
18AI32SSC1M
18/16-bit, 32 channel, 1M S/S/Ch A/D Input

PMC66-18AI32SSC1M

Linux Device Driver
And API Library

User Manual

Manual Revision: October 7, 2024

Driver Release Version 2.8.111.50.0

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

18AI32SSC1M, Linux Device Driver, User Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2009-2024, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or

software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Although extensive editing and reviews are performed before release, General Standards Corporation assumes no

responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are

made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this

documentation.

General Standards Corporation does not assume any liability arising out of the application or use of

documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or

any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,

software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

18AI32SSC1M, Linux Device Driver, User Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 8

1.1. Purpose.. 8

1.2. Acronyms .. 8

1.3. Definitions .. 8

1.4. Software Overview ... 8
1.4.1. Basic Software Architecture ... 8
1.4.2. API Library ... 9
1.4.3. Device Driver ... 9

1.5. Hardware Overview .. 9

1.6. Reference Material .. 9

1.7. Licensing ... 10

2. Installation ... 11

2.1. CPU and Kernel Support... 11
2.1.1. 32-bit Support Under 64-bit Environments .. 12

2.2. The /proc/ File System .. 12

2.3. File List ... 12

2.4. Directory Structure .. 12

2.5. Installation .. 13

2.6. Removal .. 13

2.7. Overall Make Script .. 13

2.8. Environment Variables ... 14
2.8.1. GSC_API_COMP_FLAGS .. 14
2.8.2. GSC_API_LINK_FLAGS .. 14
2.8.3. GSC_LIB_COMP_FLAGS .. 14
2.8.4. GSC_LIB_LINK_FLAGS .. 15
2.8.5. GSC_APP_COMP_FLAGS .. 15
2.8.6. GSC_APP_LINK_FLAGS .. 15

3. Main Interface Files .. 16

3.1. Main Header File .. 16

3.2. Main Library File .. 16
3.2.1. Build ... 16
3.2.2. System Libraries ... 17
3.2.3. Shared Object Script: Build the Main Libraries as Shared Object Files ... 17

4. API Library ... 18

4.1. Files ... 18

4.2. Build ... 18

4.3. Library Use ... 18

4.4. Macros .. 18

18AI32SSC1M, Linux Device Driver, User Manual

4

General Standards Corporation, Phone: (256) 880-8787

4.4.1. IOCTL Services .. 19
4.4.2. Registers ... 19

4.5. Data Types .. 20

4.6. Functions ... 20
4.6.1. ai32ssc1m_close() .. 20
4.6.2. ai32ssc1m_init() ... 21
4.6.3. ai32ssc1m_ioctl() ... 21
4.6.4. ai32ssc1m_open() ... 22
4.6.5. ai32ssc1m_read() .. 23

4.7. IOCTL Services .. 24
4.7.1. AI32SSC1M_IOCTL_AIN_BUF_CLEAR .. 24
4.7.2. AI32SSC1M_IOCTL_AIN_BUF_LEVEL .. 24
4.7.3. AI32SSC1M_IOCTL_AIN_BUF_OVERFLOW ... 25
4.7.4. AI32SSC1M_IOCTL_AIN_BUF_THR_LVL ... 25
4.7.5. AI32SSC1M_IOCTL_AIN_BUF_THR_STS .. 25
4.7.6. AI32SSC1M_IOCTL_AIN_BUF_UNDERFLOW .. 26
4.7.7. AI32SSC1M_IOCTL_AIN_MODE ... 26
4.7.8. AI32SSC1M_IOCTL_AIN_RANGE ... 26
4.7.9. AI32SSC1M_IOCTL_AUTOCAL ... 27
4.7.10. AI32SSC1M_IOCTL_AUTOCAL_BG ... 28
4.7.11. AI32SSC1M_IOCTL_AUTOCAL_STATUS .. 28
4.7.12. AI32SSC1M_IOCTL_AUX_CLK_MODE ... 28
4.7.13. AI32SSC1M_IOCTL_AUX_IN_POL ... 29
4.7.14. AI32SSC1M_IOCTL_AUX_NOISE ... 29
4.7.15. AI32SSC1M_IOCTL_AUX_OUT_POL ... 29
4.7.16. AI32SSC1M_IOCTL_AUX_SYNC_MODE ... 30
4.7.17. AI32SSC1M_IOCTL_BURST_BUSY .. 30
4.7.18. AI32SSC1M_IOCTL_BURST_SIZE .. 30
4.7.19. AI32SSC1M_IOCTL_BURST_SYNC .. 30
4.7.20. AI32SSC1M_IOCTL_CHAN_ACTIVE .. 31
4.7.21. AI32SSC1M_IOCTL_CHAN_FIRST ... 31
4.7.22. AI32SSC1M_IOCTL_CHAN_LAST .. 32
4.7.23. AI32SSC1M_IOCTL_CHAN_SINGLE .. 32
4.7.24. AI32SSC1M_IOCTL_CLOCK_ENABLE .. 32
4.7.25. AI32SSC1M_IOCTL_DATA_FORMAT .. 33
4.7.26. AI32SSC1M_IOCTL_DATA_PACKING ... 33
4.7.27. AI32SSC1M_IOCTL_DATA_WIDTH ... 33
4.7.28. AI32SSC1M_IOCTL_EXT_CLK_DIV_ENA ... 34
4.7.29. AI32SSC1M_IOCTL_EXT_CLK_DIV_VAL ... 34
4.7.30. AI32SSC1M_IOCTL_INITIALIZE ... 34
4.7.31. AI32SSC1M_IOCTL_INPUT_SYNC ... 34
4.7.32. AI32SSC1M_IOCTL_IO_INV .. 35
4.7.33. AI32SSC1M_IOCTL_IRQ0_SEL .. 35
4.7.34. AI32SSC1M_IOCTL_IRQ1_SEL .. 35
4.7.35. AI32SSC1M_IOCTL_PRETRIG ... 36
4.7.36. AI32SSC1M_IOCTL_PRETRIG_COUNT ... 36
4.7.37. AI32SSC1M_IOCTL_PRETRIG_LATCH .. 36
4.7.38. AI32SSC1M_IOCTL_QUERY .. 37
4.7.39. AI32SSC1M_IOCTL_RAG_ENABLE.. 38
4.7.40. AI32SSC1M_IOCTL_RAG_NRATE .. 38
4.7.41. AI32SSC1M_IOCTL_RBG_CLK_SRC .. 39
4.7.42. AI32SSC1M_IOCTL_RBG_ENABLE .. 39
4.7.43. AI32SSC1M_IOCTL_RBG_NRATE .. 39
4.7.44. AI32SSC1M_IOCTL_REG_MOD .. 39

18AI32SSC1M, Linux Device Driver, User Manual

5

General Standards Corporation, Phone: (256) 880-8787

4.7.45. AI32SSC1M_IOCTL_REG_READ ... 40
4.7.46. AI32SSC1M_IOCTL_REG_WRITE ... 40
4.7.47. AI32SSC1M_IOCTL_RX_IO_ABORT .. 41
4.7.48. AI32SSC1M_IOCTL_RX_IO_MODE .. 41
4.7.49. AI32SSC1M_IOCTL_RX_IO_OVERFLOW .. 42
4.7.50. AI32SSC1M_IOCTL_RX_IO_TIMEOUT .. 42
4.7.51. AI32SSC1M_IOCTL_RX_IO_UNDERFLOW ... 42
4.7.52. AI32SSC1M_IOCTL_SAMP_CLK_SRC ... 43
4.7.53. AI32SSC1M_IOCTL_SCAN_MARKER .. 43
4.7.54. AI32SSC1M_IOCTL_SCAN_MARKER_GET .. 43
4.7.55. AI32SSC1M_IOCTL_SCAN_MARKER_SET ... 44
4.7.56. AI32SSC1M_IOCTL_WAIT_CANCEL ... 44
4.7.57. AI32SSC1M_IOCTL_WAIT_EVENT .. 45
4.7.58. AI32SSC1M_IOCTL_WAIT_STATUS .. 46

5. The Driver.. 48

5.1. Files ... 48

5.2. Build ... 48

5.3. Startup ... 48
5.3.1. Manual Driver Startup Procedures ... 48
5.3.2. Automatic Driver Startup Procedures ... 49

5.4. Verification ... 50

5.5. Version .. 51

5.6. Shutdown .. 51

6. Document Source Code Examples ... 52

6.1. Files ... 52

6.2. Build ... 52

6.3. Library Use ... 52

7. Utilities Source Code... 53

7.1. Files ... 53

7.2. Build ... 53

7.3. Library Use ... 53

8. Operating Information ... 54

8.1. Debugging Aids .. 54
8.1.1. Device Identification .. 54
8.1.2. Detailed Register Dump ... 54

8.2. Analog Input Configuration .. 54

8.3. Auxiliary I/O Configuration .. 54

8.4. Data Transfer Modes ... 55
8.4.1. PIO - Programmed I/O ... 55
8.4.2. BMDMA - Block Mode DMA ... 55
8.4.3. DMDMA - Demand Mode DMA ... 55

18AI32SSC1M, Linux Device Driver, User Manual

6

General Standards Corporation, Phone: (256) 880-8787

9. Sample Applications ... 56

9.1. id - Identify Board - …/id/ .. 56

9.2. regs - Register Access - …/regs/ ... 56

9.3. rxrate - Receive Rate - …/rxrate/ .. 56

9.4. savedata - Save Acquired Data - …/savedata/ .. 56

9.5. sbtest - Single Board Test - …/sbtest/ ... 56

9.6. signals - Digital Signals - …/signals/ .. 56

Document History ... 57

18AI32SSC1M, Linux Device Driver, User Manual

7

General Standards Corporation, Phone: (256) 880-8787

Table of Figures

Figure 1 Basic architectural representation.. 9

18AI32SSC1M, Linux Device Driver, User Manual

8

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

1.1. Purpose

The purpose of this document is to describe the interface to the 18AI32SSC1M API Library and to the underlying

Linux device driver. The API Library software provides the interface between "Application Software" and the

device driver. The driver software provides the interface between the API Library and the actual 18AI32SSC1M

hardware. The API Library and driver interfaces are based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms Description

ADC Analog-to-Digital Converter

API Application Programming Interface

BMDMA Block Mode DMA

DMA Direct Memory Access

DMDMA Demand Mode DMA

GSC General Standards Corporation

PCI Peripheral Component Interconnect

PIO Programmed I/O

PMC PCI Mezzanine Card

PMC66 This is a PMC formfactor device that can operate at up to 66MHz over the PCI bus.

RAG Rate-A Generator

RBG Rate-B Generator

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

…
This is a shortcut representation of the 18AI32SSC1M installation directory or any of its

subdirectories.

18AI32SSC1M This is used as a general reference to any device supported by this driver.

API Library This is a library that provides application-level access to 18AI32SSC1M hardware.

Application This is a user mode process, which runs in user space with user mode privileges.

Driver
This is the 18AI32SSC1M device driver, which runs in kernel space with kernel mode

privileges.

Library This is usually a general reference to the API Library.

1.4. Software Overview

1.4.1. Basic Software Architecture

This section describes the general architecture for the basic components that comprise 18AI32SSC1M applications.

The overall architecture is illustrated in Figure 1 below.

18AI32SSC1M, Linux Device Driver, User Manual

9

General Standards Corporation, Phone: (256) 880-8787

18AI32SSC1M

Device Driver

18ai32ssc1m.ko or

18ai32ssc1m.o

18AI32SSC1M

API Library
lib18ai32ssc1m_api.so

ai32ssc1m_init()

ai32ssc1m_open()

ai32ssc1m_close()

ai32ssc1m_ioctl()

ai32ssc1m_read()

ai32ssc1m_write()

/proc/18ai32ssc1m Informational

/dev/18ai32ssc1m.0 Device 0

/dev/18ai32ssc1m.1 Device 1

/dev/18ai32ssc1m.X Device X

...
18AI32SSC1M

Boards

18AI32SSC1M

Application

Hardware Level

Kernel Level

Application Level

Figure 1 Basic architectural representation.

1.4.2. API Library

The primary means of accessing 18AI32SSC1M boards is via the 18AI32SSC1M API Library. This library forms a

layer between the application and the driver. Additional information is given in section 3.2.3 (page 17). With the

library, applications are able to open and close a device and, while open, perform I/O control and read operations.

