Access Mode
open requests do not affect the state of the device. Once opened in Shared Access Mode, the device access remains
in this mode until all Shared Access Mode accesses release the device with a close request.

Exclusive Access Mode:

Exclusive Access Mode allows a single application to acquire exclusive access to a device. In this mode, a
successful open request returns with the device in an initialized state. While open in this mode all subsequent open
requests will fail regardless of the access mode requested. Once opened in Exclusive Access Mode, the device
access remains in this mode until released by the application with a close request.

4.6.5. ai32ssc1lm_read()

This function is the entry point to reading data from an open connection. The function reads up to bytes bytes.

NOTE: If an open was performed using an index of -1, then read requests will acquire
information from the driver (section 2.2, page 12) rather than data from a device.

NOTE: For additional information refer to the Data Transfer Modes section (section 8.4, page

55).

Prototype

int ai32ssclm read(int fd, void* dst, size t bytes);

Argument | Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
dst The data read is put here.
b This is the desired number of bytes to read. When reading from a device, this must be a
ytes .
multiple of four (4).

23
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

Return Value | Description

The operation succeeded. When reading from a device, a value less than bytes

Otobytes indicates that the 1/0 timeout period lapsed (section 4.7.50, page 42) before the entire
request could be satisfied.
<0 An error occurred. See error value description above.

Example

#include <stdio.h>
#include "18ai32ssclm dsl.h"

int ai32ssclm read dsl(int fd, void* dst, size t bytes, size t* gty)
{

int errs;

int ret;

ret = ai32ssclm read(fd, dst, bytes);

if (ret < 0)
printf ("ERROR: ai32Zssclm read() returned $d\n", ret);

if (gty)
gty[0] = (ret < 0) 2?2 0 : (size t) ret;

errs = (ret < 0) 21 : 0;
return (errs) ;

}

4.7. I0CTL Services

The 18AI32SSC1IM API Library and device driver implement the following IOCTL services. Each service is
described along with the applicable ai32ssclm ioctl () function arguments.

4.7.1. AI32SSCIM_IOCTL_AIN_BUF_CLEAR

This service immediately clears the current content from the input buffer. It also clears the associated overflow and
underflow status bits plus the Pretrigger Counter. This service does not halt sampling.

Usage

Argument | Description

request | AI32SSCIM IOCTL AIN BUF CLEAR

arg Not used.

NOTE: With this service the buffer is cleared immediately. This is not timed to occur at a scan
boundary and may result in a partial scan being cleared from or entering the buffer. To clear the
input buffer on a scan boundary ADC processing must be disabled first (see
AI32SSCI1M _IOCTL CLOCK_ ENABLE, section 4.7.24, page 32).

4.7.2. AI32SSCIM_IOCTL_AIN_BUF_LEVEL

This service returns the current number of 32-bit data items in the input buffer. This may equal the number of A/D
data values in the buffer, depending on the board’s configuration.

24
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

Usage

Argument | Description
request | AI32SSCIM IOCTL AIN BUF LEVEL
arg s32%*

The value returned will be from zero to 256K (262,144).
4.7.3. AI32SSCIM_IOCTL_AIN_BUF_OVERFLOW
This service operates on the Input Buffer Overflow status.

Usage

Argument | Description
request | AI32SSCIM IOCTL AIN BUF OVERFLOW
arg s32%*

Valid argument values supplied to the service are as follows.

Value Description

-1 Retrieve the current state.
AI32SSCIM AIN BUF OVERFLOW CLEAR | Clear the overflow status
ATI32SSCIM AIN BUF OVERFLOW_IGNORE | Ignore the current status.

The current state is reported as one of the following values.

Value Description
AI32SSCIM AIN BUF_OVERFLOW_NO | The buffer has experienced an overflow condition.
AI32SSCIM AIN BUF OVERFLOW_YES | The buffer has not experienced an overflow condition.

4.7.4. AI32SSCIM_IOCTL_AIN_BUF_THR_LVL
This service configures the input buffer threshold level.

Usage

Argument | Description
request | AI32SSCIM IOCTL AIN BUF THR LVL

arg s32%*

Valid argument values are from zero to 0x3FFFF, and -1. A value of -1 will return the current threshold level
setting.

4.7.5. AI32SSC1M_IOCTL_AIN_BUF_THR_STS

This service retrieves the current input buffer threshold level status, which indicates whether or not there are more
than Threshold Level number of 32-bit data items in the input buffer.

Usage

Argument | Description
request | AI32SSCIM IOCTL AIN BUF THR STS
arg s32%*

25
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

The current status is reported as one of the following values.

Value

Description

AI32SSC1M AIN BUF THR STS CLEAR

The buffer contains Threshold Level number of data
items, or fewer.

AI32SSC1M AIN BUF THR STS_SET

The buffer contains more than Threshold Level number
of data items.

4.7.6. AI32SSC1M_IOCTL_AIN_BUF_UNDERFLOW

This service operates on the Input Buffer Underflow status.

Usage

Argument | Description

request | AI32SSCIM IOCTL AIN BUF UNDERFLOW

arg s32%*

Valid argument values supplied to the service are as follows.

Value

Description

-1

Retrieve the current state.

AI32SSCIM AIN BUF UNDERFLOW CLEAR | Clear the underflow status.

ATI32SSCIM AIN BUF UNDERFLOW_IGNORE | Ignore the current status.

Valid argument values are as follows.

Value

Description

AI32SSCIM AIN BUF_UNDERFLOW_NO | The buffer has experienced an underflow condition.

AI32SSCIM AIN BUF_UNDERFLOW_YES | The buffer has not experienced an underflow condition.

4.7.7. AI32SSC1M_IOCTL_AIN_MODE

This service configures the board’s Analog Input Mode.

Usage

Argument | Description

request | AI32SSC1M IOCTL AIN MODE

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSC1M AIN MODE DIFF

Configure the input channels for differential operation.

AI32SSC1M AIN MODE VREF

Connect the input channels to the onboard VVREF signal.

AI32SSCIM AIN MODE ZERO

Connect the input channels to the onboard zero voltage signal.

4.7.8. AI32SSC1M_IOCTL_AIN_RANGE

This service configures the analog input voltage range.

26

General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

Usage

Argument | Description

request | AI32SSC1M IOCTL AIN RANGE

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSC1M AIN RANGE 1 25V

Set the input voltage range to +1.25 volts. This option is valid
only on lower voltage range boards.

AI32SSC1M AIN RANGE 2 5V

Set the input voltage range to 2.5 volts. This option is valid only
on lower voltage range boards. 1

AI32SSCIM AIN RANGE 5V

Set the input voltage range to £5 volts. This option is valid only
on higher voltage range boards. t

AI328SCIM AIN RANGE 10V

Set the input voltage range to +10 volts. This option is valid only
on higher voltage range boards. t

t The voltage range query option (AI32SSC1M QUERY V_ RANGE) can be used to determine the range
supported by the board. Refer to section 4.7.35 on page 36.

4.7.9. AI32SSCIM_IOCTL_AUTOCAL

This service initiates an autocalibration cycle. Most configuration setting should be made before running an
autocalibration cycle. The driver waits for the operation to complete before returning.

NOTE: If any of the external clocking options is selected, then make sure the external clocking
source is present when requesting autocalibration.

NOTE: This service overwrites the current interrupt selection in order to detect the

Autocalibration Done interrupt.

NOTE: When an error is encountered, the service writes a brief, descriptive error message to the

system log.

Usage

Argument | Description

request | AI32SSCIM IOCTL AUTOCAL

arg Not used.

