16A016

16-Bit, 16 Channel High-Speed Analog Output Board

All Form Factors
...-16A016/FLV

Linux Device Driver
And API Library
User Manual

Manual Revision: February 6, 2025
Driver Release Version 3.12.111.50.0

General Standards Corporation
8302A Whitesburg Drive
Huntsville, AL 35802
Phone: (256) 880-8787
Fax: (256) 880-8788
URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

16A016 Linux Device Driver User Manual

Preface

Copyright © 2003-2025, General Standards Corporation
Additional copies of this manual or other literature may be obtained from:

General Standards Corporation
8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or
software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Although extensive editing and reviews are performed before release, General Standards Corporation assumes no
responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are
made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this
documentation.

General Standards Corporation does not assume any liability arising out of the application or use of
documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or
any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or
errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,
software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.
GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

2
General Standards Corporation, Phone: (256) 880-8787

http://www.generalstandards.com/
mailto:sales@generalstandards.com

16A016 Linux Device Driver User Manual

Table of Contents

O]« 0T [8 Tt { o] o 8
L1 PUIOSE ..ttt bbbttt e R R R R R R R R R R Rt 8
12, AACTONYIMIS ..ttt bbb b h kbt R e R AR b e bbbt e R e R R Rt r R bRt 8
T B L T 1 1o LTS 8
1.4, SOTEWATE OVEIVIBW ... eveiieiietiieeettt ettt e ettt e e e ettt e e ettt e e s bt e e s s b bt e e s aabeseesabaeeesesbeeeseabeasesbeeaesssbesessabbaeesasbanessbbnneas 8

1.4.1. BaSIiC SOTtWAIE ATCNITECTUIEveeivii ettt ettt e s st e e st e s st e s s bt e s sbb e s sbbessabessabesssbessrbessneeens 8
O N o B I] U RSO 9
IR G T B 1A (ot I | V7T 9
I 210 1V = el @AV Y/ <L 9
ST R) (e T (=T Y/ =] T | R 9
O T Tt o TS 1 T OSSR 10

2 N 1Sy v 1| = o [0 o R 11

2.1. CPU and KErNEl SUPPOIT ..ottt st et ste e st e be e be e tearaesreesreesteeseeeneeenes 11
2.1.1. 32-bit Support Under 64-bit ENVIFONMENTScviiiiiicciecceeceee ettt ae e 12
2.2. THe IPrOCI FIle SYSTEIM ..ottt et e et e st e s te e te e be e teaseesreesreesteenteenneenes 12
2R TR 1 1T I 1) SRR 12
P B T = Tox 0]] 1 U (1 SRS R 12
ST 1 a1S) 7= 11 =1 o) TR 13
ST R =T 1010121 KPR TP 13
P B @Y = 1LY = I ol o SRS 13
2.8. ENVIFONMENT VATTADIES ...ttt ettt et e e ettt e e e ettt e e s et e e e s st e e e s sabeeeeseabeeessabeeessaseeeesaseees 14
2.8.1. GSC_API_COMP_FLAGSvveeeeeeeeeeeeeeeeesseseeeseseessee s sess s es st senna s 14
2.8.2. GSC_API_LINK _FLAGSootveeeeeeeeeeeieeeeeesseseeeseeseesse s sess s sess s esas st esass s ss s s 14
2.8.3. GSC _LIB _COMP_FLAGS ...ttt ettt ettt sttt ettt st e st e et e e ba e s e et e besbesbesteeneesseretenren 14
2.8.4. GSC _LIB_LINK FLAGSottt sttt sttt sttt a et st s b e st e e teeae e s e et e besbeebesteeseessereresren 15
2.8.5. GSC_APP _COMP_FLAGS ... oottt ettt sttt ettt sttt e st e et e e ae e e et e besbeebesbeeneesseretesrens 15
2.8.6. GSC_APP _LINK _FLAGS ...ttt sttt ettt sttt et st s be s te et e e ba e e et e besbesbesbeeneesseseeesren 15

I Y =T T T (= = (o= 1SR 16
I AV, F= UL 1=T= (o [Tl | TSP 16
3.2, MAIN LIDFANY FIIE oottt bbbttt bt b bbbttt b e enes 16

TR I = YU T 1 o TSP ORRTRRRT 16
3.2.2. SYSLEIM LIDEAIIES ...ttt bbbt bt bt et s e st e b et sbe bt b e e bt e st e reneenre s 17
3.2.3. Shared Object Script: Build the Main Libraries as Shared Object FileS..........cccoeiiiiniiiiiiiiiceeee 17

A APT LIDTATY ot b bbbt b et b e bbb 18
T] 1= TRRRTTTRR 18
Ry YU 11 (o OO RSP RRR 18
O T o] =1 VA U L OO OSSPSR 18
|V, - Tod o LTRSS 18

3

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

O (1O - Y ot OSSOSO UP 19
A.4.2. REGISTEIS ...ttt ettt ettt bbb bk b h b b h £ E R R R R R AR R R bR Rt bbb 19
T D - | = Nl 1Y/ o[- PP P PP OPRPRO 19
4.8, FUNCLIONS. ...ttt etttk bt et b et E e bbb bRt b b e Rt E bRt e bbb s b et et e bt et ane 19
e Yo T o [0 1T (S 20
3 Yo K T 1411 S 20
TG R Vo T T ot 4 [RS 21
T Yo T o o T=1 (RS 22
4.6.5. B0LE_TRAU()veveuereeereetit ettt ettt etttk bbbkt b bR E bR R R bbbt R e b 23
4.6.6. B0LE_WITTE() 1.veveueieieeeiitit etttk b bbb b b s bbb bbbt b bbb 24
O 1O T O I =T Yot OSSP RS U PR 25
4.7.1. AOLE _TOCTL_AUTOCAL ..ottt ettt ettt sa bt e st e be st et e te st et e seste st ateseesrans 25
4.7.2. AOL6_IOCTL_AUTOCAL_STATUS ..ottt ettt sttt ne st s e 25
4.7.3. AO16_IOCTL_BUFFER _CLEAR........cioiiiieeieeeeeeeeeeesiieseeeeseesiesaes s ss s ssss s ssanssss s s s s 25
4.7.4. AOL16_IOCTL_BUFFER _IMODEccoiiiiiiiiisiseiei sttt sttt sttt 26
4.7.5. AO16_IOCTL_BUFFER_OVER_DATA ...ttt sttt sttt 26
4.7.6. AO16_IOCTL_BUFFER_OVER_FRAMEccciiiiiiiieieis ettt s 26
4.7.7. AOL6_IOCTL_BUFFER _SIZEcooiiiiiiieeis ettt 27
4.7.8. AO16_IOCTL_BUFFER _STATUS ...ttt sttt 27
4.7.9. AO16_IOCTL_BURST_ENABLEccoitiiiitiiisees ettt 28
4.7.10. AO16_IOCTL_BURST_READYcoorriieiieeiineeiesiesiesiiessesssiessisssessssssssesssessssssssssssnssssssssssassannes 28
4.7.11. AO16_IOCTL _BURST _TRIG_SRCorvioriieeiereeeeesiieeieseiiesiiesisseesssessiosssessssssssassssesssssnssssa s 28
4.7.12. AO16_IOCTL_BURST _TRIGGER........cooosvireeeeeeeieeeieeioseeiesiiesisssessssssesssesssssssssssssnsssssnssnsansennes 29
4.7.13. AO16 IOCTL_CBL_ISO_CLOCK 1O ..c.iiciiiiiiitiieiisesiee sttt sttt sae s 29
4.7.14. AO16_IOCTL_CBL_ISO DAC_CLK_OUTirvieeiieeeeieeiiesieeseeeseeesiesssesesessisssssssssesssssssssssnnannes 29
4.7.15. AOL16_IOCTL_CBL_ISO_TRIG_OUT ..coiiiiiiiiiiiieisesieese ettt st 29
4.7.16. AOL16_IOCTL_CBL_POL_CLOCK _IO....cciitiiiiiiiieisienieise ettt sttt s ene 30
4.7.17. AO16_IOCTL_CBL_POL_DAC_CLK _OUT ..ottt sttt 30
4.7.18. AOL16_IOCTL_CBL_POL_TRIG_IN ...itiiiiiiiiiiieieisesiees ettt sttt 30
4.7.19. AOL16_IOCTL_CBL_POL_TRIG_OUT ...occiiiiiiiieieiieieese ettt st s 31
4.7.20. AOLE _IOCTL_CHANNEL_SEL....ccuiiiiiiiiiiiiiieisieieis ettt sttt et 31
4.7.21. AO16_IOCTL_CLOCK _ENABLEovvviieeeeeeeeeeeeeeeeseeeeseeeseeeseesassseseeesa s snanssnss e snnannannes 31
4.7.22. AO16_IOCTL_CLOCK _READYvvoieeerieeeereieeeeeeieseiseseessssaesssssssssssssssssssasssnsssssnssssanssnnes 32
4.7.23. AOL16 IOCTL_CLOCK REF_SRC ...ttt sttt sttt 32
4.7.24. AOLE IOCTL_CLOCK SRC....cciiiiiiiiiiieitiisiet sttt ettt a et te st et e te b et e seste s enesresens 32
4.7.25. AOLE IOCTL_CLOCK SWociiiiiiiiitiieit ettt ettt sttt te st be bt beste s enente s e 33
4.7.26. AO16_IOCTL _DATA _FORMATovvvieeerieeeeeeeeeeeeeeeeseeee e seess e es s s s s s sns e e ssanninnes 33
4.7.27. AOL6_IOCTL_GROUND_SENSEcceiiiiiiiiiiteieisesieis ettt sttt sae et ne st e e 33
4.7.28. AOLE TOCTL_INITIALIZEociiiieieieeieee ettt bbbt 33
4.7.29. AOLE TOCTL_IRQ _SEL ..oiuiiiiiiiiiiiieiisieiee sttt ettt b ettt re st re st ene 34
4.7.30. AOLE_IOCTL_LOAD _READY ...ooiiiiiiieiiiesieise ettt ettt sttt bbbt ne bt sbe e e 34
4.7.31. AOL16_IOCTL_LOAD _REQUESTcctittiiiirieieiisieieiestesiesesie ettt sttt s e se st nseseseenens 35
4.7.32. A0L6_TOCTL _NCLKoorvoieieeeeieeeeeeeeeeeeseeseeeseesees e es s en s ss s ena s s ens s s nnsenes 35
e X N @ X G T [T3 I V1 N I T 35
4.7.34. AO16_TOCTL_OUTPUT _FILTER ...ttt st te e ene et e ste e e e neeaneeanees 35
4.7.35. AO16_IOCTL_OUTPUT IMODEcovoovereeeeereeeesseeeseesseeeseiesesssessssssssessa s ssssssnss s nssnsansennes 36
4.7.36. AO16_IOCTL_QUERYovrviriieeeeeeeesseesieseeesseesses s saes s es s es s es s nsses s s s nnaanes 36
4.7.37. AOL6_TOCTL _RANGEovviveeeeeeeeeeeeeeeeseeeeeeeseeeees e es s ss s es s en s ns s s s anianes 38
4.7.38. AOLE _IOCTL_REG_IMODccocoiiiiiiiiiiiieiisiesie ettt sttt sttt bt be st sesee s e 39
4.7.39. AOLE _IOCTL_REG_READ ..ottt ettt sttt st te st re e ane 39
4.7.40. AOLE _IOCTL_REG_WRITEciiiieiiiieieiiseie sttt bbbttt ens 40
4.7.41. AOLE IOCTL_TX IO _ABORT ..ottt ettt sttt bt e bt nenee s e 40
4.7.42. AOLE _IOCTL_TX IO _IMODEcoooiiiiiiiciisieieis ettt ettt sttt ens 40
4.7.43. AOL16_IOCTL_TX_IO_OVER_DATA ..ottt sttt sttt ens 41