1.4.3. Device Driver

The device driver is the host software that provides a means of communicating directly with 18AI32SSC1M

hardware. The driver executes under control of the operating system and runs in Kernel Mode as a Kernel Mode

device driver. The driver is implemented as a standard dynamically loadable Linux device driver written in the C

programming language. While applications can access the driver directly without use of the API Library, it is

recommended that all access is made through the library.

1.5. Hardware Overview

The 18AI32SSC1M is a high-performance, 18-bit analog input board that incorporates up to 32 input channels. The

host side connection is PCI based and the form factor is according to the model ordered. The board is capable of

acquiring data at up to 1M samples per second over each channel. Internal clocking permits sampling rates from 1M

samples per second down to less than one sample per second. Onboard storage permits data buffering of up to 256K

samples, for all channels collectively, between the cable interface and the PCI bus. When sampling data at 16-bits of

resolution, data packing within the onboard buffer permits data buffering of up to 512K samples. This allows the

18AI32SSC1M to sustain continuous throughput from the cable interface independent of the PCI bus interface. The

18AI32SSC1M also permits multiple boards to be synchronized so that all boards sample data in unison. In addition,

the board includes autocalibration capability. For lower sampling rates autocalibration can be performed in the

background, thus permitting continuous autocalibration.

1.6. Reference Material

The following reference material may be of particular benefit in using the 18AI32SSC1M. The specifications

provide the information necessary for an in depth understanding of the specialized features implemented on this

board.

• The applicable 18AI32SSC1M User Manual from General Standards Corporation.

18AI32SSC1M, Linux Device Driver, User Manual

10

General Standards Corporation, Phone: (256) 880-8787

• The PCI9056 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE.txt in the root installation directory.

http://www.plxtech.com/

18AI32SSC1M, Linux Device Driver, User Manual

11

General Standards Corporation, Phone: (256) 880-8787

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 6.x, 5.x, 4.x, 3.x, 2.6, 2.4 and 2.2 running on a PC

system with one or more x86 processors. This release of the driver supports the below listed kernels.

Kernel Distribution

6.2.9 Red Hat Fedora Core 38

6.0.7 Red Hat Fedora Core 37

5.17.5 Red Hat Fedora Core 36

5.14.10 Red Hat Fedora Core 35

5.11.12 Red Hat Fedora Core 34

5.8.15 Red Hat Fedora Core 33

5.6.6 Red Hat Fedora Core 32

5.3.7 Red Hat Fedora Core 31

5.0.9 Red Hat Fedora Core 30

4.18.16 Red Hat Fedora Core 29

4.16.3 Red Hat Fedora Core 28

4.13.9 Red Hat Fedora Core 27

4.11.8 Red Hat Fedora Core 26

4.8.6 Red Hat Fedora Core 25

4.5.5 Red Hat Fedora Core 24

4.2.3 Red Hat Fedora Core 23

4.0.4 Red Hat Fedora Core 22

3.17.4 Red Hat Fedora Core 21

3.11.10 Red Hat Fedora Core 20

3.9.5 Red Hat Fedora Core 19

3.6.10 Red Hat Fedora Core 18

3.3.4 Red Hat Fedora Core 17

3.1.0 Red Hat Fedora Core 16

2.6.38 Red Hat Fedora Core 15

2.6.35 Red Hat Fedora Core 14

2.6.33 Red Hat Fedora Core 13

2.6.31 Red Hat Fedora Core 12

2.6.29 Red Hat Fedora Core 11

2.6.27 Red Hat Fedora Core 10

2.6.25 Red Hat Fedora Core 9

2.6.23 Red Hat Fedora Core 8

2.6.21 Red Hat Fedora Core 7

2.6.18 Red Hat Fedora Core 6

2.6.15 Red Hat Fedora Core 5

2.6.11 Red Hat Fedora Core 4

2.6.9 Red Hat Fedora Core 3

2.4.18 Red Hat 8.0

NOTE: Some older kernel versions are supported (the sources are maintained), but are not tested.

NOTE: While only Red Hat Fedora distributions are listed, numerous other distributions are

supported and have been tested on an as needed basis.

NOTE: The driver will have to be built before being used as it is provided in source form only.

18AI32SSC1M, Linux Device Driver, User Manual

12

General Standards Corporation, Phone: (256) 880-8787

NOTE: The driver has not been tested with a non-versioned kernel.

NOTE: The driver is designed for SMP support, but has not undergone SMP specific testing.

2.1.1. 32-bit Support Under 64-bit Environments

This driver supports 32-bit applications under 64-bit environments. The availability of this feature in the kernel

depends on a 64-bit kernel being configured to support 32-bit application compatibility. Additionally, 2.6 kernels

prior to 2.6.11 implemented 32-bit compatibility in a way that resulted in some drivers not being able to take

advantage of the feature. (In these kernels a driver’s IOCTL command codes must be globally unique. Beginning

with 2.6.11 this requirement has been lifted.) If the driver is not able to provide 32-bit support under a 64-bit kernel,

the “32-bit support” field in the /proc/18ai32ssc1m file will be “no”.

2.2. The /proc/ File System

While the driver is running, the text file /proc/18ai32ssc1m can be read to obtain information about the driver

and the boards it detects. Each file entry includes an entry name followed immediately by a colon, a space character,

and the entry value. Below is an example of what appears in the file, followed by descriptions of each entry.

version: 2.8.111.50

32-bit support: yes

boards: 1

models: 18AI32SSC1M

Entry Description

version This gives the driver version number in the form x.x.x.x.

32-bit support
This reports the driver’s support for 32-bit applications. This will be either “yes” or “no”

for 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.

models

This gives a comma separated list of the basic model number for each board the driver

detected. The model numbers are listed in the same order that the boards are accessed via

the API Library’s open function.

2.3. File List

This release consists of the below listed primary files. The archive content is described in following subsections.

File Description
18ai32ssc1m.linux.tar.gz This archive contains the driver, the API Library and all related files.
18ai32ssc1m_linux_um.pdf This is a PDF version of this user manual, which is included in the archive.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory

structure is created and populated with the respective files.

Directory Description

18ai32ssc1m/
This is the driver root directory. It contains the documentation, the Overall Make Script

(section 2.7, page 13) and the below listed subdirectories.
…/api/ This directory contains the API Library source files (section 3.2.3, page 17).

…/docsrc/
This directory contains the source files for the code samples given in this document (section 6,

page 52).
…/driver/ This directory contains the device driver source files (section 5, page 48).
…/include/ This directory contains the header files for the various libraries.

18AI32SSC1M, Linux Device Driver, User Manual

13

General Standards Corporation, Phone: (256) 880-8787

…/lib/ This directory contains all of the libraries built from the installed sources.

…/samples/
This directory contains the sample application subdirectories and all of their corresponding

source files (section 9, page 56).

…/utils/
This directory contains the source files for the utility libraries used by the sample applications

(section 7, page 53).

2.5. Installation

Perform installation following the below listed steps. This installs the device driver, the API Library and all related

sources and documentation.

1. Create and change to the directory where the files are to be installed, such as /usr/src/linux/drivers/.

(The path name may vary among distributions and kernel versions.)

2. Copy the archive file 18ai32ssc1m.linux.tar.gz into the current directory.

3. Issue the following command to decompress and extract the files from the provided archive. This creates the

directory 18ai32ssc1m in the current directory, and then copies all of the archive’s files into this new

directory.

tar –xzvf 18ai32ssc1m.linux.tar.gz

2.6. Removal

Perform removal following the below listed steps. This removes the device driver, the API Library and all related

sources and documentation.

NOTE: The following steps may require elevated privileges.

1. Shutdown the driver as described in section 5.6 (page 51).

2. Change to the directory where the driver archive was installed, which may have been

/usr/src/linux/drivers/. (The path name may vary among distributions and kernel versions.)

3. Issue the below command to remove the driver archive and all of the installed driver files.

rm -rf 18ai32ssc1m.linux.tar.gz 18ai32ssc1m

4. Issue the below command to remove all of the installed device nodes.

rm -f /dev/18ai32ssc1m.*

5. If the automatic startup procedure was adopted (section 5.3.2, page 49), then edit the system startup script

rc.local and remove the line that invokes the 18AI32SSC1M’s start script. The file rc.local should

be located in the /etc/rc.d/ directory.

2.7. Overall Make Script

An Overall Make Script is included in the root installation directory. Executing this script will perform a make for

all build targets included in the release. The script also loads the driver and copies the API Library to /usr/lib/.

The script is named make_all. Follow the below steps to perform an overall make and to load the driver.

NOTE: The following steps may require elevated privileges.

18AI32SSC1M, Linux Device Driver, User Manual

14

General Standards Corporation, Phone: (256) 880-8787

1. Change to the driver root directory (…/18ai32ssc1m/).

2. Remove existing build targets using the below command. This does not unload the driver.

./make_all clean

3. Issue the following command to make all archive targets and to load the driver.

./make_all

2.8. Environment Variables

Some build environments may require compiler or linker options not present in the provided make files. To

accommodate local environment specific requirements, the provided make files incorporate support for the

following set of GSC specific environment variables.

2.8.1. GSC_API_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the API Library. The compiler used by the API Library make file is “gcc”. The content of this environment variable

is noted in the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in

the table refers to the contents of the environment variable. This environment variable has no effect on compiling

any other distributed source files or linking of any object files.

Undefined

or Empty

== Compiling: init.c

== Compiling: ioctl.c

== Compiling: open.c

Defined and

Not Empty

== Compiling: init.c (added 'xxx')

== Compiling: ioctl.c (added 'xxx')

== Compiling: open.c (added 'xxx')

2.8.2. GSC_API_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the API

Library. The linker used by the API Library make file is “ld”. The content of this environment variable is noted in

the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in the table

refers to the contents of the environment variable. This environment variable has no effect on compiling of any

source files or linking of any other object files.

Undefined

or Empty
==== Linking: ../lib/lib18ai32ssc1m_api.so

Defined and

Not Empty
==== Linking: ../lib/lib18ai32ssc1m_api.so (added 'xxx')

2.8.3. GSC_LIB_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the utility libraries. The compiler used by the utility library make files is “gcc”. The content of this environment

variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The

“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on

compiling any other distributed source files or linking of any object files.

18AI32SSC1M, Linux Device Driver, User Manual

15

General Standards Corporation, Phone: (256) 880-8787

Undefined

or Empty

== Compiling: close.c

== Compiling: init.c

== Compiling: ioctl.c

Defined and

Not Empty

== Compiling: close.c (added 'xxx')

== Compiling: init.c (added 'xxx')

== Compiling: ioctl.c (added 'xxx')

2.8.4. GSC_LIB_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the

utility libraries. The linker used by the utility library make files is “ld”. The content of this environment variable is

noted in the make files’ output to the screen. The table below shows a portion of the screen output. The “xxx” in the

table refers to the contents of the environment variable. This environment variable has no effect on compiling of any

source files or linking of any other object files.

Undefined

or Empty
==== Linking: ../lib/18ai32ssc1m_utils.a

Defined and

Not Empty
==== Linking: ../lib/18ai32ssc1m_utils.a (added 'xxx')

2.8.5. GSC_APP_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the sample applications. The compiler used by the sample application make files is “gcc”. The content of this

environment variable is noted in the make files’ output to the screen. The table below shows a portion of the screen

output. The “xxx” in the table refers to the contents of the environment variable. This environment variable has no

effect on compiling any other distributed source files or linking of any object files.

Undefined

or Empty

== Compiling: main.c

== Compiling: perform.c

Defined and

Not Empty

== Compiling: main.c (added 'xxx')

== Compiling: perform.c (added 'xxx')

2.8.6. GSC_APP_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the

sample applications. The linker used by the sample application make files is “gcc”. The content of this environment

variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The

“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on

compiling of any source files or linking of any other object files.

Undefined

or Empty
==== Linking: id

Defined and

Not Empty
==== Linking: id (added 'xxx')

18AI32SSC1M, Linux Device Driver, User Manual

16

General Standards Corporation, Phone: (256) 880-8787

3. Main Interface Files

This section gives general information on the suggested device interface files to use when developing

18AI32SSC1M based applications.