Autocalibration failures are reported via

the following IOCTL service return values.

Value | errno.h Macro

Description

-5 -EIO

The autocalibration process completed, but was unsuccessful.

-110 | ~-ETIMEDOUT

The autocalibration process did not complete and took at least five seconds
longer than expected.

When -5 is returned it indicates that one or more channels could not be successfully calibrated. In some cases,
repeating the process may result in success. If the failure persists though, the board should be returned for
examination and repair. Those channels which could not be calibrated will return invalid readings.

When -110 is returned it indicates that the process took at least five seconds longer than documented in the board

user manual. In this case applications

should wait for bit D13 of the Board Control Register to clear before

27

General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

continuing with any other board operation. The condition must not be ignored. As stated in the board user manual
the board must not be exercised until autocalibration completes. If the failure persists the board should be returned
for examination and repair.

4.7.10. AI32SSC1M_IOCTL_AUTOCAL_BG

This service enables or disables background autocalibration operation. Most configuration settings should be made
before background autocalibration begins.

Usage

Argument | Description
request | AI32SSCIM IOCTL AUTOCAL BG

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
AI32SSCIM_AUTOCAL_BG_DISABLE | This disables background autocalibration operation.
AI32SSCIM AUTOCAL_BG_ENABLE | This enables background autocalibration operation.

4.7.11. AI32SSC1IM_IOCTL_AUTOCAL_STATUS
This service retrieves the status of the most recent Autocalibration cycle.

Usage

Argument | Description
request | AI32SSCIM IOCTL AUTOCAL STATUS

arg s32%*

Valid argument values are as follows.

Value Description

AI32SSCIM AUTOCAL_STATUS_ACTIVE | The operation has not yet completed
AI32SSCIM AUTOCAL_STATUS_ FAIL The process completed, but failed.
AI32SSCIM AUTOCAL STATUS PASS The process completed successfully.

4.7.12. AI32SSC1IM_IOCTL_AUX_CLK_MODE
This service configures the clock signal on the board’s auxiliary signal connector.

Usage

Argument | Description
request | AI32SSCIM IOCTL AUX CLK MODE

arg s32%*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI325SCIM AUX CLK MODE DISABLE | This disables the signal.

28
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

AI32SSCIM AUX CLK MODE INPUT

This configures the signal as an input.

AI32SSCIM AUX CLK MODE OUTPUT

This configures the signal as an output.

4.7.13. AI32SSC1IM_IOCTL_AUX_IN_POL

This service configures the polarity of the input signals on the board’s auxiliary signal connector.

Usage

Argument | Description

request | AI32SSC1M IOCTL AUX IN POL

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI32SSCIM AUX IN POL HI 2 LO | Clocking occurs on high-to-low transitions.

AI32SSCIM AUX IN POL _LO_2 HI | Clocking occurs on low-to-high transitions.

4.7.14. AI32SSCIM_IOCTL_AUX_NOISE

This service configures the noise sensitivity setting for signals on the board’s auxiliary signal connector.

Usage

Argument | Description

request | AI32SSC1M IOCTL AUX NOISE

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI32SS5CIM AUX NOISE HIGH | This refers to high noise sensitivity.

AI32SSCIM AUX NOISE_ LOW | This refers to low noise sensitivity.

4.7.15. AI32SSCIM_IOCTL_AUX_OUT_POL

This service configures the polarity of the output signals on the board’s auxiliary signal connector.

Usage

Argument | Description

request | AI32SSCIM IOCTL AUX OUT POL

arg s32*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSCIM AUX OUT POL HI PULSE

The active state is generated via high going pulses.

AI32SSCIM AUX OUT POL LOW PULSE

The active state is generated via low going pulses.

29

General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

4.7.16. AI32SSC1M_IOCTL_AUX_SYNC_MODE
This service configures the sync signal on the board’s auxiliary signal connector.

Usage

Argument | Description
request | AT32SSCIM IOCTL AUX SYNC MODE
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
AI32SSCIM AUX SYNC MODE DISABLE | This disables the signal.

AI32SSCIM AUX SYNC MODE_ INPUT This configures the signal as an input.
AI32SSCIM_AUX SYNC MODE_OUTPUT | This configures the signal as an output.

4.7.17. AI32SSC1IM_IOCTL_BURST_BUSY
This service reports on the board’s burst activity state.

Usage

Argument | Description
request | ATI32SSCIM IOCTL BURST BUSY
arg s32%*

The value returned will be one of the following.

Value Description
AI32SSCIM BURST BUSY ACTIVE | A bursting activity is in progress.
AI32SSCIM BURST BUSY IDLE No bursting activity is in progress.

4.7.18. AI32SSCIM_IOCTL_BURST_SIZE

This service configures the size of a single burst (the count is in scans, which is an A/D conversion of all active
channels).

Usage

Argument | Description
request | AI32SSCIM IOCTL BURST SIZE
arg s32%*

Valid argument values are from zero to OxFFFFF, or -1 to retrieve the current setting.
4.7.19. A132SSC1M_IOCTL_BURST_SYNC

This service configures the clocking source for burst operations.

30
General Standards Corporation, Phone: (256) 880-8787

Usage

18AI132SSC1M, Linux Device Driver, User Manual

Argument | Description
request | AI32SSCIM IOCTL BURST SYNC
arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSC1M BURST SYNC_BCR

Bursting is driven by the Board Control Register’s Input
Sync hit.

AI32SSC1M BURST SYNC DISABLE

Bursting is disabled.

AI32SSC1M BURST SYNC EXT

Bursting is driven by the cable’s Sync Input cable signal.

AI32SSC1M BURST SYNC RBG

Bursting is driven by the Rate-B Generator.

4.7.20. AI32SSCIM_IOCTL_CHAN_ACTIVE

This service configures the setting for the number and range of active channels to scan.

Usage

Argument | Description

request

AI32SSCIM IOCTL CHAN ACTIVE

S32%*

arg

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSCIM CHAN ACTIVE 0 1

This refers to channels zero through one.

AI32SSC1M CHAN ACTIVE 0 3

This refers to channels zero through three.

AI32SSC1M CHAN ACTIVE 0 7

This refers to channels zero through seven.

AI32SSCIM CHAN ACTIVE 0 15

This refers to channels zero through 15.

AI32SSC1M CHAN ACTIVE 0 31

This refers to channels zero through 31.

AI32SSC1M CHAN ACTIVE RANGE

This refers to a user specified range of channels from a first
selection to a last selection.

AI32SSC1M CHAN ACTIVE SINGLE

This refers to a single, user specified channel.

+ The channel selection is specified with
4.7.23, page 32).

the service AI32SSCIM_IOCTL CHAN SINGLE (section

I The first channel is specified with the service ATI32SSC1IM IOCTL CHAN FIRST (section 4.7.21,
page 31). The last channel is specified with the service AI32SSC1M IOCTL CHAN LAST (section

4.7.22, page 32).

4.7.21. AI32SSCIM_IOCTL_CHAN_FIRST

This service configures the setting for the first channel to scan when the active channel setting is set to the range
option (AI32SSCI1M CHAN ACTIVE RANGE, section 4.7.20, page 31).

31

General Standards Corporation, Phone: (256) 880-8787

Usage
Argument | Description
request | AI32SSCIM IOCTL CHAN FIRST
arg s32%*

18AI132SSC1M, Linux Device Driver, User Manual

Valid argument values are from zero to one less than the current last setting, or -1 to retrieve the current setting.
4.7.22. AI32SSC1IM_IOCTL_CHAN_LAST

This service configures the setting of the last channel to scan when the active channel setting is set to the range
option (AI32SSC1M CHAN ACTIVE RANGE, section 4.7.20, page 31).