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

4.7.44,. AOL16_IOCTL_TX IO _OVER_FRAMEcooiitiiieiitieis ettt sttt 41
4.7.45. AOL16_IOCTL_TX IO _TIMEOUT ...ciiiiiiiiiiicisieei ettt sttt sttt ne st e 42
4.7.46. AOLE_IOCTL_WAIT_CANCEL ..ottt sttt 42
4.7.47. AOLE_IOCTL_WAIT_EVENT .ottt bbbttt 43
4.7.48. AOLE_IOCTL_WAIT_STATUS ..ottt bbb bbbt 45
4.7.49. AOL16_IOCTL_WATCHDOG_ENABLE ..ottt 45
4.7.50. AO16_IOCTL_WATCHDOG_OUTPUT ..ottt st s 46
4.7.51. AOLE _IOCTL_XCVR_TYPE ...ttt ettt bttt ene 46

Tl a1 B 1Y TP OPPSRPR 47
TN | L= OSSOSO 47
ST =0T [OSSPSR 47
TG T =1 o (o I PSRV PP PTRTRR PRI 47
5.3.1. Manual Driver Startup PrOCEAUIEScoiiiiiiieieieie sttt sttt ettt sttt e bbb bbbt e be b sne s 47
5.3.2. Automatic Driver Startup PrOCEAUIES.........viie ittt e s s et e e et e staeste e teesaeareeanees 48

5.4, WEEITICALION ...t bttt bt bbbt h e b e bt bt bt b e e bt et e b e eb e b e s bt eb e e beene e e nnenas 50
TS T =1 57T] o PSSR 50

Eo TG T 11 o [0 o PSSR 50
6. Document Source Code EXamMPIES.......cccooiiiieiiiiiiiee e 51
B. L. IS -ttt E e E bR R R Ao bR R e Rt R £ R e AR b e Rt bbbt e e e nr et 51
B.2. BUIIO ...ttt bbb b bbb R R Rt R R Rt Rt R R bRt R bR et et n bt enes 51
LT I o =YV L SRS 51
7. UTHHTIES SOUICE COUE.uviiieiiiie ettt ettt ettt te e st e et e e sae e st e e s beesaeesaeesnbeesrneenneeas 52
T L RIS ¢t h b h b E R E £ ARt R R e R R £ e R £ oAb e b e nh bbbt e be e e e nnens 52
2 =101 [OSSPSR 52
S T T o =YV - TSRS 52
8. Operating INTOMMATIONooiiiiiiiiee bbbt 53
8.1, DEDUGGING ATTS ...ttt b bbb bbb bbbt bbb bbb bbb bbbttt e 53
8.1.1. DeViICe IAENLIFICALIONc.veiiiiie ittt sttt e e e s e s e seesaeseesbesseeneeseeneeeeneeas 53
8.1.2. Detailed REGISIEr DUMIP ..ottt bbbt b bbb bbb n et nens 53

8.2. Analog OULPUL CoNfIGUIALION........coiiie ettt e e be e e re e s e e steesreenneenes 53
LRI 17 W N =T 1S) (=T 1Y/ oo L= OSSPSR 53
8.3.1. P10 - Programmed 1O ..ottt bbbt bttt be b bbbt ae e 54
8.3.2. BMDMA - BIOCK MOTE DIMA ...ttt ettt ettt es et ne b nnens 54
8.3.3. DMDMA - Demand MOde DIMAottt ettt st e et e e e st e e steesbe e teeseesreeannas 54

8.4, OULPUL OVEITIOW EFTOFS. ..o it e bbbttt esb e bbbt e b e et e ne e b 54
ST I T 7= @ L =T 0PRSS 54
SR o 11 Lo @ Y=Y § 01 PSS 54
84,3, RECOVETY ACHION ...ttt ettt b bbbtk b e bt bbbt b ket s bt b e et et b et et st b et enes 55

9. SAMPIE APPHICALIONS ...t ra e 56
9.1. 80Ut - ANAIOG OULPUL = coc/AOUL/ ...ttt nb s 56

5

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

9.2. clockout - CloCK OULPUL - ..o/CLOCKOUL/...........oiiiiiiiiitiitiice e 56
9.3. fsamp - SAMPIE RALE - c.o/FSAIP/c.ooviiiiiieiiiice bbbttt 56
I T B o[- (YA =0T o A 5 VSR 56
9.5. mcao - Multi-Channel Analog OULPUL - .../IICAO/cc.eoveieiiiieiieeeie ettt sttt e e sre e 56
0.6. TEUS - REGISTEN ACCESS = 0 a/T@EZS/ .veveriitiiierietiite ettt sttt ettt st ekttt b et e bttt b et e b en e st esenbeeenes 56
9.7. sbtest - SiNgle BOArd TESt - .../SDEES/cveieieiiiiie st e sttt sa e be e reene e b e snenrenrs 56
9.8. tXrate - TranSMIt RALE - .../tXFALE/c.ooveveieiieiieiiite ettt bttt ettt bbb e st neenes 56
DOCUMENT HISTOTY ...ttt bbbttt ettt nb e 57
6

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

Table of Figures

Figure 1 Basic architeCtural repreSENTALION.c.civiiieieiesise e eee ettt e e te e ra e e e e e aesresbesreene e e enseseenrenrs

7
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

1. Introduction

1.1. Purpose

The purpose of this document is to describe the interface to the 16A016 API Library and to the underlying Linux
device driver. The API Library software provides the interface between "Application Software" and the device
driver. The driver software provides the interface between the API Library and the actual 16A016 hardware. The

API Library and driver interfaces are based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms | Description

API Application Programming Interface
BMDMA | Block Mode DMA

DAC Digital-to-Analog Converter

DMA Direct Memory Access

DMDMA | Demand Mode DMA

GSC General Standards Corporation

PCI Peripheral Component Interconnect
PCle PCI Express

PIO Programmed 1/0O

PMC PCI Mezzanine Card

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

This is a shortcut representation of the 16 A016 installation directory or any of its subdirectories.
16A016 This is used as a general reference to any device supported by this driver.

API Library | This is a library that provides application-level access to 16A016 hardware.

Application | This is a user mode process, which runs in user space with user mode privileges.

Driver This is the 16 A016 device driver, which runs in kernel space with kernel mode privileges.
Library This is usually a general reference to the API Library.

1.4. Software Overview

1.4.1. Basic Software Architecture

This section describes the general architecture for the basic components that comprise 16A016 applications. The

overall architecture is illustrated in Figure 1 below.

8

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

16A016
Application a016_init()
a0l16_open()
¢ a0l6_close()
a0l6_ioctl()
Application Level 16A.016 -«— lib16a0l16_api.so aol6_read()
API Library -
aol6_write()
Kernel Level 16A016 16a016.ko or /proc/16a016 Informational
Device Driver 16a016.0 /dev/16a016.0 Device 0
/dev/16a016.1 Device 1
v /dev/16a016.X Device X
Hardware Level L
Boards

Figure 1 Basic architectural representation.
1.4.2. API Library

The primary means of accessing 16A016 boards is via the 16A016 API Library. This library forms a layer between
the application and the driver. Additional information is given in section 4 (page 18). With the library, applications
are able to open and close a device and, while open, perform I/O control and read and write operations.

1.4.3. Device Driver

The device driver is the host software that provides a means of communicating directly with 16A016 hardware.
The driver executes under control of the operating system and runs in Kernel Mode as a Kernel Mode device driver.
The driver is implemented as a standard dynamically loadable Linux device driver written in the C programming
language. While applications can access the driver directly without use of the API Library, it is recommended that
all access is made through the library.

1.5. Hardware Overview

The 16A016 is a 16-channel high speed analog output board. Each channel has a dedicated D/A converter that
provides 16-bits of resolution at up to 450K samples per second. Working together the active channels can operate at
an aggregate rate of up to 7.2M samples per second. An on-board FIFO of 256K samples buffers streaming data
between the PCI interface and the cable interface. The FIFO can also be used for pattern generation by recycling
data written to the FIFO. The PCI interface is compliant with PCI Revision 2.3, operates at up to 66MHz and
supports universal signaling (3.3V or 5V). The cable interface output voltage range is selectable as +10 Volts, £5
Volts, 2.5 Volts or £1.25 Volts. The analog outputs support 3-wire balanced differential operation or, optionally, 2-
wire single ended operation. The clocking source can be either the on-board clock or an external clock. The board
also supports multi-board synchronization.

1.6. Reference Material

The following reference material may be of particular benefit in using the 16A016. The specifications provide the
information necessary for an in depth understanding of the specialized features implemented on this board.

e The applicable 16A016 User Manual from General Standards Corporation.

9
General Standards Corporation, Phone: (256) 880-8787

software_architecture.vsd

16A016 Linux Device Driver User Manual

e The PCI9056 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA
Phone: 1-800-759-3735

WERB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE. txt in the root installation directory.

10
General Standards Corporation, Phone: (256) 880-8787

http://www.plxtech.com/

16A016 Linux Device Driver User Manual

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 6.x, 5.x, 4., 3., 2.6, 2.4 and 2.2 running on a PC
system with one or more x86 processors. This release of the driver supports the below listed kernels.

Kernel | Distribution
6.8.5 | Red Hat Fedora Core 40
6.5.6 | Red Hat Fedora Core 39
6.2.9 | Red Hat Fedora Core 38
6.0.7 | Red Hat Fedora Core 37

5.17.5 | Red Hat Fedora Core 36
5.14.10 | Red Hat Fedora Core 35
5.11.12 | Red Hat Fedora Core 34
5.8.15 | Red Hat Fedora Core 33
5.6.6 | Red Hat Fedora Core 32
5.3.7 | Red Hat Fedora Core 31
5.0.9 | Red Hat Fedora Core 30

4.18.16 | Red Hat Fedora Core 29
4.16.3 | Red Hat Fedora Core 28
4.13.9 | Red Hat Fedora Core 27
4.11.8 | Red Hat Fedora Core 26
4.8.6 | Red Hat Fedora Core 25
455 | Red Hat Fedora Core 24
4.2.3 | Red Hat Fedora Core 23
4.0.4 | Red Hat Fedora Core 22

3.17.4 | Red Hat Fedora Core 21
3.11.10 | Red Hat Fedora Core 20
3.9.5 | Red Hat Fedora Core 19
3.6.10 | Red Hat Fedora Core 18
3.3.4 | Red Hat Fedora Core 17
3.1.0 | Red Hat Fedora Core 16

2.6.38 | Red Hat Fedora Core 15
2.6.35 | Red Hat Fedora Core 14
2.6.33 | Red Hat Fedora Core 13
2.6.31 | Red Hat Fedora Core 12
2.6.29 | Red Hat Fedora Core 11
2.6.27 | Red Hat Fedora Core 10
2.6.25 | Red Hat Fedora Core 9
2.6.23 | Red Hat Fedora Core 8
2.6.21 | Red Hat Fedora Core 7
2.6.18 | Red Hat Fedora Core 6
2.6.15 | Red Hat Fedora Core 5
2.6.11 | Red Hat Fedora Core 4
2.6.9 | Red Hat Fedora Core 3

[2.4.18 | Red Hat 8.0 I

NOTE: Some older kernel versions are supported (the sources are maintained), but are not tested.

NOTE: While only Red Hat Fedora distributions are listed, numerous other distributions are
supported and have been tested on an as needed basis.

11
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

NOTE: The driver will have to be built before being used as it is provided in source form only.

NOTE: The driver has not been tested with a non-versioned kernel.