3.1. Main Header File

Throughout the remainder of this document references are made to various header files included as part of the

18AI32SSC1M driver installation. For ease of use it is suggested that applications include only the single header file

shown below rather than individually including those headers identified separately later in this document. Including

this header file pulls in all other pertinent 18AI32SSC1M specific header files. Therefore, sources may include only

this one 18AI32SSC1M header and make files may reference only this one 18AI32SSC1M include directory.

Description File Location

Header File 18ai32ssc1m_main.h …/include/

3.2. Main Library File

Throughout the remainder of this document references are made to various statically linkable libraries included as

part of the 18AI32SSC1M driver installation. For ease of use it is suggested that applications link only the single

library file shown below rather than individually linking those libraries identified separately later in this document.

Linking this library file pulls in all other static libraries included with the driver. Therefore, make files may

reference only this one 18AI32SSC1M static library and only this one 18AI32SSC1M library directory.

Description File Location

Static Library
18ai32ssc1m_main.a

…/lib/
18ai32ssc1m_multi.a

NOTE: For applications using the 18AI32SSC1M and no other GSC devices, link the

18ai32ssc1m_main.a library. For applications using multiple GSC device types, link the

xxxx_main.a library for one of the devices and the xxxx_multi.a library for the others.

Linking multiple xxxx_main.a libraries may likely produce link errors due to duplicate

symbols being defined. While it may make little or no difference, it is recommended that one

choose the xxxx_main.a library from the driver with the largest number in positions three

(x.x.X.x.x) and/or four (x.x.x.X.x) in the driver release version number.

NOTE: The 18AI32SSC1M API Library is implemented as a shared library and is thus not linked

with the 18AI32SSC1M Main Library. The API Library must be linked with applications by

adding the argument –l18ai32ssc1m_api to the linker command line.

3.2.1. Build

The main library is built via the Overall Make Script (section 2.7, page 13). However, the main library can be built

separately following the below steps.

1. Change to the directory where the main library resides (…/lib/).

2. Remove existing build targets using the below command.

make clean

3. Build the main library by issuing the below command.

make

18AI32SSC1M, Linux Device Driver, User Manual

17

General Standards Corporation, Phone: (256) 880-8787

3.2.2. System Libraries

In addition to linking the static library named above, as well as the API Library shared object file, applications may

need to also link in additional system libraries as noted below.

Library gcc Link Flag

Math -lm

POSIX Thread -lpthread

Real Time -lrt

3.2.3. Shared Object Script: Build the Main Libraries as Shared Object Files

The main libraries built via the Overall Make Script (section 2.7, page 13) are static library files. Some applications

however, require that the Main Libraries be accessed as shared object files. Generating shared object files require

that all of the static libraries be recompiled for this purpose and linked as .so files. This is done using the Shared

Object Script named below. When run, the script invokes the Overall Make Script to clean all existing build targets,

deletes the two shared object files named below, if they exist, defines an environment variable used by all of the

static library make files, invokes the Overall Make Script again to rebuild all existing build targets then invokes

make on the library make file (…/lib/makefile) to link the shared object files. The required manual steps are as

follows.

1. Change to the directory where the main library files reside (…/lib/).

2. Execute the below script.

./static_to_shared.sh

Running the above-named Shared Object Script produces the files given in the table below. These shared object files

fulfill the same purpose as the similarly named static libraries as described in the note under section 3.2 above. Refer

to that note when selecting which shared object file to use.

Description File Location

Shared Object Files

lib18ai32ssc1m_main.so

lib18ai32ssc1m_multi.so

lib18ai32ssc1m_all.so †

…/lib/

† This library includes all generated libraries, including the API Library shared object file content.

The shared object files can be linked via two different methods. In the first method, the application linker command

line can explicitly name the file in the same manner as is done were it a static library. This is the method used by the

sample applications, all of which use the 18AI32SSC1M API Library, which itself is a shared object file. This file is

also found in the …/lib/ subdirectory. In the second method, the .so files are copied to the /usr/lib/

subdirectory and are referenced on the application’s liker command line as given in the table below.

Library gcc Link Flag
lib18ai32ssc1m_main.so -l18ai32ssc1m_main

lib18ai32ssc1m_multi.so -l18ai32ssc1m_multi

lib18ai32ssc1m_all.so † -l18ai32ssc1m_all

† This library includes all generated libraries, including the API Library shared object file content.

18AI32SSC1M, Linux Device Driver, User Manual

18

General Standards Corporation, Phone: (256) 880-8787

4. API Library

The 18AI32SSC1M API Library is the software interface between user applications and the 18AI32SSC1M device

driver. The interface is accessed by including the header file 18ai32ssc1m_api.h.

NOTE: Contact General Standards Corporation if additional library functionality is required.

4.1. Files

The library files are summarized in the table below.

Description File Location

Source Files *.c, *.h … …/api/

Header File 18ai32ssc1m_api.h …/include/

Library File lib18ai32ssc1m_api.so
…/lib/

/usr/lib/ †

† The shared object library is automatically copied to /usr/lib/ when it is built.

4.2. Build

The API Library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the

below steps.

NOTE: The following steps may require elevated privileges.

1. Change to the directory where the library sources are installed (…/api/).

2. Remove existing build targets using the below command.

make clean

3. Compile the source files and build the library by issuing the below command. This step copies the API Library

file to /usr/lib/.

make

4.3. Library Use

The library is used at application compile time, at application link time and at application run time. At compile time

include the below listed header file in each source file using a component of the Library interface. Also, edit the

include file search path to locate the header file in the below listed directory. At link time the Library’s shared object

file is linked via the linker command line. This can be done by naming the .so file explicitly or by adding the below

linker command line argument. At run time the library is found in the directory /usr/lib/. (The shared object

file is automatically copied to /usr/lib/ when it is built.)

Description File Location Linker Argument

Header File 18ai32ssc1m_api.h …/include/

Shared Object Library lib18ai32ssc1m_api.so
…/lib/

/usr/lib/ -l18ai32ssc1m_api

4.4. Macros

The API Library and driver interfaces include the following macros, which are defined in 18ai32ssc1m.h.

18AI32SSC1M, Linux Device Driver, User Manual

19

General Standards Corporation, Phone: (256) 880-8787

4.4.1. IOCTL Services

The IOCTL macros are documented in section 4.7 (page 24).

4.4.2. Registers

The following gives the complete set of 18AI32SSC1M registers.

4.4.2.1. GSC Registers

The following table gives the complete set of GSC specific 18AI32SSC1M registers. Please note that the set of

registers supported by any given device may vary according to model and firmware version. For the set of supported

registers and their detailed definitions refer to the appropriate 18AI32SSC1M User Manual.

NOTE: Refer to the output of the “id” sample application (…/id/) for a complete list of the

registers supported by the device being accessed.

Macro Description
AI32SSC1M_GSC_ACAR Active Channel Assignment Register
AI32SSC1M_GSC_ASIOCR Auxiliary Sync I/O Control Register
AI32SSC1M_GSC_AVR Autocal Values Register
AI32SSC1M_GSC_ARWR Auxiliary Read/Write Register
AI32SSC1M_GSC_BCFGR Board Configuration Register
AI32SSC1M_GSC_BCTLR Board Control Register
AI32SSC1M_GSC_BSTSR Burst Size Register
AI32SSC1M_GSC_BUFSR Buffer Size Register
AI32SSC1M_GSC_DITR Disable Initial Trigger Register
AI32SSC1M_GSC_ECDR External Clock Divisor Register
AI32SSC1M_GSC_IBCR Input Buffer Control Register
AI32SSC1M_GSC_IBDR Input Buffer Data Register
AI32SSC1M_GSC_ICR Interrupt Control Register
AI32SSC1M_GSC_PTCHR Pretrigger Counter High Register
AI32SSC1M_GSC_PTCLR Pretrigger Counter Low Register
AI32SSC1M_GSC_RAGR Rate-A Generator Register
AI32SSC1M_GSC_RBGR Rate-B Generator Register
AI32SSC1M_GSC_TUR Test Utility Register
AI32SSC1M_GSC_SMLWR Scan Marker Lower Word Register
AI32SSC1M_GSC_SMUWR Scan Marker Upper Word Register
AI32SSC1M_GSC_SSCR Scan & Sync Control Register

4.4.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of the PCI

register identifiers refer to the driver header file gsc_pci9056.h, which is automatically included via

18ai32ssc1m_api.h.

4.4.2.3. PLX Feature Set Registers

Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX

register identifiers refer to the driver header file gsc_pci9056.h, which is automatically included via

18ai32ssc1m_api.h.

18AI32SSC1M, Linux Device Driver, User Manual

20

General Standards Corporation, Phone: (256) 880-8787

4.5. Data Types

The data types used by the API Library are described with the IOCTL services with which they are used. For

additional information refer to section 4.7 (page 24).

4.6. Functions

The interface includes the following functions. The return values reflect the completion status of the requested

operation. A return value less than zero always reflects an error condition. The table below summarizes the error

status values. For the I/O function, read, non-negative return values reflect the number of bytes transferred between

the application and the interface. A value equal to the requested transfer size indicates complete success. Return

values less than the requested transfer size indicate that the I/O timeout expired. For the other API function calls a

return value of zero indicates success.

Return Value Description
< 0 This is the value “(-errno)” (see errno.h).

4.6.1. ai32ssc1m_close()

This function is the entry point to close a connection made via the API’s open call (section 4.6.4, page 22). The

device is put in an initialized state before this call returns.

Prototype

int ai32ssc1m_close(int fd);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "18ai32ssc1m_dsl.h"

int ai32ssc1m_close_dsl(int fd)

{

 int errs;

 int ret;

 ret = ai32ssc1m_close(fd);

 if (ret)

 printf("ERROR: ai32ssc1m_close() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

18AI32SSC1M, Linux Device Driver, User Manual

21

General Standards Corporation, Phone: (256) 880-8787

4.6.2. ai32ssc1m_init()

This function is the entry point to initializing the 18AI32SSC1M API Library and must be the first call into the

Library. This function may be called more than once, but only the first successful call actually initializes the library.

Subsequent calls perform no operation at all. All other API calls return a failure status when the API Library is not

initialized.

Prototype

int ai32ssc1m_init(void);

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "18ai32ssc1m_dsl.h"

int ai32ssc1m_init_dsl(void)

{

 int errs;

 int ret;

 ret = ai32ssc1m_init();

 if (ret)

 printf("ERROR: ai32ssc1m_init() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.3. ai32ssc1m_ioctl()

This function is the entry point to performing setup and control operations on a 18AI32SSC1M. This function

should only be called after a successful open of the respective device. The specific operation performed varies

according to the request argument. The request argument also governs the use and interpretation of the arg

argument. The set of supported options for the request argument consists of the IOCTL services supported by the

driver, which are defined in section 4.7 (page 24).

NOTE: IOCTL operations are not supported for an open on device index -1.

Prototype

int ai32ssc1m_ioctl(int fd, int request, void* arg);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
request This specifies the desired operation to be performed (section 4.7, page 24).

arg This is specific to the IOCTL operation specified by the request argument.

18AI32SSC1M, Linux Device Driver, User Manual

22

General Standards Corporation, Phone: (256) 880-8787

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "18ai32ssc1m_dsl.h"

int ai32ssc1m_ioctl_dsl(int fd, int request, void* arg)

{

 int errs;

 int ret;

 ret = ai32ssc1m_ioctl(fd, request, arg);

 if (ret)

 printf("ERROR: ai32ssc1m_ioctl() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.4. ai32ssc1m_open()

This function is the entry point to open a connection to a 18AI32SSC1M board. Before returning, the initialize

IOCTL service is called to reset all hardware and software settings to their defaults.

Prototype

int ai32ssc1m_open(int device, int share, int* fd);

Argument Description
device This is the zero-based index of the 18AI32SSC1M to access. †

share
Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).

fd

The device handle is returned here. The pointer cannot be NULL. Values returned are as

follows.

Value Description
>= 0 This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

† The index value -1 can also be given to acquire driver information (section 2.2, page 12).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "18ai32ssc1m_dsl.h"

18AI32SSC1M, Linux Device Driver, User Manual

23

General Standards Corporation, Phone: (256) 880-8787

int ai32ssc1m_open_dsl(int device, int share, int* fd)

{

 int errs;

 int ret;

 ret = ai32ssc1m_open(device, share, fd);

 if (ret)

 printf("ERROR: ai32ssc1m_open() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.4.1. Access Modes

The value of the share argument determines the device access mode, as follows.