Usage
Argument | Description
request | AT32SSCIM IOCTL CHAN LAST
arg s32%*

Valid argument values are from the current first setting to one less than the number of channels on the board, or -1
to retrieve the current setting.

4.7.23. AI32SSC1IM_IOCTL_CHAN_SINGLE

This service configures the setting for the channel to scan when the active channel setting is set to the single option
(AI32SSCI1M CHAN ACTIVE SINGLE, section 4.7.20, page 31).

Usage
Argument | Description
request | AI32SSCIM IOCTL CHAN SINGLE
arg s32%*

Valid argument values are from zero to one less than the number of channels on the board, or -1 to retrieve the

current setting.

4.7.24. AI32SSCIM_IOCTL_CLOCK_ENABLE

This service enables or disables the ADC clocking of data.

Usage
Argument | Description
request | AI32SSCIM IOCTL CLOCK ENABLE
arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSCIM CLOCK ENABLE NO

This disables the data clocking process.

AI32SSCIM CLOCK ENABLE YES

This enables the data clocking process.

32

General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

4.7.25. AI132SSC1M_IOCTL_DATA_FORMAT
This service configures the data encoding format.

Usage

Argument | Description

request | AI32SSC1M IOCTL DATA FORMAT

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSCIM DATA FORMAT 2S COMP

This refers to the Twos Compliment data format.

AI32SSC1M DATA FORMAT OFF BIN

This refers to the Offset Binary encoding format.

4.7.26. AI32SSC1M_IOCTL_DATA_PACKING
This service configures the data packing feature.

Usage

Argument | Description

request | AI32SSCIM IOCTL DATA PACKING

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSCIM DATA PACKING DISABLE

This option disables data packing so that A/D values in the
input buffer are 32-bits wide.

AI32SSCIM DATA PACKING ENABLE

This option enables data packing so that A/D values in the
input buffer are 16-bits wide.

1 Data packing occurs only with the 16-bit data width setting (see AI32SSCIM IOCTL DATA WIDTH,

section 4.7.27, page 33).

4.7.27. AI32SSCIM_IOCTL_DATA_WIDTH

This service configures the encoded data width. This service is available only for those boards whose data width is

configurable.

Usage

Argument | Description

request | AI32SSCIM IOCTL DATA WIDTH

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
33

General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

AI32SSCIM DATA WIDTH 16 | This refers to 16-bit data.
AI32SSCIM DATA WIDTH 18 | This refers to 18-bit data.

4.7.28. AI32SSC1IM_IOCTL_EXT_CLK_DIV_ENA
This service configures the External Clock Division Enable option.

Usage

Argument | Description
request | AI32SSCIM IOCTL EXT CLK DIV ENA
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
AI32SSCIM EXT CLK DIV _ENA NO | This disables the feature.
AI32SSCIM EXT CLK DIV ENA YES | This enables the feature.

4.7.29. AI32SSC1M_IOCTL_EXT_CLK_DIV_VAL
This service configures the External Clock Divisor value.

Usage

Argument | Description
request | AI32SSCIM IOCTL EXT CLK DIV VAL
arg s32%*

Valid argument values are from zero to OxFFFFF, and —-1. A value of -1 will return the current divisor value.
4.7.30. AI32SSC1M_IOCTL_INITIALIZE

This service returns all driver interface settings for the board to the state they were in when the board was first
opened. This includes both hardware-based settings and software-based settings.

NOTE: If the initialization service returns an error status, an error message will be posted to the
system log briefly describing the error condition.

Usage

Argument | Description
request | AI32SSCIM IOCTL INITIALIZE

arg Not used.

4.7.31. AI32SSCIM_IOCTL_INPUT_SYNC

This service initiates an Input Sync operation. The driver will wait for completion, but no more than the read timeout
period (though not the infinite option). If the read timeout is zero, then the driver will wait up to one second for
completion. (Refer to service AI32SSC1IM IOCTL RX IO TIMEOUT in section 4.7.50 on page 42.)

34
General Standards Corporation, Phone: (256) 880-8787

Usage

18AI132SSC1M, Linux Device Driver, User Manual

Argument | Description
request | AT32SSCIM IOCTL INPUT SYNC
arg Not used.

4.7.32. AI32SSCIM_IOCTL_IO_INV

This service configures the inversion of the cable’s clock and sync I/O signals.

Usage

Argument | Description
request | AI32SSCIM IOCTL IO INV
arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSCIM IO _INV_HIGH | Active signals are asserted high.

AI32SSCIM IO _INV_LOW | Active signals are asserted low.

4.7.33. AI32SSCIM_IOCTL_IRQO_SEL

This service configures the interrupt source selection for interrupt number zero.

Usage

Argument | Description
request | AI32SSCIM IOCTL IRQO SEL
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
AI32SSCIM_IRQO_AUTO_CAL_ DONE | This refers to the completion of an autocalibration cycle.
AI32SSCIM IRQO_BURST_DONE This refers to the completion of an input burst.
AI32SSCIM IRQO BURST START This refers to the beginning of an input burst.
AI32SSCIM IRQO_INIT DONE This refers to the completion of an initialization cycle.
AI32SSCIM_IRQO_SYNC_DONE This refers to the completion of a sync operation.
AI32SSCIM IRQO SYNC START This refers to the beginning of a sync operation.

4.7.34. AI32SSCIM_IOCTL_IRQ1_SEL

This service configures the interrupt source selection for interrupt number one.

Usage

Argument | Description
request | AI32SSCIM IOCTL IRQ1 SEL
arg s32%*

35
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSC1M IRQL IN BUF OVR UNDR

This refers to the occurrence of either an input buffer
overflow or an input buffer underflow.

AI32SSC1M IRQ1 IN BUF THR H2L

This refers to the input buffer threshold status being
negated.

AI32SSC1M IRQ1 IN BUF THR L2H

This refers to the input buffer threshold status being
asserted.

AI32SSC1M IRQ1 NONE

This disabled the interrupt.

4.7.35. AI32SSC1M_IOCTL_PRETRIG
This service enables or disabled the Pretrigger feature.

Usage

Argument | Description

request | AI32SSCIM IOCTL PRETRIG

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI32SS5CIM PRETRIG_DISABLE | This disables the Pretrigger feature.

AT32SSCIM PRETRIG ENABLE | This enables the Pretrigger feature.

4.7.36. AI32SSCIM_IOCTL_PRETRIG_COUNT

This service retrieves the current 48-bit pretrigger count.

Usage
Argument | Description
request | AI32SSCIM IOCTL PRETRIG COUNT
arg ai32ssclm pretrig count t*
Definition

typedef struct

{
u32 low; // all 32 bits

u32 high; // lower 1l6-bits

} ai32ssclm pretrig count t;

Fields | Description

low This is the lower 32-bits of the 48-bit pretrigger count.

high | This is the upper 16-bits of the 48-bit pretrigger count.

4.7.37. AI32SSCIM_IOCTL_PRETRIG_LATCH

This service deals with the status of Pretrigger Latch.

36

General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

Usage

Argument | Description

request | AI32SSC1M IOCTL PRETRIG LATCH

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current state.

AI32SSCIM PRETRIG LATCH CLEAR

This option clears the latch bit.

AI32SSCIM PRETRIG_LATCH IGNORE | This option takes no action regarding the latch bit.

When retrieving the current state, the below values are returned.

Value

Description

AI325SCIM PRETRIG LATCH ACTIVE | The latch bit is set.