NOTE: The driver is designed for SMP support, but has not undergone SMP specific testing.
2.1.1. 32-bit Support Under 64-bit Environments

This driver supports 32-bit applications under 64-bit environments. The availability of this feature in the kernel
depends on a 64-bit kernel being configured to support 32-bit application compatibility. Additionally, 2.6 kernels
prior to 2.6.11 implemented 32-bit compatibility in a way that resulted in some drivers not being able to take
advantage of the feature. (In these kernels a driver’s IOCTL command codes must be globally unique. Beginning
with 2.6.11 this requirement has been lifted.) If the driver is not able to provide 32-bit support under a 64-bit kernel,
the “32-bit support” field in the /proc/16ao0l6 file will be “no”.

2.2. The /proc/ File System

While the driver is running, the text file /proc/16ao016 can be read to obtain information about the driver and the
boards it detects. Each file entry includes an entry name followed immediately by a colon, a space character, and the
entry value. Below is an example of what appears in the file, followed by descriptions of each entry.

version: 3.12.111.50
32-bit support: yes
boards: 1

models: 16A016

Entry Description

version This gives the driver version number in the form x . x.x . x.

5

This reports the driver’s support for 32-bit applications. This will be either “yes” or “no’

32-bit t . .
++ SUPPOTE | g0 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.
This gives a comma separated list of the basic model number for each board the driver
models detected. The model numbers are listed in the same order that the boards are accessed via

the API Library’s open function.

2.3. File List

This release consists of the below listed primary files. The archive content is described in following subsections.

File Description
16aol6.linux.tar.gz | This archive contains the driver, the API Library and all related files.
16aol6 linux um.pdf | Thisis a PDF version of this user manual, which is included in the archive.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory
structure is created and populated with the respective files.

Directory Description
162016/ This is the driver root directory. It contains the documentation, the Overall Make Script (section
2.7, page 13) and the below listed subdirectories.
../api/ This directory contains the API Library source files (section 3.2.3, page 17).
This directory contains the source files for the code samples given in this document (section 6,
../docsrc/
page 51).
12

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

../driver/ | This directory contains the device driver source files (section 5, page 47).

../include/ | This directory contains the header files for the various libraries.

../1ib/ This directory contains all of the libraries built from the installed sources.

This directory contains the sample application subdirectories and all of their corresponding

. 1 . .
/samples/ source files (section 9, page 56).

This directory contains the source files for the utility libraries used by the sample applications

./utils/ (section 7, page 52).

2.5. Installation

Perform installation following the below listed steps. This installs the device driver, the API Library and all related
sources and documentation.

1. Create and change to the directory where the files are to be installed, such as /usr/src/linux/drivers/.
(The path name may vary among distributions and kernel versions.)

2. Copy the archive file 16a016.1inux.tar.gz into the current directory.

3. Issue the following command to decompress and extract the files from the provided archive. This creates the
directory 16a016 in the current directory, and then copies all of the archive’s files into this new directory.

tar —-xzvf l6aol6.linux.tar.gz

2.6. Removal

Perform removal following the below listed steps. This removes the device driver, the API Library and all related
sources and documentation.

NOTE: The following steps may require elevated privileges.
1. Shutdown the driver as described in section 5.6 (page 50).

2. Change to the directory where the driver archive was installed, which may have been
/usr/src/linux/drivers/. (The path name may vary among distributions and kernel versions.)

3. Issue the below command to remove the driver archive and all of the installed driver files.
rm -rf l6aol6.linux.tar.gz 16ao0l6
4. lIssue the below command to remove all of the installed device nodes.
rm -f /dev/1l6aocl6.*
5. If the automatic startup procedure was adopted (section 5.3.2, page 48), then edit the system startup script

rc.local and remove the line that invokes the 16A016’s start script. The file rc.local should be
located in the /etc/rc.d/ directory.

2.7. Overall Make Script

An Overall Make Script is included in the root installation directory. Executing this script will perform a make for
all build targets included in the release. The script also loads the driver and copies the API Library to /usr/1ib/.
The script is named make all. Follow the below steps to perform an overall make and to load the driver.

NOTE: The following steps may require elevated privileges.

13
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

1. Change to the driver root directory (.../16a016/).

2. Remove existing build targets using the below command. This does not unload the driver.
./make all clean

3. Issue the following command to make all archive targets and to load the driver.

./make all

2.8. Environment Variables

Some build environments may require compiler or linker options not present in the provided make files. To
accommodate local environment specific requirements, the provided make files incorporate support for the
following set of GSC specific environment variables.

2.8.1. GSC_API_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the API Library. The compiler used by the API Library make file is “gcc”. The content of this environment variable
is noted in the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in
the table refers to the contents of the environment variable. This environment variable has no effect on compiling
any other distributed source files or linking of any object files.

. == Compiling: init.c
Undefined o s L
== Compiling: ioctl.c
or Empty s
== Compiling: open.c
. == Compiling: init.c (added '"xxx')
Bg{'gﬁ atnd == Compiling: ioctl.c (added 'xxx')
PY | == Compiling: open.c (added 'xxx')

2.8.2. GSC_API_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the API
Library. The linker used by the API Library make file is “1d”. The content of this environment variable is noted in
the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in the table
refers to the contents of the environment variable. This environment variable has no effect on compiling of any
source files or linking of any other object files.

Undefined | ____ . . _ . , , .
or Empty Linking: ../lib/libl6aol6 api.so

Definedand | ____ , . . ' :
Not Empty | ~ Linking: ../lib/libl6aol6 api.so (added 'xxx'")

2.8.3. GSC_LIB_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the utility libraries. The compiler used by the utility library make files is “gcc”. The content of this environment
variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The
“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on
compiling any other distributed source files or linking of any object files.

14
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

. == Compiling: close.c
L‘Jrngf:lmted == Compiling: init.c
Pty == Compiling: ioctl.c
== Compiling: close.c added ' !
Definedand | __ p-l l g- C (Y XX}?)
Not Empt == Compiling: init.c (added 'xxx')
P | Compiling: ioctl.c (added '"xxx'")

2.8.4. GSC_LIB_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the
utility libraries. The linker used by the utility library make files is “1d”. The content of this environment variable is
noted in the make files’ output to the screen. The table below shows a portion of the screen output. The “xxx” in the
table refers to the contents of the environment variable. This environment variable has no effect on compiling of any
source files or linking of any other object files.

Undefined | ____ 1, king: ../1ib/16a016 utils.a

or Empty _

Definedand | ____ . . . , . : '
Not Empty Linking: ../lib/16ao0l6 utils.a (added 'xxx')

2.8.5. GSC_APP_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the sample applications. The compiler used by the sample application make files is “gcc”. The content of this
environment variable is noted in the make files’ output to the screen. The table below shows a portion of the screen
output. The “xxx” in the table refers to the contents of the environment variable. This environment variable has no
effect on compiling any other distributed source files or linking of any object files.

Undefined == Compiling: main.c

or Empty == Compiling: perform.c

Defined and | == Compiling: main.c (added "xxx')

Not Empty | == Compiling: perform.c (added 'xxx')

2.8.6. GSC_APP_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the
sample applications. The linker used by the sample application make files is “gcc”. The content of this environment
variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The
“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on
compiling of any source files or linking of any other object files.

Undefined L 1] o

or Empty = Linking: id

Definedand | ____ ' :

Not Empty Linking: id (added 'xxx')
15

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

3. Main Interface Files

This section gives general information on the suggested device interface files to use when developing 16A016
based applications.

3.1. Main Header File

Throughout the remainder of this document references are made to various header files included as part of the
16A016 driver installation. For ease of use it is suggested that applications include only the single header file shown
below rather than individually including those headers identified separately later in this document. Including this
header file pulls in all other pertinent 16A016 specific header files. Therefore, sources may include only this one
16A016 header and make files may reference only this one 16A016 include directory.

Description | File Location
Header File | 16a0l16 main.h | ../include/

3.2. Main Library File

Throughout the remainder of this document references are made to various statically linkable libraries included as
part of the 16A016 driver installation. For ease of use it is suggested that applications link only the single library
file shown below rather than individually linking those libraries identified separately later in this document. Linking
this library file pulls in all other static libraries included with the driver. Therefore, make files may reference only
this one 16A016 static library and only this one 16A016 library directory.

Description | File Location
l6aol6 main.a
1l6acl6 multi.a ~/1ib/

Static Library

NOTE: For applications using the 16A016 and no other GSC devices, link the
16aol6 main.a library. For applications using multiple GSC device types, link the
xxxx_main.a library for one of the devices and the xxxx multi.a library for the others.
Linking multiple xxxx main.a libraries may likely produce link errors due to duplicate
symbols being defined. While it may make little or no difference, it is recommended that one
choose the xxxx main.a library from the driver with the largest number in positions three
(x.x.X.x.X) and/or four (x.x.x.X.x) in the driver release version number.

NOTE: The 16A016 API Library is implemented as a shared library and is thus not linked with
the 16A016 Main Library. The APl Library must be linked with applications by adding the
argument -116ao016_api to the linker command line.

3.2.1. Build

The main library is built via the Overall Make Script (section 2.7, page 13). However, the main library can be built
separately following the below steps.

1. Change to the directory where the main library resides (.../1ib/).
2. Remove existing build targets using the below command.
make clean

3. Build the main library by issuing the below command.

make

16
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

3.2.2. System Libraries

In addition to linking the static library named above, as well as the API Library shared object file, applications may
need to also link in additional system libraries as noted below.

Library gcc Link Flag
Math -1m

POSIX Thread | -1pthread
Real Time -1rt

3.2.3. Shared Object Script: Build the Main Libraries as Shared Object Files

The main libraries built via the Overall Make Script (section 2.7, page 13) are static library files. Some applications
however, require that the Main Libraries be accessed as shared object files. Generating shared object files require
that all of the static libraries be recompiled for this purpose and linked as .so files. This is done using the Shared
Object Script named below. When run, the script invokes the Overall Make Script to clean all existing build targets,
deletes the two shared object files named below, if they exist, defines an environment variable used by all of the
static library make files, invokes the Overall Make Script again to rebuild all existing build targets then invokes
make on the library make file (.../1ib/makefile) to link the shared object files. The required manual steps are as
follows.

1. Change to the directory where the main library files reside (.../1ib/).
2. Execute the below script.
./static_to shared.sh
Running the above-named Shared Object Script produces the files given in the table below. These shared object files

fulfill the same purpose as the similarly named static libraries as described in the note under section 3.2 above. Refer
to that note when selecting which shared object file to use.

Description File Location
libl6aol6 main.so
Shared Object Files | 1ib16a016_multi.so | ../1lib/
libl6aocl6 all.so ¥

+ This library includes all generated libraries, including the API Library shared object file content.

The shared object files can be linked via two different methods. In the first method, the application linker command
line can explicitly name the file in the same manner as is done were it a static library. This is the method used by the
sample applications, all of which use the 16A016 API Library, which itself is a shared object file. This file is also
found in the .../ 1ib/ subdirectory. In the second method, the .so files are copied to the /usr/1ib/ subdirectory
and are referenced on the application’s liker command line as given in the table below.

Library gce Link Flag
libl6aol6 main.so -116a0l6 main
1ibl6aol6 multi.so | -116a016 multi
libl6aol6 all.sof | -1l6aol6_all

+ This library includes all generated libraries, including the API Library shared object file content.

17
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

4. API Library

The 16A016 API Library is the software interface between user applications and the 16A016 device driver. The
interface is accessed by including the header file 16a016_api.h.

NOTE: Contact General Standards Corporation if additional library functionality is required.
4.1. Files

The library files are summarized in the table below.