Shared Access Mode:

Shared Access Mode allows multiple applications to access the same device simultaneously. In this mode, the first

successful open request returns with the device in an initialized state. Subsequent successful Shared Access Mode

open requests do not affect the state of the device. Once opened in Shared Access Mode, the device access remains

in this mode until all Shared Access Mode accesses release the device with a close request.

Exclusive Access Mode:

Exclusive Access Mode allows a single application to acquire exclusive access to a device. In this mode, a

successful open request returns with the device in an initialized state. While open in this mode all subsequent open

requests will fail regardless of the access mode requested. Once opened in Exclusive Access Mode, the device

access remains in this mode until released by the application with a close request.

4.6.5. ai32ssc1m_read()

This function is the entry point to reading data from an open connection. The function reads up to bytes bytes.

NOTE: If an open was performed using an index of -1, then read requests will acquire

information from the driver (section 2.2, page 12) rather than data from a device.

NOTE: For additional information refer to the Data Transfer Modes section (section 8.4, page

55).

Prototype

int ai32ssc1m_read(int fd, void* dst, size_t bytes);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
dst The data read is put here.

bytes
This is the desired number of bytes to read. When reading from a device, this must be a

multiple of four (4).

18AI32SSC1M, Linux Device Driver, User Manual

24

General Standards Corporation, Phone: (256) 880-8787

Return Value Description

0 to bytes

The operation succeeded. When reading from a device, a value less than bytes

indicates that the I/O timeout period lapsed (section 4.7.50, page 42) before the entire

request could be satisfied.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "18ai32ssc1m_dsl.h"

int ai32ssc1m_read_dsl(int fd, void* dst, size_t bytes, size_t* qty)

{

 int errs;

 int ret;

 ret = ai32ssc1m_read(fd, dst, bytes);

 if (ret < 0)

 printf("ERROR: ai32ssc1m_read() returned %d\n", ret);

 if (qty)

 qty[0] = (ret < 0) ? 0 : (size_t) ret;

 errs = (ret < 0) ? 1 : 0;

 return(errs);

}

4.7. IOCTL Services

The 18AI32SSC1M API Library and device driver implement the following IOCTL services. Each service is

described along with the applicable ai32ssc1m_ioctl() function arguments.

4.7.1. AI32SSC1M_IOCTL_AIN_BUF_CLEAR

This service immediately clears the current content from the input buffer. It also clears the associated overflow and

underflow status bits plus the Pretrigger Counter. This service does not halt sampling.

Usage

Argument Description
request AI32SSC1M_IOCTL_AIN_BUF_CLEAR

arg Not used.

NOTE: With this service the buffer is cleared immediately. This is not timed to occur at a scan

boundary and may result in a partial scan being cleared from or entering the buffer. To clear the

input buffer on a scan boundary ADC processing must be disabled first (see

AI32SSC1M_IOCTL_CLOCK_ENABLE, section 4.7.24, page 32).

4.7.2. AI32SSC1M_IOCTL_AIN_BUF_LEVEL

This service returns the current number of 32-bit data items in the input buffer. This may equal the number of A/D

data values in the buffer, depending on the board’s configuration.

18AI32SSC1M, Linux Device Driver, User Manual

25

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_AIN_BUF_LEVEL

arg s32*

The value returned will be from zero to 256K (262,144).

4.7.3. AI32SSC1M_IOCTL_AIN_BUF_OVERFLOW

This service operates on the Input Buffer Overflow status.

Usage

Argument Description
request AI32SSC1M_IOCTL_AIN_BUF_OVERFLOW

arg s32*

Valid argument values supplied to the service are as follows.

Value Description
-1 Retrieve the current state.
AI32SSC1M_AIN_BUF_OVERFLOW_CLEAR Clear the overflow status.
AI32SSC1M_AIN_BUF_OVERFLOW_IGNORE Ignore the current status.

The current state is reported as one of the following values.

Value Description
AI32SSC1M_AIN_BUF_OVERFLOW_NO The buffer has experienced an overflow condition.
AI32SSC1M_AIN_BUF_OVERFLOW_YES The buffer has not experienced an overflow condition.

4.7.4. AI32SSC1M_IOCTL_AIN_BUF_THR_LVL

This service configures the input buffer threshold level.

Usage

Argument Description
request AI32SSC1M_IOCTL_AIN_BUF_THR_LVL

arg s32*

Valid argument values are from zero to 0x3FFFF, and -1. A value of -1 will return the current threshold level

setting.

4.7.5. AI32SSC1M_IOCTL_AIN_BUF_THR_STS

This service retrieves the current input buffer threshold level status, which indicates whether or not there are more

than Threshold Level number of 32-bit data items in the input buffer.

Usage

Argument Description
request AI32SSC1M_IOCTL_AIN_BUF_THR_STS

arg s32*

18AI32SSC1M, Linux Device Driver, User Manual

26

General Standards Corporation, Phone: (256) 880-8787

The current status is reported as one of the following values.

Value Description

AI32SSC1M_AIN_BUF_THR_STS_CLEAR
The buffer contains Threshold Level number of data

items, or fewer.

AI32SSC1M_AIN_BUF_THR_STS_SET
The buffer contains more than Threshold Level number

of data items.

4.7.6. AI32SSC1M_IOCTL_AIN_BUF_UNDERFLOW

This service operates on the Input Buffer Underflow status.

Usage

Argument Description
request AI32SSC1M_IOCTL_AIN_BUF_UNDERFLOW

arg s32*

Valid argument values supplied to the service are as follows.

Value Description
-1 Retrieve the current state.
AI32SSC1M_AIN_BUF_UNDERFLOW_CLEAR Clear the underflow status.
AI32SSC1M_AIN_BUF_UNDERFLOW_IGNORE Ignore the current status.

Valid argument values are as follows.

Value Description
AI32SSC1M_AIN_BUF_UNDERFLOW_NO The buffer has experienced an underflow condition.
AI32SSC1M_AIN_BUF_UNDERFLOW_YES The buffer has not experienced an underflow condition.

4.7.7. AI32SSC1M_IOCTL_AIN_MODE

This service configures the board’s Analog Input Mode.

Usage

Argument Description
request AI32SSC1M_IOCTL_AIN_MODE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_AIN_MODE_DIFF Configure the input channels for differential operation.
AI32SSC1M_AIN_MODE_VREF Connect the input channels to the onboard VREF signal.
AI32SSC1M_AIN_MODE_ZERO Connect the input channels to the onboard zero voltage signal.

4.7.8. AI32SSC1M_IOCTL_AIN_RANGE

This service configures the analog input voltage range.

18AI32SSC1M, Linux Device Driver, User Manual

27

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_AIN_RANGE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.

AI32SSC1M_AIN_RANGE_1_25V
Set the input voltage range to ±1.25 volts. This option is valid

only on lower voltage range boards. †

AI32SSC1M_AIN_RANGE_2_5V
Set the input voltage range to ±2.5 volts. This option is valid only

on lower voltage range boards. †

AI32SSC1M_AIN_RANGE_5V
Set the input voltage range to ±5 volts. This option is valid only

on higher voltage range boards. †

AI32SSC1M_AIN_RANGE_10V
Set the input voltage range to ±10 volts. This option is valid only

on higher voltage range boards. †

† The voltage range query option (AI32SSC1M_QUERY_V_RANGE) can be used to determine the range

supported by the board. Refer to section 4.7.35 on page 36.

4.7.9. AI32SSC1M_IOCTL_AUTOCAL

This service initiates an autocalibration cycle. Most configuration setting should be made before running an

autocalibration cycle. The driver waits for the operation to complete before returning.

NOTE: If any of the external clocking options is selected, then make sure the external clocking

source is present when requesting autocalibration.

NOTE: This service overwrites the current interrupt selection in order to detect the

Autocalibration Done interrupt.

NOTE: When an error is encountered, the service writes a brief, descriptive error message to the

system log.

Usage

Argument Description
request AI32SSC1M_IOCTL_AUTOCAL

arg Not used.

Autocalibration failures are reported via the following IOCTL service return values.

Value errno.h Macro Description

-5 -EIO The autocalibration process completed, but was unsuccessful.

-110 -ETIMEDOUT
The autocalibration process did not complete and took at least five seconds

longer than expected.

When -5 is returned it indicates that one or more channels could not be successfully calibrated. In some cases,

repeating the process may result in success. If the failure persists though, the board should be returned for

examination and repair. Those channels which could not be calibrated will return invalid readings.

When -110 is returned it indicates that the process took at least five seconds longer than documented in the board

user manual. In this case applications should wait for bit D13 of the Board Control Register to clear before

18AI32SSC1M, Linux Device Driver, User Manual

28

General Standards Corporation, Phone: (256) 880-8787

continuing with any other board operation. The condition must not be ignored. As stated in the board user manual

the board must not be exercised until autocalibration completes. If the failure persists the board should be returned

for examination and repair.

4.7.10. AI32SSC1M_IOCTL_AUTOCAL_BG

This service enables or disables background autocalibration operation. Most configuration settings should be made

before background autocalibration begins.

Usage

Argument Description
request AI32SSC1M_IOCTL_AUTOCAL_BG

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_AUTOCAL_BG_DISABLE This disables background autocalibration operation.
AI32SSC1M_AUTOCAL_BG_ENABLE This enables background autocalibration operation.

4.7.11. AI32SSC1M_IOCTL_AUTOCAL_STATUS

This service retrieves the status of the most recent Autocalibration cycle.

Usage

Argument Description
request AI32SSC1M_IOCTL_AUTOCAL_STATUS

arg s32*

Valid argument values are as follows.

Value Description
AI32SSC1M_AUTOCAL_STATUS_ACTIVE The operation has not yet completed.
AI32SSC1M_AUTOCAL_STATUS_FAIL The process completed, but failed.
AI32SSC1M_AUTOCAL_STATUS_PASS The process completed successfully.

4.7.12. AI32SSC1M_IOCTL_AUX_CLK_MODE

This service configures the clock signal on the board’s auxiliary signal connector.

Usage

Argument Description
request AI32SSC1M_IOCTL_AUX_CLK_MODE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_AUX_CLK_MODE_DISABLE This disables the signal.

18AI32SSC1M, Linux Device Driver, User Manual

29

General Standards Corporation, Phone: (256) 880-8787

AI32SSC1M_AUX_CLK_MODE_INPUT This configures the signal as an input.
AI32SSC1M_AUX_CLK_MODE_OUTPUT This configures the signal as an output.

4.7.13. AI32SSC1M_IOCTL_AUX_IN_POL

This service configures the polarity of the input signals on the board’s auxiliary signal connector.

Usage

Argument Description
request AI32SSC1M_IOCTL_AUX_IN_POL

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_AUX_IN_POL_HI_2_LO Clocking occurs on high-to-low transitions.
AI32SSC1M_AUX_IN_POL_LO_2_HI Clocking occurs on low-to-high transitions.

4.7.14. AI32SSC1M_IOCTL_AUX_NOISE

This service configures the noise sensitivity setting for signals on the board’s auxiliary signal connector.

Usage

Argument Description
request AI32SSC1M_IOCTL_AUX_NOISE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_AUX_NOISE_HIGH This refers to high noise sensitivity.
AI32SSC1M_AUX_NOISE_LOW This refers to low noise sensitivity.

4.7.15. AI32SSC1M_IOCTL_AUX_OUT_POL

This service configures the polarity of the output signals on the board’s auxiliary signal connector.

Usage

Argument Description
request AI32SSC1M_IOCTL_AUX_OUT_POL

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_AUX_OUT_POL_HI_PULSE The active state is generated via high going pulses.
AI32SSC1M_AUX_OUT_POL_LOW_PULSE The active state is generated via low going pulses.

18AI32SSC1M, Linux Device Driver, User Manual

30

General Standards Corporation, Phone: (256) 880-8787

4.7.16. AI32SSC1M_IOCTL_AUX_SYNC_MODE

This service configures the sync signal on the board’s auxiliary signal connector.

Usage

Argument Description
request AI32SSC1M_IOCTL_AUX_SYNC_MODE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_AUX_SYNC_MODE_DISABLE This disables the signal.
AI32SSC1M_AUX_SYNC_MODE_INPUT This configures the signal as an input.
AI32SSC1M_AUX_SYNC_MODE_OUTPUT This configures the signal as an output.