AI32SSCIM PRETRIG LATCH IDLE

The latch bit is not set.

4.7.38. AI32SSCIM_IOCTL_QUERY

This service queries the driver for various pieces of information about the board and the driver.

Usage

Argument | Description

request | AI32SSCIM IOCTL QUERY

arg s32%*

Valid argument values are as follows.

Value

Description

AI32SSC1M QUERY AUTO CAL_ BG

This indicates if the board supports the background
autocalibration feature (0 = no, 1 = yes).

AI32SSC1M QUERY AUTO CAL_MS

This returns the maximum duration of the Autocalibration
cycle in milliseconds.

AI32SSCIM QUERY CHANNEL MAX

This returns the maximum number of input channels
supported by the board, which may be more that the board’s
current configuration.

AI32SSCIM QUERY CHANNEL QTY

This returns the actual number of input channels on the
current board. If the value returned is -1, then the driver was
unable to determine the number of channels.

AI32SSCIM QUERY COUNT

This returns the number of query options supported by the
IOCTL service.

AI32SSC1M QUERY DATA WIDTH

This indicates if the board supports the feature of configuring
the A/D conversion data width (0 = no, 1 = yes).

AI32SSCIM QUERY DEVICE TYPE

This returns the identifier value for the board’s type. This
should be GSC DEV TYPE 18AI32SSC1M.

AI32SSCIM QUERY FGEN MAX

This returns the maximum supported FGEN value.

AI32SSCIM QUERY FGEN MIN

This returns the minimum supported FGEN value.

AI32SSCIM QUERY FIFO SIZE

This returns the size of the input buffer in 32-bit A/D values.

AI32SSCIM QUERY FSAMP MAX

This gives the maximum FsamP value in S/S.

AI32SSCIM QUERY FSAMP MIN

This gives the minimum FsAMP value in S/S.

37

General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

AI328SCIM QUERY INIT MS

This returns the duration of a board initialization in

milliseconds.

AI32SSCIM QUERY MASTER CLOCK

This returns the master clock frequency in hertz.

AI32SSCIM QUERY NRATE MASK

This returns the mask for the board’s NRATE fields.

AI32SSCIM QUERY NRATE MAX

This returns the maximum supported NRATE value.

AI32SSCIM QUERY NRATE MIN

This returns the minimum supported NRATE value.

AI32SSCIM QUERY PRETRIG

This indicates if the Pretrigger feature is or is not present.

AI325SC1M QUERY RATE GEN QTY

This returns the number of Rate Generators on the board.

AI32SSC1M QUERY V RANGE

This returns an indicator of the board’s voltage range.

Valid return values are as indicated in the above table and as given in the below table.

Value

Description

AI328SCIM IOCTL QUERY ERROR

Either there was a processing error or the query option is
unrecognized.

Valid return values for the voltage range query are as follows.

Value

Description

AI32SSC1M QUERY V_RANGE 2 5

The board’s input voltage range options are £2.5 volts and
+1.25 volts.

AI32SSC1M QUERY V_RANGE 10V

The board’s input voltage range options are +10 volts and +5
volts.

4.7.39. AI32SSCIM_IOCTL_RAG_ENABLE

This service enables or disables the Rate-A Generator.

Usage

Argument | Description

request

AI32SSCIM IOCTL RAG ENABLE

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSCIM GEN ENABLE NO

This option disables the rate generator.

AI32SSCIM GEN ENABLE YES

This option enables the rate generator.

4.7.40. AI32SSCIM_IOCTL_RAG_NRATE

This service configures the NRATE divider value for the Rate-A Generator.

Usage

Argument | Description

request

AI32SSCIM IOCTL RAG NRATE

arg s32*

Valid argument values are from 36 to OXFFFF.

38

General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

4.7.41. A132SSC1IM_IOCTL_RBG_CLK_SRC
This service configures the clock source selection for the Rate-B Generator.

Usage

Argument | Description
request | AT32SSCIM IOCTL RBG CLK SRC
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI32SSCIM RBG_CLK_ SRC_MASTER | This refers to the board’s master clock.

This refers to the Rate-A Generator output. This option is

AI32SSCIM RBG CLK SRC RAG ;
- - - = used for rate generator cascading.

4.7.42. AI32SSC1M_IOCTL_RBG_ENABLE
This service enables or disables the Rate-B Generator.

Usage

Argument | Description
request | ATI32SSCIM IOCTL RBG ENABLE

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
AI32SSCIM_GEN_ENABLE NO | This option disables the rate generator.
AI32SSCIM_GEN_ENABLE_YES | This option enables the rate generator.

4.7.43. AI32SSC1M_IOCTL_RBG_NRATE
This service configures the NRATE divider value for the Rate-B Generator.

Usage

Argument | Description
request | AI32SSCIM IOCTL RBG NRATE
arg s32%*

Valid argument values are from 36 to OxFFFF.
4.7.44. AI32SSC1M_IOCTL_REG_MOD
This service performs a read-modify-write of a 18AI32SSC1M register. This includes only the GSC firmware

registers. The PCI and PLX Feature Set Registers are read-only. Refer to 18ai32ssclm.h for the complete list
of GSC firmware registers.

39
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

Usage
Argument | Description
request | AI32SSCIM IOCTL REG MOD
arg gsc reg t*

Definition

typedef struct
{
u32 reg;
u32 value;
u32 mask;
} gsc _reg t;

Fields | Description

reg This is set to the identifier for the register to access.

value | This contains the value for the register bits to modify.

This specifies the set of bits to modify. If a bit here is set, then the respective register bits is
modified. If a bit here is zero, then the respective register bit is unmodified.

mask

4.7.45. AI32SSCIM_IOCTL_REG_READ

This service reads the value of a 18AI32SSC1M register. This includes the PCI registers, the PLX Feature Set
Registers and the GSC firmware registers. Refer to 18ai32ssclm.h and gsc _pci9056.h for the complete

list of accessible registers.

Usage
Argument | Description
request | AI32SSCIM IOCTL REG READ
arg gsc _reg t*

Definition

typedef struct
{
u32 regqg;
u32 value;
u32 mask;
} gsc _reg t;

Fields | Description

reg This is set to the identifier for the register to access.
value | This is the value read from the specified register.
mask | Thisis ignored for read request.

4.7.46. AI32SSCIM_IOCTL_REG_WRITE

This service writes a value to a 18AI32SSC1M register. This includes only the GSC firmware registers. The PCI and
PLX Feature Set Registers are read-only. Refer to 18ai32ssclm.h for a complete list of the GSC firmware

registers.

40
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

Usage
Argument | Description
request | AI32SSCIM IOCTL REG WRITE
arg gsc reg t*

Definition

typedef struct

{

u32 reg;

u32 value;

u32 mask;
} gsc _reg t;

Fields | Description

reg This is set to the identifier for the register to access.
value | This is the value to write to the specified register.
mask | Thisis ignored for write request.

4.7.47. AI32SSCIM_IOCTL_RX_IO_ABORT

This service aborts an ongoing read () request.

Usage

Argument | Description

request | ATI32SSCIM IOCTL RX IO ABORT

arg

sS32%*

The results are reported as one of the following values.

Value

Description

AT32SSCIM IO ABORT NO | A read () requestwas not aborted as none were ongoing.

AI32SSCIM IO _ABORT_YES | Anongoing read () requestwas aborted.

4.7.48. AI32SSCIM_IOCTL_RX_10_MODE

This service sets the 1/0 mode used for data read requests.

Usage

Argument | Description

request | AI32SSCIM IOCTL RX IO MODE

arg

S32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

GSC_IO_MODE_BMDMA | Use Block Mode DMA.