Description | File Location
Source Files | *.c, *.h/api/
Header File | 16a0l6 api.h ../include/
. . . , ../1ib/
Library File | 1ibl6aol6 api.so Jusr/1ib/

+ The shared object library is automatically copied to /usr/1ib/ when it is built.

4.2. Build

The API Library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the
below steps.

NOTE: The following steps may require elevated privileges.
1. Change to the directory where the library sources are installed (.../api/).
2. Remove existing build targets using the below command.
make clean

3. Compile the source files and build the library by issuing the below command. This step copies the API Library
fileto /usr/1ib/.

make

4.3. Library Use

The library is used at application compile time, at application link time and at application run time. At compile time
include the below listed header file in each source file using a component of the Library interface. Also, edit the
include file search path to locate the header file in the below listed directory. At link time the Library’s shared object
file is linked via the linker command line. This can be done by naming the .so file explicitly or by adding the below
linker command line argument. At run time the library is found in the directory /usr/1ib/. (The shared object
file is automatically copied to /usr/1ib/ when itis built.)

Description File Location Linker Argument
Header File 16ac0l6 api.h ../include/

./1ib/
Shared Object Library | 11b16ac16_api.so /usr/lib/ -116ao0l6 api

4.4. Macros

The API Library and driver interfaces include the following macros, which are defined in 16a016.h.

18
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

4.4.1. 10CTL Services

The IOCTL macros are documented in section 4.7 (page 25).

4.4.2. Registers

The following gives the complete set of 16A016 registers.

4.4.2.1. GSC Registers

The following table gives the complete set of GSC specific 16A016 registers. Please note that the set of registers
supported by any given device may vary according to model and firmware version. For the set of supported registers

and their detailed definitions refer to the appropriate 16A016 User Manual.

NOTE: Refer to the output of the “id” sample application (.../1d/) for a complete list of the
registers supported by the device being accessed.

Macro Description

AOl6_GSC_ACR | Adjustable Clock Register (ACR)
AOl6_GSC_AVR | Autocalibration Values Register (AVR)
AOl6 _GSC BCR | Board Control Register (BCR)
AOl6_GSC_BOR | Buffer Operations Register (BOR)
AOl6_GSC_CSR | Channel Selection Register (CSR)
AOl6_GSC_FOR | Firmware Options Register (FOR)
AOl6_GSC_ODBR | Output Data Buffer Register (ODBR)
AOl6_GSC_SRR | Sample Rate Register (SRR)

4.4.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of the PCI
register identifiers refer to the driver header file gsc pci9056.h, which is automatically included via
l6aol6 _api.h.

4.4.2.3. PLX Feature Set Registers

Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX
register identifiers refer to the driver header file gsc pci9056.h, which is automatically included via
l6aol6_api.h.

4.5. Data Types

The data types used by the API Library are described with the IOCTL services with which they are used. For
additional information refer to section 4.7 (page 25).

4.6. Functions

The interface includes the following functions. The return values reflect the completion status of the requested
operation. A return value less than zero always reflects an error condition. The table below summarizes the error
status values. For the I/O function, read, non-negative return values reflect the number of bytes transferred between
the application and the interface. A value equal to the requested transfer size indicates complete success. Return
values less than the requested transfer size indicate that the 1/O timeout expired. For the other API function calls a
return value of zero indicates success.

19
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

Return Value | Description
<0 This is the value “ (-errno)” (see errno.h).

4.6.1. a016_close()

This function is the entry point to close a connection made via the API’s open call (section 4.6.4, page 22). The
device is put in an initialized state before this call returns.

Prototype

int aol6 _close(int £d);

Argument | Description

fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
Return Value | Description
0 The operation succeeded.
<0 An error occurred. See error value description above.
Example

#include <stdio.h>
#include "1l6a0l6 _dsl.h"
int aol6 _close dsl(int £fd)
{

int errs;

int ret;

ret = aol6 _close(fd);

if (ret)
printf ("ERROR: aol6 close() returned %d\n", ret);

errs =ret 2 1 : 0;
return(errs) ;

}

4.6.2. 2016 _init()

This function is the entry point to initializing the 16A016 API Library and must be the first call into the Library.
This function may be called more than once, but only the first successful call actually initializes the library.
Subsequent calls perform no operation at all. All other API calls return a failure status when the API Library is not
initialized.

Prototype

int aol6_init(void);

Return Value | Description

0 The operation succeeded.

<0 An error occurred. See error value description above.
Example

20
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

#include <stdio.h>
#include "l16aol6 _dsl.h"
int aol6_init dsl(void)
{

int errs;

int ret;

ret = aol6 _init();

if (ret)
printf ("ERROR: aol6 init () returned %d\n", ret);

errs =ret 21 : 0;
return(errs) ;
}
4.6.3. a016_ioctl()
This function is the entry point to performing setup and control operations on a 16A016. This function should only
be called after a successful open of the respective device. The specific operation performed varies according to the
request argument. The request argument also governs the use and interpretation of the arg argument. The set

of supported options for the request argument consists of the IOCTL services supported by the driver, which are
defined in section 4.7 (page 25).

NOTE: IOCTL operations are not supported for an open on device index -1.
Prototype

int aol6 ioctl(int fd, int request, void* arg);

Argument | Description

fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
request | This specifies the desired operation to be performed (section 4.7, page 25).

arg This is specific to the IOCTL operation specified by the request argument.

Return Value | Description
0 The operation succeeded.
<0 An error occurred. See error value description above.

Example
#include <stdio.h>
#include "l6aol6 _dsl.h"
int aol6 _ioctl dsl(int fd, int request, void* arg)
{
int errs;
int ret;

ret = aol6 ioctl(fd, request, arg);

if (ret)

21
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

printf ("ERROR: aol6 ioctl() returned %d\n", ret);
errs =ret 21 : 0;
return(errs) ;
}
4.6.4. a016_open()

This function is the entry point to open a connection to a 16A016 board. Before returning, the initialize IOCTL
service is called to reset all hardware and software settings to their defaults.

Prototype

int aol6 _open(int device, int share, int* £d);

Argument | Description

device This is the zero-based index of the 16A016 to access. T

Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

h > . ;
share Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).
The device handle is returned here. The pointer cannot be NULL. Values returned are as
follows.
fd

Value | Description
>= 0 | This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

+ The index value —1 can also be given to acquire driver information (section 2.2, page 12).

Return Value | Description
0 The operation succeeded.
<0 An error occurred. See error value description above.

Example
#include <stdio.h>
#include "16ao0l6 _dsl.h"
int aol6 open dsl(int device, int share, int* £d)
{
int errs;
int ret;

ret = aol6 open(device, share, fd);

if (ret)
printf ("ERROR: aol6 open() returned %d\n", ret);

errs = ret 21 : 0;
return (errs) ;

}

4.6.4.1. Access Modes

The value of the share argument determines the device access mode, as follows.

22
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

Shared Access Mode:

Shared Access Mode allows multiple applications to access the same device simultaneously. In this mode, the first
successful open request returns with the device in an initialized state. Subsequent successful Shared Access Mode
open requests do not affect the state of the device. Once opened in Shared Access Mode, the device access remains
in this mode until all Shared Access Mode accesses release the device with a close request.

Exclusive Access Mode:
Exclusive Access Mode allows a single application to acquire exclusive access to a device. In this mode, a
successful open request returns with the device in an initialized state. While open in this mode all subsequent open
requests will fail regardless of the access mode requested. Once opened in Exclusive Access Mode, the device
access remains in this mode until released by the application with a close request.
4.6.5. a016_read()
This function is the entry point to reading data from an open connection. The function reads up to bytes bytes
from the connection. The read service has no functionality for reading from 16A016 devices. It is provided for
informational purposes only via device index -1 as read requests will acquire information from the driver (section
2.2, page 12) rather than data from a device.

NOTE: Attempts to read from 16 A016 devices will return an error.
Prototype

int aol6 read(int fd, void* dst, size t bytes);

Argument | Description

fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
dst The data read is put here.

bytes This is the desired number of bytes to read.

Return Value | Description
Otobytes The operation succeeded.
<0 An error occurred. See error value description above.

Example
#include <stdio.h>
#include "l6aol6 _dsl.h"
int aol6 read dsl(int fd, void* dst, size t bytes, size t* gty)
{
int errs;
int ret;

ret = aol6 read(fd, dst, bytes);

if (ret < 0)
printf ("ERROR: aol6 read() returned %d\n", ret);

if (qty)
gty[0] = (ret < 0) ? 0 : (size t) ret;

23
General Standards Corporation, Phone: (256) 880-8787

errs

16A016 Linux Device Driver User Manual

= (ret < 0) 21 : 0;

return(errs) ;

}

4.6.6. a016_write()

This function is the entry point to writing data to an open 16A016. This function should only be called after a
successful open of the respective device. The function writes up to bytes bytes to the board. Upon entry to this
service the driver checks for output buffer data overflow and frame overflow errors. If either error status has been
asserted, then the service immediately returns -5, which is ~—EI0 from the system header errno.h. See section
8.4 (page 54) for additional information.

NOTE: Write requests are not supported for an open on device index -1.

Prototype

int aol6 write(int fd,

const void* src, size t bytes);

Argument | Description

fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
src The data written comes from here.

bytes This is the desired number of bytes to write. This must be a multiple of four (4).

Return Value

Description

0tobytes

The operation succeeded. A value less than bytes indicates that the 1/0 timeout period
lapsed (section 4.7.45, page 42) before the entire request could be satisfied.

<0

An error occurred. See error value description above.

Example

#include <stdio.h>

#include "1l6aol6 dsl.h"

int aol6 write dsl(int £d,

aty)
{

const void* src, size t bytes, size t*

int errs;

int ret;

ret = aol6 _write (fd,

src, bytes);

if (ret < 0)

printf ("ERROR: aol6 write() returned %d\n", ret);
if (gty)

gty[0] = (ret < 0) 2 O (size t) ret;
errs = (ret < 0) 21 : 0;

return (errs) ;

24
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

4.7. 10CTL Services

The 16A016 API Library and device driver implement the following IOCTL services. Each service is described
along with the applicable ac16 ioctl () function arguments.

4.7.1. AO16_IOCTL_AUTOCAL

This service initiates an autocalibration cycle. Most configuration setting should be made before running an
autocalibration cycle. The driver waits for the operation to complete before returning.

NOTE: The autocalibration cycle for the 16 A016FLV takes noticeably longer than for the basic
16A016; 20 seconds vs 5. However, both periods are reduced somewhat for 12 channel and eight
channel boards.

NOTE: This service overwrites the current interrupt selection in order to detect the
Autocalibration Done interrupt.

NOTE: When an error is encountered, the service writes a brief, descriptive error message to the
system log.

Usage

Argument | Description
request | AO16 IOCTL AUTOCAL

arg Not used.

4.7.2. AO16_IOCTL_AUTOCAL_STATUS
This service retrieves the autocalibration completion status.

Usage

Argument | Description
Request | A0O16 IOCTL AUTOCAL STATUS

arg s32%*

The value returned will be one of the following.

Value Description
AOl6_AUTOCAL_ STATUS_ ACTIVE | Autocalibration is in progress.
AOl6 AUTOCAL STATUS FAIL Autocalibration failed.

AO16 AUTOCAL STATUS PASS Autocalibration passed.

4.7.3. AO16_IOCTL_BUFFER_CLEAR

This service immediately clears the current content from the output buffer. It also clears the associated data overflow
and frame overflow status bits. This service does not halt output.

Usage

Argument | Description
request | A016 IOCTL BUFFER CLEAR

arg Not used.

25
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

4.7.4. AO16_IOCTL_BUFFER_MODE
This service configures the board to reuse or discard data after it exits the output buffer.

Usage

Argument | Description
request | A0O16 IOCTL BUFFER MODE
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current state.
AOl6_BUFFER_MODE_CIRC | This refers to circular mode.
AOl6_BUFFER MODE_OPEN | This refers to open mode.