4.7.17. AI32SSC1M_IOCTL_BURST_BUSY

This service reports on the board’s burst activity state.

Usage

Argument Description
request AI32SSC1M_IOCTL_BURST_BUSY

arg s32*

The value returned will be one of the following.

Value Description
AI32SSC1M_BURST_BUSY_ACTIVE A bursting activity is in progress.
AI32SSC1M_BURST_BUSY_IDLE No bursting activity is in progress.

4.7.18. AI32SSC1M_IOCTL_BURST_SIZE

This service configures the size of a single burst (the count is in scans, which is an A/D conversion of all active

channels).

Usage

Argument Description
request AI32SSC1M_IOCTL_BURST_SIZE

arg s32*

Valid argument values are from zero to 0xFFFFF, or -1 to retrieve the current setting.

4.7.19. AI32SSC1M_IOCTL_BURST_SYNC

This service configures the clocking source for burst operations.

18AI32SSC1M, Linux Device Driver, User Manual

31

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_BURST_SYNC

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.

AI32SSC1M_BURST_SYNC_BCR
Bursting is driven by the Board Control Register’s Input

Sync bit.
AI32SSC1M_BURST_SYNC_DISABLE Bursting is disabled.
AI32SSC1M_BURST_SYNC_EXT Bursting is driven by the cable’s Sync Input cable signal.
AI32SSC1M_BURST_SYNC_RBG Bursting is driven by the Rate-B Generator.

4.7.20. AI32SSC1M_IOCTL_CHAN_ACTIVE

This service configures the setting for the number and range of active channels to scan.

Usage

Argument Description
request AI32SSC1M_IOCTL_CHAN_ACTIVE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_CHAN_ACTIVE_0_1 This refers to channels zero through one.
AI32SSC1M_CHAN_ACTIVE_0_3 This refers to channels zero through three.
AI32SSC1M_CHAN_ACTIVE_0_7 This refers to channels zero through seven.
AI32SSC1M_CHAN_ACTIVE_0_15 This refers to channels zero through 15.
AI32SSC1M_CHAN_ACTIVE_0_31 This refers to channels zero through 31.

AI32SSC1M_CHAN_ACTIVE_RANGE
This refers to a user specified range of channels from a first

selection to a last selection. ‡
AI32SSC1M_CHAN_ACTIVE_SINGLE This refers to a single, user specified channel. †

† The channel selection is specified with the service AI32SSC1M_IOCTL_CHAN_SINGLE (section

4.7.23, page 32).

‡ The first channel is specified with the service AI32SSC1M_IOCTL_CHAN_FIRST (section 4.7.21,

page 31). The last channel is specified with the service AI32SSC1M_IOCTL_CHAN_LAST (section

4.7.22, page 32).

4.7.21. AI32SSC1M_IOCTL_CHAN_FIRST

This service configures the setting for the first channel to scan when the active channel setting is set to the range

option (AI32SSC1M_CHAN_ACTIVE_RANGE, section 4.7.20, page 31).

18AI32SSC1M, Linux Device Driver, User Manual

32

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_CHAN_FIRST

arg s32*

Valid argument values are from zero to one less than the current last setting, or -1 to retrieve the current setting.

4.7.22. AI32SSC1M_IOCTL_CHAN_LAST

This service configures the setting of the last channel to scan when the active channel setting is set to the range

option (AI32SSC1M_CHAN_ACTIVE_RANGE, section 4.7.20, page 31).

Usage

Argument Description
request AI32SSC1M_IOCTL_CHAN_LAST

arg s32*

Valid argument values are from the current first setting to one less than the number of channels on the board, or -1

to retrieve the current setting.

4.7.23. AI32SSC1M_IOCTL_CHAN_SINGLE

This service configures the setting for the channel to scan when the active channel setting is set to the single option

(AI32SSC1M_CHAN_ACTIVE_SINGLE, section 4.7.20, page 31).

Usage

Argument Description
request AI32SSC1M_IOCTL_CHAN_SINGLE

arg s32*

Valid argument values are from zero to one less than the number of channels on the board, or -1 to retrieve the

current setting.

4.7.24. AI32SSC1M_IOCTL_CLOCK_ENABLE

This service enables or disables the ADC clocking of data.

Usage

Argument Description
request AI32SSC1M_IOCTL_CLOCK_ENABLE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_CLOCK_ENABLE_NO This disables the data clocking process.
AI32SSC1M_CLOCK_ENABLE_YES This enables the data clocking process.

18AI32SSC1M, Linux Device Driver, User Manual

33

General Standards Corporation, Phone: (256) 880-8787

4.7.25. AI32SSC1M_IOCTL_DATA_FORMAT

This service configures the data encoding format.

Usage

Argument Description
request AI32SSC1M_IOCTL_DATA_FORMAT

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_DATA_FORMAT_2S_COMP This refers to the Twos Compliment data format.
AI32SSC1M_DATA_FORMAT_OFF_BIN This refers to the Offset Binary encoding format.

4.7.26. AI32SSC1M_IOCTL_DATA_PACKING

This service configures the data packing feature.

Usage

Argument Description
request AI32SSC1M_IOCTL_DATA_PACKING

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.

AI32SSC1M_DATA_PACKING_DISABLE
This option disables data packing so that A/D values in the

input buffer are 32-bits wide.

AI32SSC1M_DATA_PACKING_ENABLE
This option enables data packing so that A/D values in the

input buffer are 16-bits wide. †

† Data packing occurs only with the 16-bit data width setting (see AI32SSC1M_IOCTL_DATA_WIDTH,

section 4.7.27, page 33).

4.7.27. AI32SSC1M_IOCTL_DATA_WIDTH

This service configures the encoded data width. This service is available only for those boards whose data width is

configurable.

Usage

Argument Description
request AI32SSC1M_IOCTL_DATA_WIDTH

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.

18AI32SSC1M, Linux Device Driver, User Manual

34

General Standards Corporation, Phone: (256) 880-8787

AI32SSC1M_DATA_WIDTH_16 This refers to 16-bit data.
AI32SSC1M_DATA_WIDTH_18 This refers to 18-bit data.

4.7.28. AI32SSC1M_IOCTL_EXT_CLK_DIV_ENA

This service configures the External Clock Division Enable option.

Usage

Argument Description
request AI32SSC1M_IOCTL_EXT_CLK_DIV_ENA

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_EXT_CLK_DIV_ENA_NO This disables the feature.
AI32SSC1M_EXT_CLK_DIV_ENA_YES This enables the feature.

4.7.29. AI32SSC1M_IOCTL_EXT_CLK_DIV_VAL

This service configures the External Clock Divisor value.

Usage

Argument Description
request AI32SSC1M_IOCTL_EXT_CLK_DIV_VAL

arg s32*

Valid argument values are from zero to 0xFFFFF, and -1. A value of -1 will return the current divisor value.

4.7.30. AI32SSC1M_IOCTL_INITIALIZE

This service returns all driver interface settings for the board to the state they were in when the board was first

opened. This includes both hardware-based settings and software-based settings.

NOTE: If the initialization service returns an error status, an error message will be posted to the

system log briefly describing the error condition.

Usage

Argument Description
request AI32SSC1M_IOCTL_INITIALIZE

arg Not used.

4.7.31. AI32SSC1M_IOCTL_INPUT_SYNC

This service initiates an Input Sync operation. The driver will wait for completion, but no more than the read timeout

period (though not the infinite option). If the read timeout is zero, then the driver will wait up to one second for

completion. (Refer to service AI32SSC1M_IOCTL_RX_IO_TIMEOUT in section 4.7.50 on page 42.)

18AI32SSC1M, Linux Device Driver, User Manual

35

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_INPUT_SYNC

arg Not used.

4.7.32. AI32SSC1M_IOCTL_IO_INV

This service configures the inversion of the cable’s clock and sync I/O signals.

Usage

Argument Description
request AI32SSC1M_IOCTL_IO_INV

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_IO_INV_HIGH Active signals are asserted high.
AI32SSC1M_IO_INV_LOW Active signals are asserted low.

4.7.33. AI32SSC1M_IOCTL_IRQ0_SEL

This service configures the interrupt source selection for interrupt number zero.

Usage

Argument Description
request AI32SSC1M_IOCTL_IRQ0_SEL

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_IRQ0_AUTO_CAL_DONE This refers to the completion of an autocalibration cycle.
AI32SSC1M_IRQ0_BURST_DONE This refers to the completion of an input burst.
AI32SSC1M_IRQ0_BURST_START This refers to the beginning of an input burst.
AI32SSC1M_IRQ0_INIT_DONE This refers to the completion of an initialization cycle.
AI32SSC1M_IRQ0_SYNC_DONE This refers to the completion of a sync operation.
AI32SSC1M_IRQ0_SYNC_START This refers to the beginning of a sync operation.

4.7.34. AI32SSC1M_IOCTL_IRQ1_SEL

This service configures the interrupt source selection for interrupt number one.

Usage

Argument Description
request AI32SSC1M_IOCTL_IRQ1_SEL

arg s32*

18AI32SSC1M, Linux Device Driver, User Manual

36

General Standards Corporation, Phone: (256) 880-8787

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.

AI32SSC1M_IRQ1_IN_BUF_OVR_UNDR
This refers to the occurrence of either an input buffer

overflow or an input buffer underflow.

AI32SSC1M_IRQ1_IN_BUF_THR_H2L
This refers to the input buffer threshold status being

negated.

AI32SSC1M_IRQ1_IN_BUF_THR_L2H
This refers to the input buffer threshold status being

asserted.
AI32SSC1M_IRQ1_NONE This disabled the interrupt.

4.7.35. AI32SSC1M_IOCTL_PRETRIG

This service enables or disabled the Pretrigger feature.

Usage

Argument Description
request AI32SSC1M_IOCTL_PRETRIG

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_PRETRIG_DISABLE This disables the Pretrigger feature.
AI32SSC1M_PRETRIG_ENABLE This enables the Pretrigger feature.

4.7.36. AI32SSC1M_IOCTL_PRETRIG_COUNT

This service retrieves the current 48-bit pretrigger count.

Usage

Argument Description
request AI32SSC1M_IOCTL_PRETRIG_COUNT

arg ai32ssc1m_pretrig_count_t*

Definition

typedef struct

{

 u32 low; // all 32 bits

 u32 high; // lower 16-bits

} ai32ssc1m_pretrig_count_t;

Fields Description
low This is the lower 32-bits of the 48-bit pretrigger count.
high This is the upper 16-bits of the 48-bit pretrigger count.

4.7.37. AI32SSC1M_IOCTL_PRETRIG_LATCH

This service deals with the status of Pretrigger Latch.

18AI32SSC1M, Linux Device Driver, User Manual

37

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_PRETRIG_LATCH

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current state.
AI32SSC1M_PRETRIG_LATCH_CLEAR This option clears the latch bit.
AI32SSC1M_PRETRIG_LATCH_IGNORE This option takes no action regarding the latch bit.

When retrieving the current state, the below values are returned.

Value Description
AI32SSC1M_PRETRIG_LATCH_ACTIVE The latch bit is set.
AI32SSC1M_PRETRIG_LATCH_IDLE The latch bit is not set.

4.7.38. AI32SSC1M_IOCTL_QUERY

This service queries the driver for various pieces of information about the board and the driver.

Usage

Argument Description
request AI32SSC1M_IOCTL_QUERY

arg s32*

Valid argument values are as follows.

Value Description

AI32SSC1M_QUERY_AUTO_CAL_BG
This indicates if the board supports the background

autocalibration feature (0 = no, 1 = yes).

AI32SSC1M_QUERY_AUTO_CAL_MS
This returns the maximum duration of the Autocalibration

cycle in milliseconds.

AI32SSC1M_QUERY_CHANNEL_MAX

This returns the maximum number of input channels

supported by the board, which may be more that the board’s

current configuration.

AI32SSC1M_QUERY_CHANNEL_QTY

This returns the actual number of input channels on the

current board. If the value returned is -1, then the driver was

unable to determine the number of channels.

AI32SSC1M_QUERY_COUNT
This returns the number of query options supported by the

IOCTL service.

AI32SSC1M_QUERY_DATA_WIDTH
This indicates if the board supports the feature of configuring

the A/D conversion data width (0 = no, 1 = yes).