GSC_IO_MODE DMDMA | Use Demand Mode DMA (transfer data as it becomes possible to do so).

GSC IO MODE PIO Use PIO mode, which is repetitive register access. This is the default.

41
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

4.7.49. AI32SSCIM_IOCTL_RX_IO_OVERFLOW

This service configures the read service to check for an input buffer overflow before performing read operations.
Sampled data is lost when there is an overflow.

NOTE: The check for an overflow is performed upon entry to the read service. The read service
does not check for overflows that occur while the read is in progress. For in-progress overflows an
application must perform the check manually or wait for the check performed by a subsequent
read request.

Usage

Argument | Description
request | AI32SSCIM IOCTL RX IO OVERFLOW
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
AI32SSCIM _IO_OVERFLOW_CHECK | Perform the check. This is the default.
AT32SSCIM IO _OVERFLOW_IGNORE | Do not perform the check.

4.7.50. AI32SSC1M_IOCTL_RX_IO_TIMEOUT
This service sets the timeout limit for read requests. The value is expressed in seconds.

Usage

Argument | Description
request | AI32SSCIM IOCTL RX IO TIMEOUT
arg s32%*

Valid argument values are in the range from zero to 3600, -1, and AI32SSCIM IO TIMEOUT INFINITE. A
value of zero tells the driver not to sleep in order to wait for more data, and should only be used with PIO mode
reads. A value of —1 is used to retrieve the current setting. If the option AI3255C1IM IO TIMEOUT INFINITE
is used, then the driver will wait indefinitely rather than timing out. The default is 10 seconds.

4.7.51. AI32SSCIM_IOCTL_RX_IO_UNDERFLOW

This service configures the read service to check for an input buffer underflow before performing the read operation.
Sampled data is lost when there is an underflow.

NOTE: The check for an underflow is performed upon entry to the read service. The read service
does not check for underflows that occur while the read is in progress. For in-progress underflows
an application must perform the check manually or wait for the check performed by a subsequent
read request.

Usage

Argument | Description
request | AI32SSCIM IOCTL RX IO UNDERFLOW
arg s32%*

42
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
AI325SCIM_IO_UNDERFLOW_CHECK | Perform the check. This is the default.
AT32SSCIM_TIO_UNDERFLOW_IGNORE | Do not perform the check.

4.7.52. AI32SSC1M_IOCTL_SAMP_CLK_SRC
This service configures the source for the A/D sample clock.

Usage

Argument | Description
request | ATI32SSCIM IOCTL SAMP CLK SRC

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
AI32SSCIM SAMP CLK_SRC_BCR | This refers to the Board Control Register’s Input Sync bit
AI32SSCIM SAMP CLK SRC_EXT | This refers to the external clock input signal.

AI32SSCIM SAMP CLK_SRC_RAG | This refers to the Rate-A Generator output.

AI32SSCIM SAMP CLK SRC_RBG | This refers to the Rate-B Generator output.

4.7.53. AI32SSCIM_IOCTL_SCAN_MARKER

This service configures the insertion of Scan Markers into the input buffer data stream. Refer to the board user
manual for additional information.

Usage

Argument | Description
request | AI32SSCIM IOCTL SCAN MARKER

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI32SSCIM SCAN_ MARKER DISABLE | Scan Markers are not inserted into the data stream.
AI32SSCIM SCAN_MARKER ENABLE | Scan Markers are inserted into the data stream.

4.7.54. AI32SSC1M_IOCTL_SCAN_MARKER_GET
This service retrieves the 32-bit packed data scan marker.

Usage

Argument | Description
request | AI32SSCIM IOCTL SCAN MARKER GET

arg u32*

43
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

Argument values retrieved are from 0x0 through OxFFFFFEFFF.

4.7.55. AI32SSCIM_IOCTL_SCAN_MARKER_SET

This service adjusts the 32-bit packed data scan marker.

Usage
Argument | Description
request | AI32SSCIM IOCTL SCAN MARKER SET
arg u32*

Valid argument values are from 0x0 through OxFFFFFFFF.

4.7.56. AI32SSC1M_IOCTL_WAIT_CANCEL

This service resumes all threads blocked via AI32SSC1M IOCTL WAIT EVENT IOCTL calls (section 4.7.57,

page 45), according to the provided criteria. When a blocked thread is waiting for any event specified in the
structure, then the thread is resumed.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver
initiated waits are unaffected by application cancel requests.

Usage
Argument | Description
request | ATI32SSCIM IOCTL WAIT CANCEL
arg gsc wait t*
Definition
typedef struct
{
u32 flags;
u32 main;
u32 gsc;
u32 alt;
u32 io;
u32 timeout ms;
u32 count;
} gsc_wait t;
Fields Description
flags This is unused by wait cancel operations.
main This specifies the set of GSC_WAIT MAIN * events whose wait requests are to be
cancelled. Refer to section 4.7.57.2 on page 46.
gsc This specifies the set of AT32SSC1IM WAIT GSC_* events whose wait requests are to
be cancelled. Refer to section 4.7.57.3 on page 46.
alt This is unused by the 18A132SSC1M driver and should be zero.
io This specifies the set of GSC WAIT IO * events whose wait requests are to be
cancelled. Refer to section 4.7.57.4 on page 46.
timeout ms | Thisis unused by wait cancel operations.
count Upon return this indicates the number of waits that were cancelled.

44
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

4.7.57. AI32SSCIM_IOCTL_WAIT_EVENT

This service blocks a thread until any one of a specified set of events occurs, or until a timeout lapses, whichever
occurs first. The set of possible events to wait for are specified in the structure’s main, gsc, alt and io fields. All
field values must be valid and at least one event must be specified. If the thread is resumed because one of the
referenced events has occurred, then the bit for the respective event is the only event bit that will be set. All other
event bits and fields will be zero. (Multiple event bits will be set only if the events occur simultaneously.)

Usage
Argument | Description
request | AI32SSCIM IOCTL WAIT EVENT
arg gsc wait t*

Definition

NOTE: The service waits only for the first of the specified events, not for all specified events.

NOTE: A wait timeout is reported via the gsc_wait t structure’s flags field having the
GSC_WAIT FLAG TIMEOUT flag set, rather than via an ETIMEDOUT error.

{

typedef struct

u32 flags;
u32 main;
u32 gsc;
u32 alt;
u32 io;

u32 timeout ms;
u32 count;

} gsc wait t;

Fields Description

flags This must initially be_ zero. Upon return this indicates the reason that the thread was
resumed. Refer to section 4.7.57.1on page 45.

main This specifies any number of GSC_WAIT MAIN * events that the thread is to wait for.
Refer to section 4.7.57.2 on page 46.

gsc This specifies any number of AI32SSC1M WAIT GSC_* events that the thread is to
wait for. Refer to section 4.7.57.3 on page 46.

alt This is unused by the 18A132SSC1M driver and must be zero.

. This specifies any number of GSC WAIT IO * events that the thread is to wait for.

10 . - - -
Refer to section 4.7.57.4 on page 46.
This specified the maximum amount of time, in milliseconds, that the thread is to wait

timeout_ms | for any of the referenced events. A value of zero means do not timeout at all. If non-
zero, then upon return the value will be the approximate amount of time actually waited.

count This is unused by wait event operations and must be zero.

4.757.1. gsc_wait t.flags Options

Upon return from a wait request the wait structure’s flags field will indicate the reason that the thread was
resumed. Only one of the below options will be set.

Fields

Description

GSC_WAIT FLAG CANCEL | The wait request was cancelled.