4.7.5. AO16_IOCTL_BUFFER_OVER_DATA

This service operates on the output buffer data overflow status. The board asserts this status if data is written to the
output buffer when it is full. The driver is designed to prevent such errors, so they should only appear when such
register writes are performed by an application. See section 8.4 (page 54) for additional information.

Usage

Argument | Description
request | A0l16 IOCTL BUFFER OVER DATA
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current state.
AOlo_BUFFER_OVER DATA CHK | Check to see if there was a data overflow.
AOl6 BUFFER OVER DATA CLR | Clear a data over flow.

The current state is reported as one of the following values.

Value Description
AOl6_BUFFER OVER DATA NO | A data overflow has not occurred.
AOl6 BUFFER OVER DATA YES | A data overflow has occurred.

4.7.6. AO16_IOCTL_BUFFER_OVER_FRAME

This service operates on the output buffer frame overflow status. The board asserts this status if data is written to the
output buffer while it is in a closed state. In other words, the output buffer is in circular mode and a write takes place
while the buffer is closed. It is an application’s responsibility to prevent this from happening. See section 8.4 (page
54) for additional information.

Usage

Argument | Description
request | A0O16 IOCTL BUFFER OVER FRAME
arg s32%*

26
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

Valid argument values are as follows.

Value

Description

-1

Retrieve the current state.

AOl16 BUFFER OVER FRAME CHK

Check to see if there was a frame overflow.

AO16 BUFFER OVER FRAME CLR

Clear a data over flow.

The current state is reported as one of the following values.

Value

Description

AO16 BUFFER OVER FRAME NO

A frame overflow has not occurred.

AO16 BUFFER OVER FRAME YES

A frame overflow has occurred.

4.7.7. AO16_IOCTL_BUFFER_SIZE

This service sets the size of the virtual output buffer.

Usage

Argument | Description
request | AO16 IOCTL BUFFER SIZE
arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current state.

AOl6 BUFFER SIZE 8

This refers to a buffer size of 8 samples deep.

AO16 BUFFER SIZE 16

This refers to a buffer size of 16 samples deep.

AO16 BUFFER SIZE 32

This refers to a buffer size of 32 samples deep.

AO16 BUFFER SIZE 64

This refers to a buffer size of 64 samples deep.

AO16 BUFFER SIZE 128

This refers to a buffer size of 128 samples deep.

AO16 BUFFER SIZE 256

This refers to a buffer size of 256 samples deep.

AO16 BUFFER SIZE 512

This refers to a buffer size of 512 samples deep.

AO16 BUFFER SIZE 1K

This refers to a buffer size of 1K (1,024) samples deep.

AO16 BUFFER SIZE 2K

This refers to a buffer size of 2K (2,048) samples deep.

AO16 BUFFER SIZE 4K

This refers to a buffer size of 4K (4,096) samples deep.

AO16 BUFFER SIZE 8K

This refers to a buffer size of 8K (8,192) samples deep.

AO16 BUFFER SIZE 16K

This refers to a buffer size of 16K (16,384) samples deep.

AO16 BUFFER SIZE 32K

This refers to a buffer size of 32K (32,768) samples deep.

AO16 BUFFER SIZE 64K

This refers to a buffer size of 64K (65,536) samples deep.

AO16 BUFFER SIZE 128K

This refers to a buffer size of 128K (131,072) samples deep.

AO16 BUFFER SIZE 256K

This refers to a buffer size of 256K (262,144) samples deep.

4.7.8. AO16_IOCTL_BUFFER_STATUS

This service retrieves the current output buffer fill level status.

Usage

Argument | Description
request | AO16 IOCTL BUFFER STATUS
arg s32%*

27

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

The current state is reported as one of the following values.

Value

Description

AO16 BUFFER STATUS EMPTY

The output buffer is empty.

AO16 BUFFER STATUS 1Q FULL

The output buffer is % full or less.

AO16 BUFFER STATUS MEDIUM

The output buffer is between ¥ and ¥4 full.

AO16 BUFFER STATUS 3Q FULL

The output buffer is % full or more.

AO16 BUFFER STATUS FULL

The output buffer is full.

4.7.9. AO16_IOCTL_BURST_ENABLE

This service enables or disables output bursting.

Usage

Argument | Description
request | AO16 IOCTL BURST ENABLE
arg s32%*

Valid argument values are as follows.

Value

Description

-1 Retrieve the current state.

AOl6 BURST ENABLE NO

This refers to output bursting being disabled.

AO16 BURST ENABLE YES

This refers to output bursting being enabled.

4.7.10. AO16_IOCTL_BURST_READY

This service reports the output buffer’s readiness for an output burst.

Usage

Argument | Description

request

AO16 IOCTL BURST READY

arg s32%*

The current state is reported as one of the following values.

Value

Description

AO16 BURST READY NO

The output buffer is not ready to output a burst.

AO16 BURST READY YES

The output buffer is ready to output a burst.

4.7.11. AO16_IOCTL_BURST_TRIG_SRC

This service configures the source for the bursting trigger.

Usage

Argument | Description

request

AO16 IOCTL BURST TRIG SRC

sS32%*

arg

Valid argument values are as follows.

28

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

Value Description

-1 Retrieve the current state.
AOle6_BURST_TRIG_SRC_EXT | This refers to the external burst trigger input.
AOle6_BURST_TRIG_SRC_SW | This refers to the software burst trigger source.

4.7.12. AO16_IOCTL_BURST_TRIGGER
This service initiates a software triggered output burst.

Usage

Argument | Description
request | A0O16 IOCTL BURST TRIGGER

arg Not used.

4.7.13. AO16_IOCTL_CBL_ISO_CLOCK_IO
This service configures the operation (the functional isolation) of the cable’s Clock 1/O signal.

Usage

Argument | Description
request | A0O16 IOCTL CBL ISO CLOCK IO

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current state.

AOl6_CBL_ISO NORM | This refers to the signal being in its default state.

AOl6_CBL_ISO OUT_O | This refers to the signal being configured to output a logic low.

+ If the polarity feature is unsupported, then the normal option is always returned.
4.7.14. AO16_IOCTL_CBL_ISO_DAC_CLK_OUT
This service configures the operation (the functional isolation) of the cable’s DSC Clock Output signal.

Usage

Argument | Description
request | AO16 IOCTL CBL ISO DAC CLK OUT
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current state.

AOl6 _CBL _ISO NORM | This refers to the signal being in its default state.

AOl6_CBL ISO OUT O | This refers to the signal being configured to output a logic low.

+ If the polarity feature is unsupported, then the normal option is always returned.
4.7.15. AO16_IOCTL_CBL_ISO_TRIG_OUT

This service configures the operation (the functional isolation) of the cable’s Trigger Output signal.

29
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

Usage

Argument | Description
request | A0Ol16 IOCTL CBL ISO TRIG OUT

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current state.

AOl6_CBL_ISO_NORM | This refers to the signal being in its default state. T

AOle_CBL_ISO_OUT_0 | This refers to the signal being configured to output a logic low.

+ If the polarity feature is unsupported, then the normal option is always returned.
4.7.16. AO16_IOCTL_CBL_POL_CLOCK_IO
This service configures the polarity of the cable’s Clock I/O signal.

Usage

Argument | Description
request | AO16 IOCTL CBL POL CLOCK IO

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current state.

AOl6 CBL_POL_INV | This refers to the signal being inverted.

AOlo_CBL_POL_NORM | This refers to the signal being in its default state. 1
1 If the polarity feature is unsupported, then the normal option is always returned.

4.7.17. AO16_IOCTL_CBL_POL_DAC_CLK_OUT
This service configures the polarity of the cable’s DAC Clock Out signal.

Usage

Argument | Description
request | AOl16 IOCTL CBL POL DAC CLK OUT

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current state.

AOl6_CBL_POL_INV | This refers to the signal being inverted.

AOlo_CBL_POL_NORM | This refers to the signal being in its default state. t
1 If the polarity feature is unsupported, then the normal option is always returned.

4.7.18. AO16_IOCTL_CBL_POL_TRIG_IN

This service configures the polarity of the cable’s Trigger Input signal.

30
General Standards Corporation, Phone: (256) 880-8787

Usage

Valid argument values are as follows.

16A016 Linux Device Driver User Manual

Argument

Description

request

AOl16 IOCTL CBL POL TRIG IN

arg

sS32%*

Value

Passed To API | Returned By API

AO16 CBL POL INV

This refers to the signal being inverted.

AO16 CBL POL NORM

This refers to the signal being in its default state. 1

+ If the polarity feature is unsupported, then the normal option is always returned.

4.7.19. AO16_IOCTL_CBL_POL_TRIG_OUT

This service configures the polarity of the cable’s Trigger Output signal.

Usage

Valid argument values are as follows.

Argument

Description

request

AOl6 IOCTL CBL POL TRIG OUT

arg

S32%*

Value

Passed To API | Returned By API

AOl6 CBL POL INV

This refers to the signal being inverted.

AO16 CBL POL NORM

This refers to the signal being in its default state.

1 If the polarity feature is unsupported, then the normal option is always returned.

4.7.20. AO16_IOCTL_CHANNEL_SEL

This service selects the set of channels that generate output.

Usage

Argument

Description

request

AO16 IOCTL CHANNEL SEL

arg

s32%*

Valid argument values are -1 to retrieve the current enable mask and any combination of bits from 0x0 for no
channels to OxFFFF for all 16 channels. The upper limit is 0xFF for eight channel boards and OxFFF for 12
channel boards.

4.7.21. AO16_IOCTL_CLOCK_ENABLE

This service enables or disabled output clocking.

Usage
Argument | Description
request | AO16 IOCTL CLOCK ENABLE
arg s32%*

31
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

Valid argument values are as follows.

4.7.22. AO16_IOCTL_CLOCK_READY

Value

Description

-1

Retrieve the current state.

AO16 CLOCK ENABLE NO

This refers to output clocking being disabled.

AO16 CLOCK ENABLE YES

This refers to output clocking being enabled.

This service indicates if the board is ready to accept an output clock.

Usage

Argument | Description

request | A0O16 IOCTL CLOCK READY

arg s32%*

The current state is reported as one of the following values.

Value Description

AOl6_CLOCK_READY NO | The bhoard is not ready to accept an output clock.

AOl6_CLOCK READY YES | The board is ready to accept an output clock.

4.7.23. AO16_IOCTL_CLOCK_REF_SRC

This service sets the source for the reference clock.

Usage

Argument | Description

request | A0O16 IOCTL CLOCK REF SRC

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current state.

AO16 CLOCK REF SRC ALT

This refers to the alternate source, whose reference is configurable.

AO16 CLOCK REF SRC PRI

This refers to the primary source, whose reference is fixed.

4.7.24. AO16_IOCTL_CLOCK_SRC

This service selects the output clocking source.

Usage

Argument | Description

request | AO16 IOCTL CLOCK SRC

arg s32*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current state.

32

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

AO16 CLOCK SRC EXT SW

This refers to the external clock source as well as the software source.

AO16 CLOCK SRC INT

This refers to the internal clock source.

4.7.25. AO16_IOCTL_CLOCK_SW

This service generates a single output clock strobe.

Usage

Argument | Description

request | AO16 IOCTL CLOCK SW

arg Not used.

4.7.26. AO16_IOCTL_DATA_FORMAT

This service configures the data encoding format.

Usage

Argument | Description

request | AO16 IOCTL DATA FORMAT

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AOl6_DATA FORMAT 2S_COMP | This refers to the Twos Compliment data format.

AOl6_DATA_ FORMAT OFF_BIN | This refers to the Offset Binary encoding format.