AI32SSC1M_QUERY_DEVICE_TYPE
This returns the identifier value for the board’s type. This

should be GSC_DEV_TYPE_18AI32SSC1M.

AI32SSC1M_QUERY_FGEN_MAX This returns the maximum supported FGEN value.
AI32SSC1M_QUERY_FGEN_MIN This returns the minimum supported FGEN value.
AI32SSC1M_QUERY_FIFO_SIZE This returns the size of the input buffer in 32-bit A/D values.
AI32SSC1M_QUERY_FSAMP_MAX This gives the maximum FSAMP value in S/S.
AI32SSC1M_QUERY_FSAMP_MIN This gives the minimum FSAMP value in S/S.

18AI32SSC1M, Linux Device Driver, User Manual

38

General Standards Corporation, Phone: (256) 880-8787

AI32SSC1M_QUERY_INIT_MS
This returns the duration of a board initialization in

milliseconds.
AI32SSC1M_QUERY_MASTER_CLOCK This returns the master clock frequency in hertz.
AI32SSC1M_QUERY_NRATE_MASK This returns the mask for the board’s NRATE fields.
AI32SSC1M_QUERY_NRATE_MAX This returns the maximum supported NRATE value.
AI32SSC1M_QUERY_NRATE_MIN This returns the minimum supported NRATE value.
AI32SSC1M_QUERY_PRETRIG This indicates if the Pretrigger feature is or is not present.
AI32SSC1M_QUERY_RATE_GEN_QTY This returns the number of Rate Generators on the board.
AI32SSC1M_QUERY_V_RANGE This returns an indicator of the board’s voltage range.

Valid return values are as indicated in the above table and as given in the below table.

Value Description

AI32SSC1M_IOCTL_QUERY_ERROR
Either there was a processing error or the query option is

unrecognized.

Valid return values for the voltage range query are as follows.

Value Description

AI32SSC1M_QUERY_V_RANGE_2_5
The board’s input voltage range options are ±2.5 volts and

±1.25 volts.

AI32SSC1M_QUERY_V_RANGE_10V
The board’s input voltage range options are ±10 volts and ±5

volts.

4.7.39. AI32SSC1M_IOCTL_RAG_ENABLE

This service enables or disables the Rate-A Generator.

Usage

Argument Description
request AI32SSC1M_IOCTL_RAG_ENABLE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_GEN_ENABLE_NO This option disables the rate generator.
AI32SSC1M_GEN_ENABLE_YES This option enables the rate generator.

4.7.40. AI32SSC1M_IOCTL_RAG_NRATE

This service configures the NRATE divider value for the Rate-A Generator.

Usage

Argument Description
request AI32SSC1M_IOCTL_RAG_NRATE

arg s32*

Valid argument values are from 36 to 0xFFFF.

18AI32SSC1M, Linux Device Driver, User Manual

39

General Standards Corporation, Phone: (256) 880-8787

4.7.41. AI32SSC1M_IOCTL_RBG_CLK_SRC

This service configures the clock source selection for the Rate-B Generator.

Usage

Argument Description
request AI32SSC1M_IOCTL_RBG_CLK_SRC

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_RBG_CLK_SRC_MASTER This refers to the board’s master clock.

AI32SSC1M_RBG_CLK_SRC_RAG
This refers to the Rate-A Generator output. This option is

used for rate generator cascading.

4.7.42. AI32SSC1M_IOCTL_RBG_ENABLE

This service enables or disables the Rate-B Generator.

Usage

Argument Description
request AI32SSC1M_IOCTL_RBG_ENABLE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_GEN_ENABLE_NO This option disables the rate generator.
AI32SSC1M_GEN_ENABLE_YES This option enables the rate generator.

4.7.43. AI32SSC1M_IOCTL_RBG_NRATE

This service configures the NRATE divider value for the Rate-B Generator.

Usage

Argument Description
request AI32SSC1M_IOCTL_RBG_NRATE

arg s32*

Valid argument values are from 36 to 0xFFFF.

4.7.44. AI32SSC1M_IOCTL_REG_MOD

This service performs a read-modify-write of a 18AI32SSC1M register. This includes only the GSC firmware

registers. The PCI and PLX Feature Set Registers are read-only. Refer to 18ai32ssc1m.h for the complete list

of GSC firmware registers.

18AI32SSC1M, Linux Device Driver, User Manual

40

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_REG_MOD

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This contains the value for the register bits to modify.

mask
This specifies the set of bits to modify. If a bit here is set, then the respective register bits is

modified. If a bit here is zero, then the respective register bit is unmodified.

4.7.45. AI32SSC1M_IOCTL_REG_READ

This service reads the value of a 18AI32SSC1M register. This includes the PCI registers, the PLX Feature Set

Registers and the GSC firmware registers. Refer to 18ai32ssc1m.h and gsc_pci9056.h for the complete

list of accessible registers.

Usage

Argument Description
request AI32SSC1M_IOCTL_REG_READ

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This is the value read from the specified register.
mask This is ignored for read request.

4.7.46. AI32SSC1M_IOCTL_REG_WRITE

This service writes a value to a 18AI32SSC1M register. This includes only the GSC firmware registers. The PCI and

PLX Feature Set Registers are read-only. Refer to 18ai32ssc1m.h for a complete list of the GSC firmware

registers.

18AI32SSC1M, Linux Device Driver, User Manual

41

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_REG_WRITE

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This is the value to write to the specified register.
mask This is ignored for write request.

4.7.47. AI32SSC1M_IOCTL_RX_IO_ABORT

This service aborts an ongoing read() request.

Usage

Argument Description
request AI32SSC1M_IOCTL_RX_IO_ABORT

arg s32*

The results are reported as one of the following values.

Value Description
AI32SSC1M_IO_ABORT_NO A read() request was not aborted as none were ongoing.

AI32SSC1M_IO_ABORT_YES An ongoing read() request was aborted.

4.7.48. AI32SSC1M_IOCTL_RX_IO_MODE

This service sets the I/O mode used for data read requests.

Usage

Argument Description
request AI32SSC1M_IOCTL_RX_IO_MODE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
GSC_IO_MODE_BMDMA Use Block Mode DMA.
GSC_IO_MODE_DMDMA Use Demand Mode DMA (transfer data as it becomes possible to do so).
GSC_IO_MODE_PIO Use PIO mode, which is repetitive register access. This is the default.

18AI32SSC1M, Linux Device Driver, User Manual

42

General Standards Corporation, Phone: (256) 880-8787

4.7.49. AI32SSC1M_IOCTL_RX_IO_OVERFLOW

This service configures the read service to check for an input buffer overflow before performing read operations.

Sampled data is lost when there is an overflow.

NOTE: The check for an overflow is performed upon entry to the read service. The read service

does not check for overflows that occur while the read is in progress. For in-progress overflows an

application must perform the check manually or wait for the check performed by a subsequent

read request.

Usage

Argument Description
request AI32SSC1M_IOCTL_RX_IO_OVERFLOW

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_IO_OVERFLOW_CHECK Perform the check. This is the default.
AI32SSC1M_IO_OVERFLOW_IGNORE Do not perform the check.

4.7.50. AI32SSC1M_IOCTL_RX_IO_TIMEOUT

This service sets the timeout limit for read requests. The value is expressed in seconds.

Usage

Argument Description
request AI32SSC1M_IOCTL_RX_IO_TIMEOUT

arg s32*

Valid argument values are in the range from zero to 3600, -1, and AI32SSC1M_IO_TIMEOUT_INFINITE. A

value of zero tells the driver not to sleep in order to wait for more data, and should only be used with PIO mode

reads. A value of -1 is used to retrieve the current setting. If the option AI32SSC1M_IO_TIMEOUT_INFINITE

is used, then the driver will wait indefinitely rather than timing out. The default is 10 seconds.

4.7.51. AI32SSC1M_IOCTL_RX_IO_UNDERFLOW

This service configures the read service to check for an input buffer underflow before performing the read operation.

Sampled data is lost when there is an underflow.

NOTE: The check for an underflow is performed upon entry to the read service. The read service

does not check for underflows that occur while the read is in progress. For in-progress underflows

an application must perform the check manually or wait for the check performed by a subsequent

read request.

Usage

Argument Description
request AI32SSC1M_IOCTL_RX_IO_UNDERFLOW

arg s32*

18AI32SSC1M, Linux Device Driver, User Manual

43

General Standards Corporation, Phone: (256) 880-8787

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_IO_UNDERFLOW_CHECK Perform the check. This is the default.
AI32SSC1M_IO_UNDERFLOW_IGNORE Do not perform the check.

4.7.52. AI32SSC1M_IOCTL_SAMP_CLK_SRC

This service configures the source for the A/D sample clock.

Usage

Argument Description
request AI32SSC1M_IOCTL_SAMP_CLK_SRC

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_SAMP_CLK_SRC_BCR This refers to the Board Control Register’s Input Sync bit.
AI32SSC1M_SAMP_CLK_SRC_EXT This refers to the external clock input signal.
AI32SSC1M_SAMP_CLK_SRC_RAG This refers to the Rate-A Generator output.
AI32SSC1M_SAMP_CLK_SRC_RBG This refers to the Rate-B Generator output.

4.7.53. AI32SSC1M_IOCTL_SCAN_MARKER

This service configures the insertion of Scan Markers into the input buffer data stream. Refer to the board user

manual for additional information.

Usage

Argument Description
request AI32SSC1M_IOCTL_SCAN_MARKER

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_SCAN_MARKER_DISABLE Scan Markers are not inserted into the data stream.
AI32SSC1M_SCAN_MARKER_ENABLE Scan Markers are inserted into the data stream.

4.7.54. AI32SSC1M_IOCTL_SCAN_MARKER_GET

This service retrieves the 32-bit packed data scan marker.

Usage

Argument Description
request AI32SSC1M_IOCTL_SCAN_MARKER_GET

arg u32*

18AI32SSC1M, Linux Device Driver, User Manual

44

General Standards Corporation, Phone: (256) 880-8787

Argument values retrieved are from 0x0 through 0xFFFFFFFF.

4.7.55. AI32SSC1M_IOCTL_SCAN_MARKER_SET

This service adjusts the 32-bit packed data scan marker.

Usage

Argument Description
request AI32SSC1M_IOCTL_SCAN_MARKER_SET

arg u32*

Valid argument values are from 0x0 through 0xFFFFFFFF.

4.7.56. AI32SSC1M_IOCTL_WAIT_CANCEL

This service resumes all threads blocked via AI32SSC1M_IOCTL_WAIT_EVENT IOCTL calls (section 4.7.57,

page 45), according to the provided criteria. When a blocked thread is waiting for any event specified in the

structure, then the thread is resumed.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver

initiated waits are unaffected by application cancel requests.

Usage

Argument Description
request AI32SSC1M_IOCTL_WAIT_CANCEL

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description
flags This is unused by wait cancel operations.

main
This specifies the set of GSC_WAIT_MAIN_* events whose wait requests are to be

cancelled. Refer to section 4.7.57.2 on page 46.

gsc
This specifies the set of AI32SSC1M_WAIT_GSC_* events whose wait requests are to

be cancelled. Refer to section 4.7.57.3 on page 46.
alt This is unused by the 18AI32SSC1M driver and should be zero.

io
This specifies the set of GSC_WAIT_IO_* events whose wait requests are to be

cancelled. Refer to section 4.7.57.4 on page 46.
timeout_ms This is unused by wait cancel operations.
count Upon return this indicates the number of waits that were cancelled.

18AI32SSC1M, Linux Device Driver, User Manual

45

General Standards Corporation, Phone: (256) 880-8787

4.7.57. AI32SSC1M_IOCTL_WAIT_EVENT

This service blocks a thread until any one of a specified set of events occurs, or until a timeout lapses, whichever

occurs first. The set of possible events to wait for are specified in the structure’s main, gsc, alt and io fields. All

field values must be valid and at least one event must be specified. If the thread is resumed because one of the

referenced events has occurred, then the bit for the respective event is the only event bit that will be set. All other

event bits and fields will be zero. (Multiple event bits will be set only if the events occur simultaneously.)

NOTE: The service waits only for the first of the specified events, not for all specified events.

NOTE: A wait timeout is reported via the gsc_wait_t structure’s flags field having the

GSC_WAIT_FLAG_TIMEOUT flag set, rather than via an ETIMEDOUT error.