45
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

GSC_WAIT_ FLAG_DONE One of the referenced events occurred.
GSC_WAIT_ FLAG_TIMEOUT | The timeout period lapsed before a referenced event occurred.

4.7.57.2. gsc_wait t.main Options

The wait structure’s main field may specify any of the below primary interrupt options. These interrupt options are
supported by the 18AI32SSC1M and other General Standards products.

Fields Description

GSC WAIT MAIN DMAO This refers to the DMA Done interrupt on DMA engine number zero.
GSC WAIT MAIN DMAL This refers to the DMA Done interrupt on DMA engine number one.
GSC WAIT MAIN GSC This refers to any of the Interrupt Control/Status Register interrupts.

This generally refers to an interrupt generated by another device sharing the

WAIT MAIN OTHER Y
GSC_WAIT MAIN_O same interrupt as the 18AI32SSC1M.

GSC WAIT MAIN PCI This refers to any interrupt generated by the 18A132SSC1M.

GSC_WAIT MAIN SPURIOUS | This refers to board interrupts which should never be generated.

GSC_WAIT MAIN UNKNOWN | This refers to board interrupts whose source could not be identified.

4.7.57.3. gsc_wait t.gsc Options

The wait structure’s gsc field may specify any combination of the below interrupt options. These are the interrupt
options referenced in the Interrupt Control Register. Applications are responsible for enabling the desired interrupt
options. Refer to AI32SSCIM IOCTL IRQO SEL (section 4.7.33, page 35) and
AI32SSCIM IOCTL IRQ1 SEL (section 4.7.34, page 35).

Value Description

AT32SSCIM WAIT GSC_AUTO CAL DONE This refers to the completion of an autocalibration cycle.
AI32SSCIM WAIT GSC BURST DONE This refers to the completion of an input burst.
AT32SSCIM WAIT GSC BURST START This refers to the beginning of an input burst.

This refers to the occurrence of either an input buffer

AI32SSCIM WAIT GSC IN BUF OVR UNDR .
- - - - = = overflow or an input buffer underflow.

AI32SSCIM WAIT GSC_IN BUF_THR H2L | This refers to the input buffer threshold status being negated.

AI32SSCIM WAIT GSC_IN BUF THR L2H | This refers to the input buffer threshold status being asserted.

AI32SSCIM WAIT GSC INIT DONE This refers to the completion of an initialization cycle.
AI32SSCIM WAIT GSC SYNC DONE This refers to the completion of a sync operation.
AI32SSCIM WAIT GSC SYNC START This refers to the beginning of a sync operation.

4.757.4. gsc_wait_ t.io Options

The wait structure’s io field may specify any of the below event options. These events are generated in response to
application board data read requests.

Fields Description

GSC_WAIT_TIO_RX ABORT This refers to read requests which have been aborted.

GSC_WAIT_ IO _RX DONE This refers to read requests which have been satisfied.

GSC_WAIT_ IO _RX ERROR This refers to read requests which end due to an error.
GSC_WAIT IO _RX TIMEOUT | This refers to read requests which end due to the timeout period lapse.

4.7.58. AI32SSCIM_IOCTL_WAIT_STATUS

This service count all threads blocked via the AT3255C1IM IOCTL WAIT EVENT IOCTL service (section 4.7.57,
page 45), according to the provided criteria. A match is made when a waiting thread’s wait criteria matches any of
the criteria specified in the structure passed to this service.

46
General Standards Corporation, Phone: (256) 880-8787

Usage
Argument | Description
request | AT32SSCIM IOCTL WAIT STATUS
arg gsc wait t*

Definition

18AI132SSC1M, Linux Device Driver, User Manual

NOTE: The driver itself makes use of the wait services for various internal operations. Driver
initiated waits are ignored by application status requests.

typedef struct

{

u32 flags;

u32 main;

u32 gsc;

u32 alt;

u32 io;

u32 timeout ms;
u32 count;

} gsc_wait t;

Fields Description
flags This is unused by wait status operations.
. This specifies the set of GSC WAIT MAIN * events whose wait requests are to be

main . — — _
counted. Refer to section 4.7.57.2 on page 46.

gsc This specifies the set of ATI32SSC1M WAIT GSC_* events whose wait requests are to
be counted. Refer to section 4.7.57.3 on page 46.

alt This is unused by the AI32SSC1M driver and should be zero.

io This specifies the set of GSC WAIT IO * events whose wait requests are to be

counted. Refer to section 4.7.57.4 on page 46.

timeout ms

This is unused by wait status operations.

count

Upon return this indicates the number of waits that met any of the specified criteria.

47
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

5. The Driver

NOTE: Contact General Standards Corporation if additional driver functionality is required.
5.1. Files

The device driver files are summarized in the table below.

Description | Files Location
Source Files | *.c, *.h ...

Header File | 18ai32ssclm.h
18ai32ssclm.ko T
18ai32ssclm.o i
+ This is for kernel versions 2.6 and later.
1 This is for kernel versions 2.4 are earlier.

../driver/
Driver File

5.2. Build

NOTE: Building the driver requires installation of the kernel headers and possibly other packages.

The device driver is built via the Overall Make Script (section 2.7, page 13), but can be built separately following
the below steps.

1. Change to the directory where the driver and its sources are installed (.../driver/).
2. Remove existing build targets by issuing the below command.
make clean
3. Build the driver by issuing the below command.
make
NOTE: Due to the differences between the many Linux distributions some build errors may

occur. These errors may include system header location differences, which should be easily
corrected.

5.3. Startup

NOTE: The driver will have to be built before being used as it is provided in source form only.
The startup script used in this procedure is designed to load the device driver and create fresh device nodes. This is
accomplished by unloading the current driver, if loaded, and then loading the accompanying driver executable. In
addition, the script deletes and recreates the device nodes. This is done to ensure that the device nodes in use have
the same major number as assigned dynamically to the driver by the kernel, and so that the number of device nodes
corresponds to the number of boards identified by the driver.
5.3.1. Manual Driver Startup Procedures

Start the driver manually by following the below listed steps.

NOTE: The following steps may require elevated privileges.

48
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

1. Change to the directory where the driver sources are installed (.../driver/).

2. Install the driver module and create the device nodes by executing the below command. If any errors are
encountered then an appropriate error message will be displayed.

./start
NOTE: This script must be executed each time the host is booted.
NOTE: The 18AI32SSC1M device node major number is assigned dynamically by the kernel.
The minor numbers and the device node suffix numbers are index numbers beginning with zero,

and increase by one for each additional board installed.

3. Verify that the device driver module has been loaded by issuing the below command and examining the output.
The module name 18ai32ssc1m should be included in the output.

lsmod

4. Verify that the device nodes have been created by issuing the below command and examining the output. The
output should include one node for each installed board.

1ls -1 /dev/18ai32ssclm.*

5.3.2. Automatic Driver Startup Procedures

Start the driver automatically with each system reboot by following the below listed steps.

1. Locate and edit the system startup script rc.local, which should be in the /etc/rc.d/ directory. Modify
the file by adding the below line so that it is executed with every reboot. The example is based on the driver
being installed in /usr/src/linux/drivers/, though it may have been installed elsewhere.

/usr/src/linux/drivers/18ai32ssclm/driver/start

NOTE: For systemd installations the file rc.local may be located under the /etc/
directory rather than under /etc/rc.d/.

2. Load the driver and create the required device nodes by rebooting the system.

3. Verify that the driver is loaded and that the device nodes have been created. Do this by following the
verification steps given in the manual startup procedures.