4.7.27. AO16_IOCTL_GROUND_SENSE

This service enables or disables use of remote ground sense.

Usage

Argument | Description

request | AO16 IOCTL GROUND SENSE

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current state.

AOl6_GROUND_ SENSE DISABLE | This refers to remote ground sense being disabled.

AOl6_GROUND_ SENSE REMOTE | This refers to remote ground sense being enabled.

4.7.28. AO16_IOCTL_INITIALIZE

This service resets all hardware and software settings to their defaults.

NOTE: If the initialization service returns an error status, an error message will be posted to the
system log briefly describing the error condition.

33

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

NOTE: For boards with the high voltage range feature (the -HL ordering option) the initialization
service sets the voltage range option to the £5-volt range before returning. For low voltage range
boards, the voltage range after initialization is the £2.5-volt option.

Usage

Argument | Description

request | AO16 IOCTL INITIALIZE

arg Not used.

4.7.29. AO16_IOCTL_IRQ_SEL

This service configures the firmware’s interrupt source selection.

Usage

Argument | Description

request | AO16 IOCTL IRQ SEL

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AOl6 IRQ AUTOCAL DONE

This refers to the completion of an autocalibration cycle.

AO16 IRQ BUF 1Q FULL

This refers to the buffer falling to the % full level.

AO16 IRQ BUF 3Q FULL

This refers to the buffer rising to the % full level.

AO16 IRQ BUF EMPTY

This refers to the buffer becoming empty.

AOl6_TRQ BURST_ TRIG_READY | This refers to the readiness of the board to accept a burst trigger.

AO16 IRQ INIT DONE

This refers to the completion of an initialization cycle.

AO16_TIRQ LOAD READY

This refers to the condition where the output buffer becomes
ready to accept data.

AO16 TIRQ LOAD READY END

This refers to the condition where the output buffer is no longer
ready to accept data.

4.7.30. AO16_IOCTL_LOAD_READY

This service reports if the output buffer is ready to receive data.

Usage

Argument | Description

request | AO16 IOCTL LOAD READY

arg s32%*

The current state is reported as one of the following values.

Value

Description

AO16 LOAD READY NO

The buffer is not ready to receive data.

AO16 LOAD READY YES

The buffer is ready to receive data.

34

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

4.7.31. AO16_IOCTL_LOAD_REQUEST

This service requests access to the output buffer, which should be configured for circular operation. The driver
requests access and returns immediately rather than waiting for access to be granted.

Usage

Argument | Description
request | AO16 IOCTL LOAD REQUEST

arg Not used.

4.7.32. AO16_IOCTL_NCLK
This service configures the alternate reference frequency by setting the NCLK divider value.

Usage

Argument | Description
request | AO16 IOCTL NCLK
arg s32%*

Valid argument values are -1 to retrieve the current setting and 0x0 to Ox1FF.
4.7.33. AO16_IOCTL_NRATE
This service configures the rate generator by setting the NRATE divider value.

Usage

Argument | Description
request | AO16 IOCTL NRATE
arg s32%*

Valid argument values are -1, to retrieve the current setting, and some minimum up through Ox3FFFF. The
minimum appropriate value is based on the board’s reference frequency. See the table below. If the board has a
custom frequency, the driver can’t know for certain what that frequency is and thus, may report an incorrect
minimum NRATE value. Refer to the 2016 IOCTL QUERY IOCTL service (section 4.7.36, page 36) for additional
information.

NOTE: If the driver reports an incorrect reference frequency, then an application may have to
apply the desired NRATE value manually by direct access to the Sample Rate Register (SRR).

Board Model | Reference Frequency | NRATE Minimum | Note
45,000,000 Hz 100 Default

16A016 49,152,000 Hz 110 Default custom value
44,982,000 Hz 100 Custom value

4.7.34. AO16_IOCTL_OUTPUT_FILTER

This service selects the output filter option.

35
General Standards Corporation, Phone: (256) 880-8787

Usage

16A016 Linux Device Driver User Manual

Argument | Description

request | AO16 IOCTL OUTPUT FILTER

arg s32%*

Valid argument values are as follows.

Value

Passed To API Returned By API

-1

Retrieve the current state. | The feature is unsupported.

AOl6 OUTPUT FILTER A

This refers to sequential output.

AOl6 OUTPUT FILTER B

This refers to simultaneous output.

AOl6 OUTPUT FILTER NONE

This refers to simultaneous output.

4.7.35. AO16_IOCTL_OUTPUT_MODE

This service selects the mode for the output clock.

Usage

Argument | Description

request | AO16 IOCTL OUTPUT MODE

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current state.

AOlec_OUTPUT MODE_SEQ | This refers to sequential output.

AOl6_OUTPUT_MODE_SIM | This refers to simultaneous output.

4.7.36. AO16_IOCTL_QUERY

This service queries the driver for various pieces of information about the board and the driver.

Usage

Argument | Description

request | AO16 IOCTL QUERY

arg s32%*

Valid argument values are as follows.

Value

Description

AO16_QUERY AUTOCAL MS

This returns the maximum duration of the Autocalibration cycle
in milliseconds.

This returns an indication if the firmware supports inverting the

AOl6_QUERY_CABLE_INVERT_4 | four cable interface signals Trigger Input, Trigger Output, DAC

Clock Out and Clock 1/0.

This returns an indication if the firmware supports isolating the

AOl6_QUERY_ CABLE_PASSIVE_3 | normal interface functionality of the three cable interface signals

Trigger Output, DAC Clock Out and Clock 1/0.

AO16 QUERY CHANNEL MASK

This returns the mask of valid channel enable bits.

36

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

AOl6 QUERY CHANNEL MAX

This returns the maximum number of output channels supported
by the board, which may be more that the board’s current
configuration.

AO16_QUERY CHANNEL QTY

This returns the actual number of output channels on the current
board. If the value returned is -1, then the driver was unable to
determine the number of channels.

AOl6 QUERY COUNT

This returns the number of query options supported by the
IOCTL service.

AO16_QUERY DEVICE TYPE

This returns the identifier value for the board’s type. This should
be GSC DEV_TYPE 16A016.

AOl6 QUERY DIFFERENTIAL

This returns a value indicating if the board has differential
outputs (0 = no, 1 = yes).

AO16_QUERY DMDMA

This returns a value indicating if Demand Mode DMA is
supported (0 = no, 1 = yes).

AO16 QUERY FIFO SIZE

This returns the size of the output buffer in 32-bit A/D values.

AOl6_QUERY FILTER

This returns an indicator of the board’s output filter options.
Valid return values are listed in a table below.

AOl6 QUERY FREF DEFAULT

This returns the default reference frequency.

AO16 QUERY FSAMP MAX

This gives the maximum FsAamP value in S/S.

AO16 QUERY FSAMP MIN

This gives the minimum FsSAMP value in S/S.

AOl6 QUERY INIT MS

This returns the duration of a board initialization in
milliseconds.

AO16 QUERY LAST

This gives the last enumeration value.

AO16 QUERY MODEL

This returns the device’s model type. See below.

AO16 QUERY NCLK MASK

This returns the mask for the alternate reference source’s NCLK
divider value.

AO16 QUERY NCLK MAX

This returns the maximum valid NCLK value.

AO16 QUERY NCLK MIN

This returns the minimum valid NcLK value.

AO16 QUERY NRATE MASK

This returns the mask for the board’s NRATE divider value.

AO16 QUERY NRATE MAX

This returns the maximum supported NRATE divider value.

AO16 QUERY NRATE MIN

This returns the minimum supported NRATE divider value. i

AOl6 _QUERY OUTPUT CAPACITY

This indicates the device’s support for high voltage vs high
current capacity capability. See below.

AOl6_QUERY OUTPUT_ FILTER This indicates if the device supports selecting the Output Filter.

AO16 QUERY VOLT RANGE

This returns the device’s supported voltage range. See below.

AO16 QUERY WATCHDOG

This indicates if the device supports the Watchdog Bit feature.

+ The 16A016 supports more than one custom frequency. The board itself does not reveal which custom
frequency is in use. It only reveals that the reference frequency is the default of a custom value.
1 This value is affected by the default reference frequency, which may not be known by the driver.

NOTE: If the 16A016 in use has a custom reference frequency other than that selected by the
driver, then this can be corrected by adjusting the code in the driver’s device . c source file.

Valid return values are as indicated in the above table and as given in the below table.

Value

Description

AO16 IOCTL QUERY ERROR

Either there was a processing error or the query option is
unrecognized.

Valid return values for the filter query are as follows.

Value Description

AOl6_FILTER NONE No custom filter option is installed.

AOle_FILTER_10KHZ | A 10 KHz filter is installed.

37

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

AOleo_FILTER_100KHZ | A 100 KHz filter is installed.

AOl6_FILTER_F1 The device has the F1 filters documented in the reference manual.
AOl6_FILTER_F2 The device has the F2 filters documented in the reference manual.
AOl6_FILTER_F'3 The device has the F3 filters documented in the reference manual.
AOl6_FILTER F4 The device has the F4 filters documented in the reference manual.

Valid return values for the model query are as follows.

Value

Description

AO16 MODEL 16A016

This indicates that the device is a 16A016, though the form factor is
unknown.

AOl6 MODEL 16AO016FLV

This indicates that the device is a 16A016FLV, though the form factor is
unknown.

Valid return values for the output capacity query are as follows.

Value

Description

-1

This feature is not supported.

The board is factory configured for the high current

AOlo_OUTPUT_ CAPACITY_ HI_ CURRENT | option, which supports voltage settings of £1.5V and

+2.5V.

AO16_OUTPUT CAPACITY HI LEVEL

The board is factory configured for the high-level option,
which supports voltage settings of £5V and £10V.

Valid return values for the voltage range query are as follows.

Value

Description

-1

This feature is not supported.

AO16_VOLT RANGE LOW

This refers to the low voltage range, which includes selection options of
+1.25V, £2.5V, £5+ and £10V.

AOl16_VOLT RANGE HIGH

This refers to the high voltage range, which includes selection options of
15V, £10+ and £20V.

4.7.37. AO16_IOCTL_RANGE

This service sets the output voltage range.

NOTE: For boards with the high voltage range feature (the -HL ordering option) the initialization
service sets the voltage range option to the +5-volt range before returning. For low voltage range
boards, the voltage range after initialization is the +2.5-volt option.

Usage

Argument | Description

request | AO16 IOCTL RANGE

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current state.

AOl6_RANGE_1 25 | This refers to the voltage range of £1.25 volts.

AOl6 _RANGE 2 5 | This refers to the voltage range of £2.5 volts.

38

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

AO16 RANGE 5 This refers to the voltage range of +5 volts.

AOl6 RANGE 10 This refers to the voltage range of £10 volts.

4.7.38. AO16_IOCTL_REG_MOD

This service performs a read-modify-write of a 16A016 register. This includes only the GSC firmware registers.
The PCI and PLX Feature Set Registers are read-only. Refer to 16a016.h for the complete list of GSC firmware

registers.
Usage
Argument | Description
request | AOl16 IOCTL REG MOD
arg gsc reg t*
Definition
typedef struct
{
u32 reg;
u32 value;
u32 mask;
} gsc _reg t;
Fields | Description
reg This is set to the identifier for the register to access.
value | This contains the value for the register bits to modify.
mask This specifies the set of bits to modify. If a bit here is set, then the respective register bit is
modified. If a bit here is zero, then the respective register bit is unmodified.

4.7.39. AO16_IOCTL_REG_READ

This service reads the value of a 16A016 register. This includes the PCI registers, the PLX Feature Set Registers
and the GSC firmware registers. Refer to 16a016.h and gsc_pci9056.h for the complete list of accessible

registers.