Usage

Argument Description
request AI32SSC1M_IOCTL_WAIT_EVENT

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description

flags
This must initially be zero. Upon return this indicates the reason that the thread was

resumed. Refer to section 4.7.57.1on page 45.

main
This specifies any number of GSC_WAIT_MAIN_* events that the thread is to wait for.

Refer to section 4.7.57.2 on page 46.

gsc
This specifies any number of AI32SSC1M_WAIT_GSC_* events that the thread is to

wait for. Refer to section 4.7.57.3 on page 46.
alt This is unused by the 18AI32SSC1M driver and must be zero.

io
This specifies any number of GSC_WAIT_IO_* events that the thread is to wait for.

Refer to section 4.7.57.4 on page 46.

timeout_ms

This specified the maximum amount of time, in milliseconds, that the thread is to wait

for any of the referenced events. A value of zero means do not timeout at all. If non-

zero, then upon return the value will be the approximate amount of time actually waited.
count This is unused by wait event operations and must be zero.

4.7.57.1. gsc_wait_t.flags Options

Upon return from a wait request the wait structure’s flags field will indicate the reason that the thread was

resumed. Only one of the below options will be set.

Fields Description
GSC_WAIT_FLAG_CANCEL The wait request was cancelled.

18AI32SSC1M, Linux Device Driver, User Manual

46

General Standards Corporation, Phone: (256) 880-8787

GSC_WAIT_FLAG_DONE One of the referenced events occurred.
GSC_WAIT_FLAG_TIMEOUT The timeout period lapsed before a referenced event occurred.

4.7.57.2. gsc_wait_t.main Options

The wait structure’s main field may specify any of the below primary interrupt options. These interrupt options are

supported by the 18AI32SSC1M and other General Standards products.

Fields Description
GSC_WAIT_MAIN_DMA0 This refers to the DMA Done interrupt on DMA engine number zero.
GSC_WAIT_MAIN_DMA1 This refers to the DMA Done interrupt on DMA engine number one.
GSC_WAIT_MAIN_GSC This refers to any of the Interrupt Control/Status Register interrupts.

GSC_WAIT_MAIN_OTHER
This generally refers to an interrupt generated by another device sharing the

same interrupt as the 18AI32SSC1M.
GSC_WAIT_MAIN_PCI This refers to any interrupt generated by the 18AI32SSC1M.
GSC_WAIT_MAIN_SPURIOUS This refers to board interrupts which should never be generated.
GSC_WAIT_MAIN_UNKNOWN This refers to board interrupts whose source could not be identified.

4.7.57.3. gsc_wait_t.gsc Options

The wait structure’s gsc field may specify any combination of the below interrupt options. These are the interrupt

options referenced in the Interrupt Control Register. Applications are responsible for enabling the desired interrupt

options. Refer to AI32SSC1M_IOCTL_IRQ0_SEL (section 4.7.33, page 35) and

AI32SSC1M_IOCTL_IRQ1_SEL (section 4.7.34, page 35).

Value Description
AI32SSC1M_WAIT_GSC_AUTO_CAL_DONE This refers to the completion of an autocalibration cycle.
AI32SSC1M_WAIT_GSC_BURST_DONE This refers to the completion of an input burst.
AI32SSC1M_WAIT_GSC_BURST_START This refers to the beginning of an input burst.

AI32SSC1M_WAIT_GSC_IN_BUF_OVR_UNDR
This refers to the occurrence of either an input buffer

overflow or an input buffer underflow.
AI32SSC1M_WAIT_GSC_IN_BUF_THR_H2L This refers to the input buffer threshold status being negated.
AI32SSC1M_WAIT_GSC_IN_BUF_THR_L2H This refers to the input buffer threshold status being asserted.
AI32SSC1M_WAIT_GSC_INIT_DONE This refers to the completion of an initialization cycle.
AI32SSC1M_WAIT_GSC_SYNC_DONE This refers to the completion of a sync operation.
AI32SSC1M_WAIT_GSC_SYNC_START This refers to the beginning of a sync operation.

4.7.57.4. gsc_wait_t.io Options

The wait structure’s io field may specify any of the below event options. These events are generated in response to

application board data read requests.

Fields Description
GSC_WAIT_IO_RX_ABORT This refers to read requests which have been aborted.
GSC_WAIT_IO_RX_DONE This refers to read requests which have been satisfied.
GSC_WAIT_IO_RX_ERROR This refers to read requests which end due to an error.
GSC_WAIT_IO_RX_TIMEOUT This refers to read requests which end due to the timeout period lapse.

4.7.58. AI32SSC1M_IOCTL_WAIT_STATUS

This service count all threads blocked via the AI32SSC1M_IOCTL_WAIT_EVENT IOCTL service (section 4.7.57,

page 45), according to the provided criteria. A match is made when a waiting thread’s wait criteria matches any of

the criteria specified in the structure passed to this service.

18AI32SSC1M, Linux Device Driver, User Manual

47

General Standards Corporation, Phone: (256) 880-8787

NOTE: The driver itself makes use of the wait services for various internal operations. Driver

initiated waits are ignored by application status requests.

Usage

Argument Description
request AI32SSC1M_IOCTL_WAIT_STATUS

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description
flags This is unused by wait status operations.

main
This specifies the set of GSC_WAIT_MAIN_* events whose wait requests are to be

counted. Refer to section 4.7.57.2 on page 46.

gsc
This specifies the set of AI32SSC1M_WAIT_GSC_* events whose wait requests are to

be counted. Refer to section 4.7.57.3 on page 46.
alt This is unused by the AI32SSC1M driver and should be zero.

io
This specifies the set of GSC_WAIT_IO_* events whose wait requests are to be

counted. Refer to section 4.7.57.4 on page 46.
timeout_ms This is unused by wait status operations.
count Upon return this indicates the number of waits that met any of the specified criteria.

18AI32SSC1M, Linux Device Driver, User Manual

48

General Standards Corporation, Phone: (256) 880-8787

5. The Driver

NOTE: Contact General Standards Corporation if additional driver functionality is required.

5.1. Files

The device driver files are summarized in the table below.

Description Files Location

Source Files *.c, *.h …

…/driver/
Header File 18ai32ssc1m.h

Driver File
18ai32ssc1m.ko †

18ai32ssc1m.o ‡

† This is for kernel versions 2.6 and later.

‡ This is for kernel versions 2.4 are earlier.

5.2. Build

NOTE: Building the driver requires installation of the kernel headers and possibly other packages.

The device driver is built via the Overall Make Script (section 2.7, page 13), but can be built separately following

the below steps.

1. Change to the directory where the driver and its sources are installed (…/driver/).

2. Remove existing build targets by issuing the below command.

make clean

3. Build the driver by issuing the below command.

make

NOTE: Due to the differences between the many Linux distributions some build errors may

occur. These errors may include system header location differences, which should be easily

corrected.

5.3. Startup

NOTE: The driver will have to be built before being used as it is provided in source form only.

The startup script used in this procedure is designed to load the device driver and create fresh device nodes. This is

accomplished by unloading the current driver, if loaded, and then loading the accompanying driver executable. In

addition, the script deletes and recreates the device nodes. This is done to ensure that the device nodes in use have

the same major number as assigned dynamically to the driver by the kernel, and so that the number of device nodes

corresponds to the number of boards identified by the driver.

5.3.1. Manual Driver Startup Procedures

Start the driver manually by following the below listed steps.

NOTE: The following steps may require elevated privileges.

18AI32SSC1M, Linux Device Driver, User Manual

49

General Standards Corporation, Phone: (256) 880-8787

1. Change to the directory where the driver sources are installed (…/driver/).

2. Install the driver module and create the device nodes by executing the below command. If any errors are

encountered then an appropriate error message will be displayed.

./start

NOTE: This script must be executed each time the host is booted.

NOTE: The 18AI32SSC1M device node major number is assigned dynamically by the kernel.

The minor numbers and the device node suffix numbers are index numbers beginning with zero,

and increase by one for each additional board installed.

3. Verify that the device driver module has been loaded by issuing the below command and examining the output.

The module name 18ai32ssc1m should be included in the output.

lsmod

4. Verify that the device nodes have been created by issuing the below command and examining the output. The

output should include one node for each installed board.

ls –l /dev/18ai32ssc1m.*

5.3.2. Automatic Driver Startup Procedures

Start the driver automatically with each system reboot by following the below listed steps.

1. Locate and edit the system startup script rc.local, which should be in the /etc/rc.d/ directory. Modify

the file by adding the below line so that it is executed with every reboot. The example is based on the driver

being installed in /usr/src/linux/drivers/, though it may have been installed elsewhere.

/usr/src/linux/drivers/18ai32ssc1m/driver/start

NOTE: For systemd installations the file rc.local may be located under the /etc/

directory rather than under /etc/rc.d/.

2. Load the driver and create the required device nodes by rebooting the system.

3. Verify that the driver is loaded and that the device nodes have been created. Do this by following the

verification steps given in the manual startup procedures.

5.3.2.1. File rc.local Not Present

Some distributions may not install a default version of rc.local. Some may not even create the directory

/etc/rc.d/. If the directory is not present, then it may be created. The directory must be created with the owner

and group set to root. The directory permissions must be set to rwxr-xr-x. If the file /etc/rc.d/rc.local

is not present, then it too may be created. The file must also be created with the owner and group set to root.

Additionally, the file permissions must also be set to rwxr-xr-x. After the directory and file are created as

described, reboot to verify boot time loading of the driver. Here is an example of a default version of rc.local.

#!/bin/bash

Add your local content here.

18AI32SSC1M, Linux Device Driver, User Manual

50

General Standards Corporation, Phone: (256) 880-8787

5.3.2.2. Default rc.local File Permissions

The rc.local script may fail to run at boot time because some distributions install a default version of the file

without execute permissions. Without execute permissions, boot time invocation of the script fails, which inhibits

boot time loading of the driver. If this is the case, then change the file permissions to rwxr-xr-x. After the file

permissions are adjusted as described, reboot to verify boot time loading of the driver.

5.3.2.3. systemd Installations

With the advent of the systemd startup implementation, rc.local may be accessed via a systemd startup

service. The service name may be rc-local, rc-local.service or something similar. This service may or

may not be enabled by default. If the service is disabled, then the script will not execute, which prevents boot time

loading of the driver. The service can be enabled with the below command line. After the service is enabled, reboot

to verify boot time loading of the driver.

systemctl enable rc-local

NOTE: For systemd installations the file rc.local may be located under the /etc/

directory rather than under /etc/rc.d/.

5.3.2.4. systemd and rc.local Timing

If the above steps have been performed but the driver still does not start then examine the dmesg output for driver

messages. If the output shows that the driver starts and immediately stops, then the problem may be timing. That is,

since systemd doesn’t serialize startup initialization as done in the past, driver loading may fail if required services

have not completed their own initialization. If this is the problem, then it may be corrected simply by inserting a

delay in rc.local prior to it calling the driver’s start script (i.e., sleep for one or more seconds).

5.3.2.5. SElinux Implications

If not disabled, then SElinux may prevent boot time loading of the driver. If this is the case, then it can be verified

and corrected using SElinux related tools and utilities. First, install the necessary software using the below

command. (As necessary, replace the yum command line with that which is available for your distribution.)

yum install setroubleshoot setools

Next, run the below command to determine if SElinux is preventing the driver from loading at boot time.

sealert –a /var/log/audit/audit.log

If SElinux is preventing the driver from loading, then the output from the above command should include a

reference to the driver’s start script, the insmod command that loads the driver or the name of the driver

executable. If so, then the output should also indicate the commands necessary to resolve the issue. The following is

an example of the instructions given when the culprit is insmod, which is the start script command that loads the

driver. After running these commands reboot the system to verify boot time loading of the driver.

ausearch -c 'insmod' --raw | audit2allow -M my-insmod

semodule -X 300 -i my-insmod.pp

5.4. Verification

Follow the below steps to verify that the driver has been properly installed and started.