5.3.2.1. File rc.local Not Present

Some distributions may not install a default version of rc.local. Some may not even create the directory
/etc/rc.d/. If the directory is not present, then it may be created. The directory must be created with the owner
and group set to root. The directory permissions must be set to rwxr-xr-x. If the file /etc/rc.d/rc.local
is not present, then it too may be created. The file must also be created with the owner and group set to root.
Additionally, the file permissions must also be set to rwxr-xr-x. After the directory and file are created as
described, reboot to verify boot time loading of the driver. Here is an example of a default version of rc.local.

#!/bin/bash

Add your local content here.

49
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

5.3.2.2. Default rc.local File Permissions

The rc.local script may fail to run at boot time because some distributions install a default version of the file
without execute permissions. Without execute permissions, boot time invocation of the script fails, which inhibits
boot time loading of the driver. If this is the case, then change the file permissions to rwxr-xr-x. After the file
permissions are adjusted as described, reboot to verify boot time loading of the driver.

5.3.2.3. systemd Installations

With the advent of the systemd startup implementation, rc.local may be accessed via a systemd startup
service. The service name may be rc-local, rc-local.service or something similar. This service may or
may not be enabled by default. If the service is disabled, then the script will not execute, which prevents boot time
loading of the driver. The service can be enabled with the below command line. After the service is enabled, reboot
to verify boot time loading of the driver.

systemctl enable rc-local

NOTE: For systemd installations the file rc.local may be located under the /etc/
directory rather than under /etc/rc.d/.

5.3.2.4. systemd and rc.local Timing

If the above steps have been performed but the driver still does not start then examine the dmesg output for driver
messages. If the output shows that the driver starts and immediately stops, then the problem may be timing. That is,
since systemd doesn’t serialize startup initialization as done in the past, driver loading may fail if required services
have not completed their own initialization. If this is the problem, then it may be corrected simply by inserting a
delay in rc. local prior to it calling the driver’s start script (i.e., sleep for one or more seconds).

5.3.2.5. SElinux Implications
If not disabled, then SElinux may prevent boot time loading of the driver. If this is the case, then it can be verified
and corrected using SElinux related tools and utilities. First, install the necessary software using the below
command. (As necessary, replace the yum command line with that which is available for your distribution.)

yum install setroubleshoot setools
Next, run the below command to determine if SElinux is preventing the driver from loading at boot time.

sealert —-a /var/log/audit/audit.log
If SElinux is preventing the driver from loading, then the output from the above command should include a
reference to the driver’s start script, the insmod command that loads the driver or the name of the driver
executable. If so, then the output should also indicate the commands necessary to resolve the issue. The following is
an example of the instructions given when the culprit is insmod, which is the start script command that loads the

driver. After running these commands reboot the system to verify boot time loading of the driver.

ausearch -c 'insmod' --raw | audit2allow -M my-insmod
semodule -X 300 -i my-insmod.pp

5.4. Verification

Follow the below steps to verify that the driver has been properly installed and started.

50
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

1. Verify that the file /proc/18ai32ssclm is present. If the file is present then the driver is loaded and
running. Verify the file’s presence by viewing its content with the below command.

cat /proc/18ai32ssclm
5.5. Version
The driver version number can be obtained in a variety of ways. It is reported by the driver both when the driver is
loaded and when it is unloaded (depending on kernel configuration options, this may be visible only in places such

as /var/log/messages). It is reported in the text file /proc/18ai32ssc1m while the driver is loaded and
running. The version number is also given in the file release. txt in the root install directory.

5.6. Shutdown
Shutdown the driver following the below listed steps.
NOTE: The following steps may require elevated privileges.
1. If the driver is currently loaded then issue the below command to unload the driver.
rmmod 18ai32ssclm

2. Verify that the driver module has been unloaded by issuing the below command. The module name
18ai32ssclm should not be in the listed output.

lsmod

51
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

6. Document Source Code Examples
The source code examples included in this document are built into a statically linkable library usable with console

applications. The purpose of these files is to verify that the documentation samples compile and to provide a library
of working sample code to assist in a user’s learning curve and application development effort.

6.1. Files

The library files are summarized in the table below.

Description | Files Location
Source Files | *.c,*.h/docsrc/
Header File | 18ai32ssclm dsl.h | ../include/
Library File | 18ai32ssclm dsl.a | ../1lib/

6.2. Build

The library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the
below steps.

1. Change to the directory where the documentation sources are installed (.../docsrc/).
2. Remove existing build targets by issuing the below command.

make clean
3. Compile the sample files and build the library by issuing the below command.

make

4. Rebuild the Main Library (section 3.2.1, page 16).

6.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above
listed header file in each source file using a component of the library interface. At link time include the above listed
static library file with the objects being linked with the application.

52
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

7. Utilities Source Code

The API Library installation includes a body of utility source code designed to aid in the understanding and use of
the interface calls and IOCTL services. Utility sources are also included for device independent and common,
general-purpose services. Most of the utilities are implemented as visual wrappers around the corresponding services
to facilitate structured console output for the sample applications. The utility sources are compiled and linked into
static libraries to simplify their use. An additional purpose of these utility services is to provide a library of working
sample code to assist in a user’s learning curve and application development effort.

For each API function there is a corresponding utility source file with a corresponding utility service. As an
example, for the API function ai32ssclm open () there is the utility file open. c containing the utility function
ai32ssclm open util (). The naming pattern is as follows: API function ai32ssclm_xxxx (), utility file
name xxxx.c, utility function ai32ssclm xxxx util (). Additionally, for each IOCTL code there is a
corresponding utility source file with a corresponding utility service. As an example, for IOCTL code
AI32SSCIM IOCTL QUERY there is the utility file query.c -containing the utility function
ai32ssclm query (). The naming pattern is as follows: IOCTL code AI32SSCIM IOCTL XXXX, utility file
name xxxx . c, utility function ai32ssclm xxxx ()

7.1. Files

The utility files are summarized in the table below.

Description | Files Location
Source Files | *.c, *.h/utils/
Header File | 18ai32ssclm utils.h | ../include/
18ai32ssclm utils.a
gsc_utils.a

os _utils.a

plx utils.a

Library Files ../1ib/

7.2. Build

The libraries are built via the Overall Make Script (section 2.7, page 13), but can be built separately following the
below steps.

1. Change to the directory where the utility sources are installed (.../utils/).
2. Remove existing build targets by issuing the below command.
make clean
3. Compile the sample files and build the library by issuing the below command.
make

4. Rebuild the Main Library (section 3.2.1, page 16).

7.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above
listed header file in each source file using a component of the library interface. At link time include the above listed
static library file with the objects being linked with the application.

53
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

8. Operating Information

This section explains some basic operational procedures for using the 18 A132SSC1M. This is in no way intended to
be a comprehensive guide. This is simply to address a very few issues relating to their use.

8.1. Debugging Aids

The driver package includes the following items useful for development and/or debugging aids.

8.1.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id
example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as
follows.

Description | File | Location
Application | id | ../id/

8.1.2. Detailed Register Dump

Among the utility services provided is a function to generate a detailed listing of device registers to the console.
When used, the function is typically used to verify device configuration. In these cases, the function should be called
after complete device configuration and before the first 1/0 call. When intended for sending to GSC tech support,
please set the detail arguments to 1. The function arguments are as follows. The utility location is given in the
subsequent table.

Argument | Description
fd This is the file descriptor used to access the device.
detail If non-zero the register dump will include details of each register field.