Usage

Argument | Description

request | A0O16 IOCTL REG READ

arg

gsc reg t*

Definition

typedef
{
u32
u32
u32

struct

reg;
value;
mask;

} gsc_reg t;

Fields

Description

reg

This is set to the identifier for the register to access.

39
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

value | This is the value read from the specified register.
mask | This is ignored for read request.

4.7.40. AO16_IOCTL_REG_WRITE

This service writes a value to a 16A016 register. This includes only the GSC firmware registers. The PCI and PLX
Feature Set Registers are read-only. Refer to 16a016.h for a complete list of the GSC firmware registers.

Usage
Argument | Description
request | AO16 IOCTL REG WRITE
arg gsc reg t*

Definition

typedef struct
{
u32 reg;
u32 value;
u32 mask;
} gsc_reg t;

Fields | Description

reg This is set to the identifier for the register to access.
value | This is the value to write to the specified register.
mask | This is ignored for write request.

4.7.41. AO16_IOCTL_TX_IO_ABORT
This service aborts an ongoing write () request.

Usage

Argument | Description
request | AO16 IOCTL TX IO ABORT
arg s32%*

The results are reported as one of the following values.

Value Description
AOl6_TIO ABORT NO | Awrite () request was notaborted as none were ongoing.
AO16_IO_ABORT_YES | Anongoing write () request was aborted.

4.7.42. AO16_IOCTL_TX_I0_MODE
This service sets the 1/0 mode used for data write requests.

Usage

Argument | Description
request | AO16 IOCTL TX IO MODE
arg s32%*

40
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

GSC IO MODE BMDMA

This refers to Block Mode DMA.

GSC IO MODE DMDMA

This refers to Demand Mode DMA. ¥

GSC_IO MODE_PIO

This refers to PIO mode, which is repetitive register access. This is the
default.

+ Demand Mode DMA is not supported on all boards. Use to the DMDMA query option to find
out if Demand Mode DMA is supported (section 4.7.36, page 36).

4.7.43. AO16_IOCTL_TX_IO_OVER_DATA

This service configures the write service to check for an output buffer data overflow before performing write
operations. Sample data is lost when there is a data overflow. See section 8.4 (page 54) for additional information.

NOTE: The check for a data overflow is performed upon entry to the write service. The write
service does not check for data overflows that occur while the write is in progress. For in-progress
data overflows an application must perform the check manually or wait for the check performed
by a subsequent write request.

Usage

Argument | Description

request | AO16 IOCTL TX IO OVER DATA

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AOl6_TX IO _OVER DATA CHECK | This refers to the check being performed. This is the default.

AOl6_TX IO _OVER DATA IGNORE | This refers to the check not being performed.

4.7.44. AO16_IOCTL_TX_IO_OVER_FRAME

This service configures the write service to check for an output buffer frame overflow before performing write
operations. Sample data is lost when there is a frame overflow. See section 8.4 (page 54) for additional information.

NOTE: The check for a frame overflow is performed upon entry to the write service. The write
service does not check for frame overflows that occur while the write is in progress. For in-
progress frame overflows an application must perform the check manually or wait for the check
performed by a subsequent write request.

Usage

Argument | Description

request | AO16 IOCTL TX IO OVER FRAME

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

41

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

AOl6_TX TIO_OVER FRAME CHECK | This refers to the check being performed. This is the default.
AOl6_TX TIO_OVER FRAME IGNORE | This refers to the check not being performed.

4.7.45. AO16_IOCTL_TX I0_TIMEOUT
This service sets the timeout limit for write requests. The value is expressed in seconds.

Usage

Argument | Description
request | AO16 IOCTL TX IO TIMEOUT
arg s32%*

Valid argument values are in the range from zero to 3600, -1, and 2016 IO TIMEOUT INFINITE. A value of
zero tells the driver not to sleep in order to wait for more space, and should only be used with PIO mode reads. A
value of -1 is used to retrieve the current setting. If the option A016 IO TIMEOUT INFINITE is used, then the
driver will wait indefinitely rather than timing out. The default is 10 seconds.

4.7.46. AO16_IOCTL_WAIT_CANCEL
This service resumes all threads blocked via A016 IOCTL WAIT EVENT IOCTL calls (section 4.7.47, page 43),
according to the provided criteria. When a blocked thread is waiting for any event specified in the structure, then the

thread is resumed.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver
initiated waits are unaffected by application cancel requests.

Usage
Argument | Description
request | AO16 IOCTL WAIT CANCEL
arg gsc wait t*

Definition

typedef struct
{

u32 flags;
u32 main;
u32 gsc;
u32 alt;
u32 io;

u32 timeout ms;
u32 count;
} gsc_wait t;

Fields Description

flags This is unused by wait cancel operations.

This specifies the set of GSC WAIT MAIN * events whose wait requests are to be

main cancelled. Refer to section 4.7.47.2 on page 44.

gsc This specifies the set of AO16 WAIT GSC_* events whose wait requests are to be
cancelled. Refer to section 4.7.47.3 on page 44.

alt This is unused by the 16A016 driver and should be zero.

42
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

io

This specifies the set of A016 WAIT IO * events whose wait requests are to be
cancelled. Refer to section 4.7.47.4 on page 44.

timeout ms

This is unused by wait cancel operations.

count

Upon return this indicates the number of waits that were cancelled.

4.7.47. AO16_IOCTL_WAIT_EVENT

This service blocks a thread until any one of a specified set of events occurs, or until a timeout lapses, whichever
occurs first. The set of possible events to wait for are specified in the structure’s main, gsc, alt and io fields. All
field values must be valid and at least one event must be specified. If the thread is resumed because one of the
referenced events has occurred, then the bit for the respective event is the only event bit that will be set. All other
event bits and fields will be zero. (Multiple event bits will be set only if the events occur simultaneously.)

Usage
Argument | Description
request | AO16 IOCTL WAIT EVENT
arg gsc wait t*

Definition

NOTE: The service waits only for the first of the specified events, not for all specified events.

NOTE: A wait timeout is reported via the gsc_wait_t structure’s £lags field having the
GSC_WAIT FLAG TIMEOUT flag set, rather than via an ETIMEDOUT error.

typedef struct

{

u32 flags;

u32 main;

u32 gsc;

u32 alt;

u32 io;

u32 timeout ms;
u32 count;

} gsc_wait t;

Fields Description

flags This must initially be_ zero. Upon return this indicates the reason that the thread was
resumed. Refer to section 4.7.47.1on page 44.

main This specifies any number of GSC_WAIT MAIN * events that the thread is to wait for.
Refer to section 4.7.47.2 on page 44.

gsc This specifies any number of 2016 WAIT GSC_* events that the thread is to wait for.
Refer to section 4.7.47.3 on page 44.

alt This is unused by the 16A016 driver and must be zero.

io This specifies any number of AO16 WAIT IO_* events that the thread is to wait for.
Refer to section 4.7.47.4 on page 44.
This specified the maximum amount of time, in milliseconds, that the thread is to wait

timeout ms | for any of the referenced events. A value of zero means do not timeout at all. If non-
zero, then upon return the value will be the approximate amount of time actually waited.

count This is unused by wait event operations and must be zero.

43
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

4.7.47.1. gsc wait t.flags Options

Upon return from a wait request the wait structure’s flags field will indicate the reason that the thread was

resumed. Only one of the below options will be set.

Fields

Description

GSC WAIT FLAG CANCEL

The wait request was cancelled.

GSC WAIT FLAG DONE

One of the referenced events occurred.

GSC WAIT FLAG TIMEOUT

The timeout period lapsed before a referenced event occurred.

4.7.47.2. gsc_wait t.main Options

The wait structure’s main field may specify any of the below primary interrupt options. These interrupt options are

supported by the 16 A016 and other

General Standards products.

Fields

Description

GSC_WAIT MAIN DMAO

This refers to the DMA Done interrupt on DMA engine number zero.

GSC_WAIT MAIN DMAL

This refers to the DMA Done interrupt on DMA engine number one.

GSC WAIT MAIN GSC

This refers to any of the Interrupt Control/Status Register interrupts.

GSC_WAIT MAIN OTHER

This generally refers to an interrupt generated by another device sharing the

same interrupt as the 16 A016.

GSC WAIT MAIN PCI

This refers to any interrupt generated by the 16A016.

GSC WAIT MAIN SPURIOUS

This refers to board interrupts which should never be generated.

GSC WAIT MAIN UNKNOWN

This refers to board interrupts whose source could not be identified.

4.7.47.3. gsc_wait t.gsc Options

The wait structure’s gsc field may specify any combination of the below interrupt options. These are the interrupt
options referenced in the Board Control Register. Applications are responsible for selecting the desired interrupt

options. Refer to AO16 IOCTL IRQ SEL (section 4.7.29, page 34).

Value

Description

AOl6 WAIT GSC AUTOCAL DONE

This refers to the completion of an autocalibration cycle.

AO16 WAIT GSC BUF 1Q FULL

This refers to the buffer falling to the ¥ full level.

AO16 WAIT GSC BUF 3Q FULL

This refers to the buffer rising to the % full level.

AOl6 WAIT GSC BUF EMPTY

This refers to the buffer becoming empty.

AO16 WAIT GSC BURST TRIG READY

AO16 WAIT GSC INIT DONE

This refers to the completion of an initialization cycle.

AO16 WAIT GSC LOAD READY

to accept data.

AO16 WAIT GSC LOAD READY END

ready to accept data.

4.7.47.4. gsc_wait t.io Options

The wait structure’s 1o field may specify any of the below event options. These events are generated in response to
application board data read requests.

Fields

Description

AO16 WAIT IO TX ABORT

This refers to write requests which have been aborted.

AO16 WAIT IO TX DONE

This refers to write requests which have been satisfied.

AO16 WAIT IO TX ERROR

This refers to write requests which end due to an error.

AO16 WAIT IO TX TIMEOUT

This refers to write requests which end due to the timeout period lapse.

44

General Standards Corporation, Phone: (256) 880-8787

This refers to the readiness of the board to accept a burst trigger.
This refers to the condition where the output buffer becomes ready

This refers to the condition where the output buffer is no longer

16A016 Linux Device Driver User Manual

4.7.48. AO16_IOCTL_WAIT_STATUS

This service counts all threads blocked via the AO16 IOCTL WAIT EVENT IOCTL service (section 4.7.47, page
43), according to the provided criteria. A match is made when a waiting thread’s wait criteria matches any of the
criteria specified in the structure passed to this service.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver
initiated waits are ignored by application status requests.

Usage
Argument | Description
request | AO16 IOCTL WAIT STATUS
arg gsc wait t*

Definition

typedef struct
{

u32 flags;
u32 main;
u32 gsc;
u32 alt;
u32 io;

u32 timeout ms;
u32 count;
} gsc_wait t;

Fields Description

flags This is unused by wait status operations.

main This specifies the set of GSC_ WAIT MAIN * events whose wait requests are to be
counted. Refer to section 4.7.47.2 on page 44.

gsc This specifies the set of AO16 WAIT GSC_* events whose wait requests are to be

counted. Refer to section 4.7.47.3 on page 44.

alt This is unused by the 16A016 driver and should be zero.

This specifies the set of A0O16 WAIT IO * events whose wait requests are to be

O counted. Refer to section 4.7.47.4 on page 44.

timeout ms | Thisis unused by wait status operations.

count Upon return this indicates the number of waits that met any of the specified criteria.

4.7.49. AO16_IOCTL_WATCHDOG_ENABLE
This service enables or disables the Watchdog Bit feature, when supported by firmware.

Usage

Argument | Description
request | A0O16 IOCTL WATCHDOG ENABLE
arg s32*

Valid argument values are as follows.

45
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

Value

Passed To API

Returned By API

-1

Retrieve the current setting.