18AI32SSC1M, Linux Device Driver, User Manual

51

General Standards Corporation, Phone: (256) 880-8787

1. Verify that the file /proc/18ai32ssc1m is present. If the file is present then the driver is loaded and

running. Verify the file’s presence by viewing its content with the below command.

cat /proc/18ai32ssc1m

5.5. Version

The driver version number can be obtained in a variety of ways. It is reported by the driver both when the driver is

loaded and when it is unloaded (depending on kernel configuration options, this may be visible only in places such

as /var/log/messages). It is reported in the text file /proc/18ai32ssc1m while the driver is loaded and

running. The version number is also given in the file release.txt in the root install directory.

5.6. Shutdown

Shutdown the driver following the below listed steps.

NOTE: The following steps may require elevated privileges.

1. If the driver is currently loaded then issue the below command to unload the driver.

rmmod 18ai32ssc1m

2. Verify that the driver module has been unloaded by issuing the below command. The module name

18ai32ssc1m should not be in the listed output.

lsmod

18AI32SSC1M, Linux Device Driver, User Manual

52

General Standards Corporation, Phone: (256) 880-8787

6. Document Source Code Examples

The source code examples included in this document are built into a statically linkable library usable with console

applications. The purpose of these files is to verify that the documentation samples compile and to provide a library

of working sample code to assist in a user’s learning curve and application development effort.

6.1. Files

The library files are summarized in the table below.

Description Files Location

Source Files *.c, *.h … …/docsrc/

Header File 18ai32ssc1m_dsl.h …/include/

Library File 18ai32ssc1m_dsl.a …/lib/

6.2. Build

The library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the

below steps.

1. Change to the directory where the documentation sources are installed (…/docsrc/).

2. Remove existing build targets by issuing the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make

4. Rebuild the Main Library (section 3.2.1, page 16).

6.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above

listed header file in each source file using a component of the library interface. At link time include the above listed

static library file with the objects being linked with the application.

18AI32SSC1M, Linux Device Driver, User Manual

53

General Standards Corporation, Phone: (256) 880-8787

7. Utilities Source Code

The API Library installation includes a body of utility source code designed to aid in the understanding and use of

the interface calls and IOCTL services. Utility sources are also included for device independent and common,

general-purpose services. Most of the utilities are implemented as visual wrappers around the corresponding services

to facilitate structured console output for the sample applications. The utility sources are compiled and linked into

static libraries to simplify their use. An additional purpose of these utility services is to provide a library of working

sample code to assist in a user’s learning curve and application development effort.

For each API function there is a corresponding utility source file with a corresponding utility service. As an

example, for the API function ai32ssc1m_open() there is the utility file open.c containing the utility function

ai32ssc1m_open_util(). The naming pattern is as follows: API function ai32ssc1m_xxxx(), utility file

name xxxx.c, utility function ai32ssc1m_xxxx_util(). Additionally, for each IOCTL code there is a

corresponding utility source file with a corresponding utility service. As an example, for IOCTL code

AI32SSC1M_IOCTL_QUERY there is the utility file query.c containing the utility function

ai32ssc1m_query(). The naming pattern is as follows: IOCTL code AI32SSC1M_IOCTL_XXXX, utility file

name xxxx.c, utility function ai32ssc1m_xxxx().

7.1. Files

The utility files are summarized in the table below.

Description Files Location

Source Files *.c, *.h … …/utils/

Header File 18ai32ssc1m_utils.h …/include/

Library Files

18ai32ssc1m_utils.a

gsc_utils.a

os_utils.a

plx_utils.a

…/lib/

7.2. Build

The libraries are built via the Overall Make Script (section 2.7, page 13), but can be built separately following the

below steps.

1. Change to the directory where the utility sources are installed (…/utils/).

2. Remove existing build targets by issuing the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make

4. Rebuild the Main Library (section 3.2.1, page 16).

7.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above

listed header file in each source file using a component of the library interface. At link time include the above listed

static library file with the objects being linked with the application.

18AI32SSC1M, Linux Device Driver, User Manual

54

General Standards Corporation, Phone: (256) 880-8787

8. Operating Information

This section explains some basic operational procedures for using the 18AI32SSC1M. This is in no way intended to

be a comprehensive guide. This is simply to address a very few issues relating to their use.

8.1. Debugging Aids

The driver package includes the following items useful for development and/or debugging aids.

8.1.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id

example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as

follows.

Description File Location

Application id …/id/

8.1.2. Detailed Register Dump

Among the utility services provided is a function to generate a detailed listing of device registers to the console.

When used, the function is typically used to verify device configuration. In these cases, the function should be called

after complete device configuration and before the first I/O call. When intended for sending to GSC tech support,

please set the detail arguments to 1. The function arguments are as follows. The utility location is given in the

subsequent table.

Argument Description
fd This is the file descriptor used to access the device.
detail If non-zero the register dump will include details of each register field.

Description File/Name Location

Function ai32ssc1m_reg_list() Source File

Source File reg.c …/utils/

Header File 18ai32ssc1m_utils.h …/include/

Library File 18ai32ssc1m_utils.a …/lib/

8.2. Analog Input Configuration

The basic steps for Analog Input configuration are illustrated in the utility function noted below. The table also gives

the location of the source file, the header file and the corresponding library containing the executable code. The

referenced files are included via the Main Header and Main Library.

Item Name/File Location

Function ai32ssc1m_config_ai() Source File

Source File config_ai.c …/utils/

Header File 18ai32ssc1m_utils.h …/include/

Library File 18ai32ssc1m_utils.a …/lib/

8.3. Auxiliary I/O Configuration

The basic steps for Auxiliary I/O configuration are illustrated in the utility function noted below. The table also

gives the location of the source file, the header file and the corresponding library containing the executable code.

18AI32SSC1M, Linux Device Driver, User Manual

55

General Standards Corporation, Phone: (256) 880-8787

Item Name/File Location

Function ai32ssc1m_config_aux() Source File

Source File config_ai.c …/utils/

Header File 18ai32ssc1m_utils.h …/include/

Library File 18ai32ssc1m_utils.a …/lib/

8.4. Data Transfer Modes

All device I/O requests move data through intermediate driver buffers on its way between the device and application

memory. The data is processed in chunks no larger than the size of this intermediate buffer. The process used to

perform this transfer is according to the I/O mode selection. Movement of data between the application buffers and

the intermediate driver buffers is performed by the kernel.

8.4.1. PIO - Programmed I/O

In PIO mode the driver reads data by repetitive registers reads from the input data buffer register until either the

request is satisfied, or the I/O timeout expires, whichever occurs first.

8.4.2. BMDMA - Block Mode DMA

For Block Mode DMA the driver initiates DMA transfers only after a sufficient volume of data has been received

into the input buffer. In this mode the volume is sufficient when the input buffer content satisfies the request or

when it meets or exceeds the threshold value. After that amount of data is in the input buffer the driver initiates a

DMA then sleeps until the DMA Done interrupt is received. Using this DMA mode, a user request typically consists

of numerous individual DMA transfers.

8.4.3. DMDMA - Demand Mode DMA

This DMA mode is similar to the block mode, except that the transfer is initiated immediately. Here however, the

actual movement of data occurs as the data becomes available in the buffer instead of after it has been accumulated.

Using this DMA mode, a user request typically consists of a single individual DMA transfer.

18AI32SSC1M, Linux Device Driver, User Manual

56

General Standards Corporation, Phone: (256) 880-8787

9. Sample Applications

The driver archive includes a variety of sample and test applications located under the samples subdirectory.

While they are provided without support and without any external documentation, any problems reported will be

addressed as time permits. The applications are command line based and produce text output for display on a

console. All of the applications are built via the Overall Make Script (section 2.7, page 13), but each may be built

individually by changing to its respective directory and issuing the commands “make clean” and “make”. The

initial output from each application includes information on its supported command line arguments. The following

gives a brief overview of each application.

9.1. id - Identify Board - …/id/

This application reports detailed board identification information. This can be used with tech support to help identify

as much technical information about the board as possible from software.

9.2. regs - Register Access - …/regs/

This application provides menu based interactive access to the board’s registers, and reports other pertinent

information to the console.

9.3. rxrate - Receive Rate - …/rxrate/

This application configures the board for its highest ADC sample rate then reads the input as fast as possible. The

purpose is to measure the peak sustainable input rate for the host, per the provided command line arguments.

9.4. savedata - Save Acquired Data - …/savedata/

This application configures the board for a modest sample rate, reads a megabyte of data, then saves the data to a

hex file.

9.5. sbtest - Single Board Test - …/sbtest/

This application performs functional testing of the driver and a user specified board, at least to the extent possible

with just a single board and no additional equipment.

9.6. signals - Digital Signals - …/signals/

This application configures the board to drive the digital output signals for a user specified period of time. This is

done to facilitate setup of test equipment to capture those signals during actual use.

18AI32SSC1M, Linux Device Driver, User Manual

57

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

October 7, 2024
Updated to version 2.8.111.50.0. Minor editorial changes. Updated the kernel support table.

Removed the “util_” prefix from the utility sources.

August 24, 2023

Updated to version 2.7.104.47.0. Updated information on the main library and its use.

Updated the kernel support table. Added section on environment variables. Updated the

information for the open and close calls. Numerous minor editorial changes. Updated the

description of the Input Buffer Clear service. Updated the description of the Autocalibration

All service. Added the Autocal Status IOCTL service. Renamed all Auto_Calibration

content to Autocal. Renamed all Auto_Cal_Bg content to Autocal_Bg. Reorganized content

of the Operating Information section.

March 17, 2022 Updated to version 2.6.97.38.1. Corrected information on the autocalibration service.

March 16, 2022 Updated to version 2.6.97.38.0. Added information on autocalibration failure status.

January 17, 2022
Updated to version 2.5.96.38.0. Expanded automatic startup information. Minor editorial

updates. Updated the kernel support table. Updated the read sample code.

August 24, 2020

Updated to version 2.4.91.32.0. Updated the kernel support table. Minor editorial

corrections. Added a licensing subsection. Added WAIT_EVENT note. Expanded

automatic startup information.

June 25, 2019 Updated to version 2.3.87.28.1. Corrected some cross references.

June 24, 2019
Updated to version 2.3.87.28.0. Updated the kernel support table. Minor editorial changes.

Some document reorganization.

November 20, 2018

Updated to version 2.2.81.26.0. Updated the inside cover page. Updated the CPU and

kernel support section. Minor editorial changes. Updated Block Mode DMA macro and

associated information. Added services to access the Pretrigger count. Added services to

access the Scan Marker value. Added support for the External Clock Divisor. Removed the

AI32SSC1M_IOCTL_PRETRIG_DELAY service as it was diagnostic only. Document

reorganization.

December 2, 2016

Updated to version 2.1.68.18.0. Removed the built field from the /proc/ file. Updated

the kernel support table. Updated the usage of the Wait Event timeout_ms field. Updated

material on the open call. Added open access mode descriptions. Added support for infinite

I/O timeouts. Added a section for general operating information. Made various

miscellaneous updates. Some document reorganization.

September 15, 2015 Updated to version 2.0.60.8.0.

July 30, 2015
Updated to version 2.0.59.7.0. Updated the device node name to include a period before the

device index. Removed double underscore that prefaced various data types.

February 28, 2014 Updated to version 1.7.52.0. Updated the kernel support data.

January 8, 2014 Updated to version 1.6.51.0. Updated the kernel support data.

November 7, 2013 Updated to version 1.6.48.0.

July 17, 2013 Updated to version 1.6.45.0. Updated the kernel support data.

July 20, 2012
Updated to version 1.6.39.0. Added the signals application. Changed rx_rate to

rxrate. Updated the kernel support data.

March 26, 2012 Updated to version 1.5.36.0.

December 20, 2011 Updated to version 1.5.34.0.

November 1, 2011

Updated to version 1.4.31.0. Various editorial changes. Removed the IRQ_ENABLE,

IRQ0_STS and IRQ1_STS IOCTL services. Updated the CPU and Kernel Support

information. Updated the comments for the Initialize IOCTL service. Changed the spelling

of various Autocalibration related software items.

December 29, 2009 Updated to version 1.3.13.0.

December 28, 2009 Updated to version 1.2.13.0.

December 22, 2009 Updated to version 1.2.12.0. Added Pretrigger services and a few new registers.

October 15, 2009
Updated to version 1.1.10.0. Added the voltage range query option. Expanded voltage

range selection options.

March 27, 2009 Initial release.

18AI32SSC1M, Linux Device Driver, User Manual

58

General Standards Corporation, Phone: (256) 880-8787