Description | File/Name Location
Function ai32ssclm reg list () | Source File
Source File | reg.c ./utils/

Header File | 18ai32ssclm utils.h | ../include/
Library File | 18ai32ssclm utils.a |../lib/

8.2. Analog Input Configuration

The basic steps for Analog Input configuration are illustrated in the utility function noted below. The table also gives
the location of the source file, the header file and the corresponding library containing the executable code. The
referenced files are included via the Main Header and Main Library.

Item Name/File Location
Function ai32ssclm config ai() | Source File
Source File | config ai.c ../utils/
Header File | 18ai32ssclm utils.h ../include/
Library File | 18ai32ssclm utils.a ../1ib/

8.3. Auxiliary I/0 Configuration
The basic steps for Auxiliary 1/0 configuration are illustrated in the utility function noted below. The table also

gives the location of the source file, the header file and the corresponding library containing the executable code.

54
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

Item Name/File Location
Function ai32ssclm config aux () | Source File
Source File | config ai.c ./utils/
Header File | 18ai32ssclm utils.h ../include/
Library File | 18ai32ssclm utils.a ../1ib/

8.4. Data Transfer Modes

All device 1/0O requests move data through intermediate driver buffers on its way between the device and application
memory. The data is processed in chunks no larger than the size of this intermediate buffer. The process used to
perform this transfer is according to the I/0 mode selection. Movement of data between the application buffers and
the intermediate driver buffers is performed by the kernel.

8.4.1. PIO - Programmed I/O

In PIO mode the driver reads data by repetitive registers reads from the input data buffer register until either the
request is satisfied, or the 1/0 timeout expires, whichever occurs first.

8.4.2. BMDMA - Block Mode DMA

For Block Mode DMA the driver initiates DMA transfers only after a sufficient volume of data has been received
into the input buffer. In this mode the volume is sufficient when the input buffer content satisfies the request or
when it meets or exceeds the threshold value. After that amount of data is in the input buffer the driver initiates a
DMA then sleeps until the DMA Done interrupt is received. Using this DMA mode, a user request typically consists
of numerous individual DMA transfers.

8.4.3. DMDMA - Demand Mode DMA
This DMA mode is similar to the block mode, except that the transfer is initiated immediately. Here however, the

actual movement of data occurs as the data becomes available in the buffer instead of after it has been accumulated.
Using this DMA mode, a user request typically consists of a single individual DMA transfer.

55
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

9. Sample Applications

The driver archive includes a variety of sample and test applications located under the samples subdirectory.
While they are provided without support and without any external documentation, any problems reported will be
addressed as time permits. The applications are command line based and produce text output for display on a
console. All of the applications are built via the Overall Make Script (section 2.7, page 13), but each may be built
individually by changing to its respective directory and issuing the commands “make clean” and “make”. The

initial output from each application includes information on its supported command line arguments. The following
gives a brief overview of each application.

9.1.id - Identify Board - .../id/

This application reports detailed board identification information. This can be used with tech support to help identify
as much technical information about the board as possible from software.

9.2. regs - Register Access - .../regs/

This application provides menu based interactive access to the board’s registers, and reports other pertinent
information to the console.

9.3. rxrate - Receive Rate - .../rxrate/

This application configures the board for its highest ADC sample rate then reads the input as fast as possible. The
purpose is to measure the peak sustainable input rate for the host, per the provided command line arguments.

9.4. savedata - Save Acquired Data - .../savedata/

This application configures the board for a modest sample rate, reads a megabyte of data, then saves the data to a
hex file.

9.5. sbtest - Single Board Test - .../sbtest/

This application performs functional testing of the driver and a user specified board, at least to the extent possible
with just a single board and no additional equipment.

9.6. signals - Digital Signals - .../signals/

This application configures the board to drive the digital output signals for a user specified period of time. This is
done to facilitate setup of test equipment to capture those signals during actual use.

56
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

Document History

Revision

Description

October 7, 2024

Updated to version 2.8.111.50.0. Minor editorial changes. Updated the kernel support table.
Removed the “util ” prefix from the utility sources.

August 24, 2023

Updated to version 2.7.104.47.0. Updated information on the main library and its use.
Updated the kernel support table. Added section on environment variables. Updated the
information for the open and close calls. Numerous minor editorial changes. Updated the
description of the Input Buffer Clear service. Updated the description of the Autocalibration
All service. Added the Autocal Status IOCTL service. Renamed all Auto_Calibration
content to Autocal. Renamed all Auto_Cal_Bg content to Autocal_Bg. Reorganized content
of the Operating Information section.

March 17, 2022

Updated to version 2.6.97.38.1. Corrected information on the autocalibration service.

March 16, 2022

Updated to version 2.6.97.38.0. Added information on autocalibration failure status.

January 17, 2022

Updated to version 2.5.96.38.0. Expanded automatic startup information. Minor editorial
updates. Updated the kernel support table. Updated the read sample code.

August 24, 2020

Updated to version 2.4.91.32.0. Updated the kernel support table. Minor editorial
corrections. Added a licensing subsection. Added WAIT_EVENT note. Expanded
automatic startup information.

June 25, 2019

Updated to version 2.3.87.28.1. Corrected some cross references.

June 24, 2019

Updated to version 2.3.87.28.0. Updated the kernel support table. Minor editorial changes.
Some document reorganization.

November 20, 2018

Updated to version 2.2.81.26.0. Updated the inside cover page. Updated the CPU and
kernel support section. Minor editorial changes. Updated Block Mode DMA macro and
associated information. Added services to access the Pretrigger count. Added services to
access the Scan Marker value. Added support for the External Clock Divisor. Removed the
AI32SSCIM IOCTL PRETRIG DELAY service as it was diagnostic only. Document
reorganization.

December 2, 2016

Updated to version 2.1.68.18.0. Removed the built field from the /proc/ file. Updated
the kernel support table. Updated the usage of the Wait Event timeout ms field. Updated
material on the open call. Added open access mode descriptions. Added support for infinite
I/0 timeouts. Added a section for general operating information. Made various
miscellaneous updates. Some document reorganization.

September 15, 2015

Updated to version 2.0.60.8.0.

July 30, 2015

Updated to version 2.0.59.7.0. Updated the device node name to include a period before the
device index. Removed double underscore that prefaced various data types.

February 28, 2014

Updated to version 1.7.52.0. Updated the kernel support data.

January 8, 2014

Updated to version 1.6.51.0. Updated the kernel support data.

November 7, 2013

Updated to version 1.6.48.0.

July 17, 2013

Updated to version 1.6.45.0. Updated the kernel support data.

July 20, 2012

Updated to version 1.6.39.0. Added the signals application. Changed rx rate to
rxrate. Updated the kernel support data.

March 26, 2012

Updated to version 1.5.36.0.

December 20, 2011

Updated to version 1.5.34.0.

November 1, 2011

Updated to version 1.4.31.0. Various editorial changes. Removed the IRQ_ENABLE,
IRQO_STS and IRQ1_STS IOCTL services. Updated the CPU and Kernel Support
information. Updated the comments for the Initialize IOCTL service. Changed the spelling
of various Autocalibration related software items.

December 29, 2009

Updated to version 1.3.13.0.

December 28, 2009

Updated to version 1.2.13.0.

December 22, 2009

Updated to version 1.2.12.0. Added Pretrigger services and a few new registers.

October 15, 2009

Updated to version 1.1.10.0. Added the voltage range query option. Expanded voltage
range selection options.

March 27, 2009

Initial release.

57
General Standards Corporation, Phone: (256) 880-8787

18AI132SSC1M, Linux Device Driver, User Manual

58
General Standards Corporation, Phone: (256) 880-8787