The feature is unsupported.

AO16 WATCHDOG ENABLE NO

This disables the Watchdog

Bit feature.

AO16 WATCHDOG ENABLE YES

This enables the Watchdog

Bit feature.

4.7.50. AO16_IOCTL_WATCHDOG_OUTPUT

This service set the Watchdog Bit output level, when supported by firmware.

Usage

Argument | Description

request

AO16 IOCTL WATCHDOG OUTPUT

arg s32%*

Valid argument values are as follows.

Value

Passed To API

Returned By API

-1

Retrieve the current setting.

The feature is unsupported.

AO16 WATCHDOG OUTPUT 0

This sets the Watchdog Bit output level to low.

AOl6 WATCHDOG OUTPUT 1

This sets the Watchdog Bit output level to high.

4.7.51. AO16_IOCTL_XCVR_TYPE

This service selects the transceiver type used by the clock and trigger lines on the cable interface.

Usage

Argument | Description

request

AO16 IOCTL XCVR TYPE

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AO16 XCVR TYPE LVDS

This refers to LVDS transceivers.

AO16 XCVR TYPE TTL

This refers to TTL transceivers.

46

General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

5. The Driver

NOTE: Contact General Standards Corporation if additional driver functionality is required.
5.1. Files

The device driver files are summarized in the table below.

Description | Files Location
Source Files | *.c, *.h ...
Header File | 16a0l6.h
l6aol6.ko T
16ao0l6.01
+ This is for kernel versions 2.6 and later.
1 This is for kernel versions 2.4 are earlier.

../driver/
Driver File

5.2. Build

NOTE: Building the driver requires installation of the kernel headers and possibly other packages.

The device driver is built via the Overall Make Script (section 2.7, page 13), but can be built separately following
the below steps.

1. Change to the directory where the driver and its sources are installed (.../driver/).
2. Remove existing build targets by issuing the below command.
make clean
3. Build the driver by issuing the below command.
make
NOTE: Due to the differences between the many Linux distributions some build errors may

occur. These errors may include system header location differences, which should be easily
corrected.

5.3. Startup

NOTE: The driver will have to be built before being used as it is provided in source form only.
The startup script used in this procedure is designed to load the device driver and create fresh device nodes. This is
accomplished by unloading the current driver, if loaded, and then loading the accompanying driver executable. In
addition, the script deletes and recreates the device nodes. This is done to ensure that the device nodes in use have
the same major number as assigned dynamically to the driver by the kernel, and so that the number of device nodes
corresponds to the number of boards identified by the driver.
5.3.1. Manual Driver Startup Procedures

Start the driver manually by following the below listed steps.

NOTE: The following steps may require elevated privileges.

47
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

1. Change to the directory where the driver sources are installed (.../driver/).

2. Install the driver module and create the device nodes by executing the below command. If any errors are
encountered then an appropriate error message will be displayed.

./start
NOTE: This script must be executed each time the host is booted.
NOTE: The 16 A016 device node major number is assigned dynamically by the kernel. The minor
numbers and the device node suffix numbers are index numbers beginning with zero, and increase

by one for each additional board installed.

3. Verify that the device driver module has been loaded by issuing the below command and examining the output.
The module name 1 6ao01 6 should be included in the output.

lsmod

4. Verify that the device nodes have been created by issuing the below command and examining the output. The
output should include one node for each installed board.

ls -1 /dev/1l6ao0l6.*
5.3.2. Automatic Driver Startup Procedures
Start the driver automatically with each system reboot by following the below listed steps.

1. Locate and edit the system startup script rc.local, which should be in the /etc/rc.d/ directory. Modify
the file by adding the below line so that it is executed with every reboot. The example is based on the driver
being installed in /usr/src/linux/drivers/, though it may have been installed elsewhere.

/usr/src/linux/drivers/l6aol6/driver/start

NOTE: For systemd installations the file rc.local may be located under the /etc/
directory rather than under /etc/rc.d/.

2. Load the driver and create the required device nodes by rebooting the system.

3. Verify that the driver is loaded and that the device nodes have been created. Do this by following the
verification steps given in the manual startup procedures.

5.3.2.1. File rc.local Not Present

Some distributions may not install a default version of rc.local. Some may not even create the directory
/etc/rc.d/. If the directory is not present, then it may be created. The directory must be created with the owner
and group set to root. The directory permissions must be set to rwxr-xr-x. If the file /etc/rc.d/rc.local
is not present, then it too may be created. The file must also be created with the owner and group set to root.
Additionally, the file permissions must also be set to rwxr-xr-x. After the directory and file are created as
described, reboot to verify boot time loading of the driver. Here is an example of a default version of rc.local.

48
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

#!/bin/bash

Add your local content here.

5.3.2.2. Default rc.local File Permissions

The rc.local script may fail to run at boot time because some distributions install a default version of the file
without execute permissions. Without execute permissions, boot time invocation of the script fails, which inhibits
boot time loading of the driver. If this is the case, then change the file permissions to rwxr-xr-x. After the file
permissions are adjusted as described, reboot to verify boot time loading of the driver.

5.3.2.3. systemd Installations

With the advent of the systemd startup implementation, rc.local may be accessed via a systemd startup
service. The service name may be rc-local, rc-local.service or something similar. This service may or
may not be enabled by default. If the service is disabled, then the script will not execute, which prevents boot time
loading of the driver. The service can be enabled with the below command line. After the service is enabled, reboot
to verify boot time loading of the driver.

systemctl enable rc-local

NOTE: For systemd installations the file rc.local may be located under the /etc/
directory rather than under /etc/rc.d/.

5.3.2.4. systemd and rc.local Timing

If the above steps have been performed but the driver still does not start then examine the dmesg output for driver
messages. If the output shows that the driver starts and immediately stops, then the problem may be timing. That is,
since systemd doesn’t serialize startup initialization as done in the past, driver loading may fail if required services
have not completed their own initialization. If this is the problem, then it may be corrected simply by inserting a
delay in rc. local prior to it calling the driver’s start script (i.e., sleep for one or more seconds).

5.3.2.5. SElinux Implications

If not disabled, then SElinux may prevent boot time loading of the driver. If this is the case, then it can be verified
and corrected using SElinux related tools and utilities. First, install the necessary software using the below
command. (As necessary, replace the yum command line with that which is available for your distribution.)

yum install setroubleshoot setools

Next, run the below command to determine if SElinux is preventing the driver from loading at boot time.

sealert -a /var/log/audit/audit.log

If SElinux is preventing the driver from loading, then the output from the above command should include a
reference to the driver’s start script, the insmod command that loads the driver or the name of the driver
executable. If so, then the output should also indicate the commands necessary to resolve the issue. The following is
an example of the instructions given when the culprit is insmod, which is the start script command that loads the
driver. After running these commands reboot the system to verify boot time loading of the driver.

ausearch -c 'insmod' --raw | auditZallow -M my-insmod
semodule -X 300 -i my-insmod.pp

49
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

5.4. Verification
Follow the below steps to verify that the driver has been properly installed and started.

1. Verify that the file /proc/16a016 is present. If the file is present then the driver is loaded and running.
Verify the file’s presence by viewing its content with the below command.

cat /proc/l6aolé6

5.5. Version
The driver version number can be obtained in a variety of ways. It is reported by the driver both when the driver is
loaded and when it is unloaded (depending on kernel configuration options, this may be visible only in places such

as /var/log/messages). Itis reported in the text file /proc/16aol6 while the driver is loaded and running.
The version number is also given in the file release. txt in the root install directory.

5.6. Shutdown
Shutdown the driver following the below listed steps.
NOTE: The following steps may require elevated privileges.
1. If the driver is currently loaded then issue the below command to unload the driver.
rmmod 1l6aol6

2. Verify that the driver module has been unloaded by issuing the below command. The module name 16a016
should not be in the listed output.

lsmod

50
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

6. Document Source Code Examples
The source code examples included in this document are built into a statically linkable library usable with console

applications. The purpose of these files is to verify that the documentation samples compile and to provide a library
of working sample code to assist in a user’s learning curve and application development effort.

6.1. Files

The library files are summarized in the table below.

Description | Files Location
Source Files | *.c,*.h/docsrc/
Header File | 16a016 dsl.h |../include/
Library File | 16a0l16 dsl.a | ../1lib/

6.2. Build

The library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the
below steps.

1. Change to the directory where the documentation sources are installed (.../docsrc/).
2. Remove existing build targets by issuing the below command.

make clean
3. Compile the sample files and build the library by issuing the below command.

make

4. Rebuild the Main Library (section 3.2.1, page 16).

6.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above
listed header file in each source file using a component of the library interface. At link time include the above listed
static library file with the objects being linked with the application.

51
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

7. Utilities Source Code

The API Library installation includes a body of utility source code designed to aid in the understanding and use of
the interface calls and IOCTL services. Utility sources are also included for device independent and common,
general-purpose services. Most of the utilities are implemented as visual wrappers around the corresponding services
to facilitate structured console output for the sample applications. The utility sources are compiled and linked into
static libraries to simplify their use. An additional purpose of these utility services is to provide a library of working
sample code to assist in a user’s learning curve and application development effort.

For each API function there is a corresponding utility source file with a corresponding utility service. As an
example, for the APl function aol16 open () there is the utility file open.c containing the utility function
aol6 open util (). The naming pattern is as follows: API function ac16 xxxx (), utility file name xxxx.c,
utility function aol16 xxxx_util (). Additionally, for each IOCTL code there is a corresponding utility source
file with a corresponding utility service. As an example, for IOCTL code 2016 TOCTL QUERY there is the utility
file query.c containing the utility function aol16 query (). The naming pattern is as follows: IOCTL code
AOl16 IOCTL XXXX, utility file name xxxx . c, utility function aol6 xxxx ().

7.1. Files

The utility files are summarized in the table below.

Description | Files Location
Source Files | *.c, *.h/utils/
Header File | 16a0l6 utils.h | ../include/
l6aol6 _utils.a
gsc_utils.a

os utils.a

plx utils.a

Library Files ../1ib/

7.2. Build

The libraries are built via the Overall Make Script (section 2.7, page 13), but can be built separately following the
below steps.

1. Change to the directory where the utility sources are installed (.../utils/).
2. Remove existing build targets by issuing the below command.
make clean
3. Compile the sample files and build the library by issuing the below command.
make

4. Rebuild the Main Library (section 3.2.1, page 16).

7.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above
listed header file in each source file using a component of the library interface. At link time include the above listed
static library file with the objects being linked with the application.

52
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

8. Operating Information

This section explains some basic operational procedures for using the 16A016. This is in no way intended to be a
comprehensive guide. This is simply to address a very few issues relating to their use.

8.1. Debugging Aids

The driver package includes the following items useful for development and/or debugging aids.

8.1.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id
example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as
follows.

Description | File | Location
Application | id | ../id/

8.1.2. Detailed Register Dump

Among the utility services provided is a function to generate a detailed listing of device registers to the console.
When used, the function is typically used to verify device configuration. In these cases, the function should be called
after complete device configuration and before the first 1/0 call. When intended for sending to GSC tech support,
please set the detail arguments to 1. The function arguments are as follows. The utility location is given in the
subsequent table.

Argument | Description
fd This is the file descriptor used to access the device.
detail If non-zero the register dump will include details of each register field.

Description | File/Name Location
Function aol6 reg list () | Source File
Source File | reg.c W/utils/

Header File | 16a0l6 utils.h ../include/
Library File | 16a0l6 utils.a |../lib/

8.2. Analog Output Configuration

The basic steps for Analog Output configuration are illustrated in the utility function noted below. The table also
gives the location of the source file, the header file and the corresponding library containing the executable code.

Item Name/File Location
Function aol6 config ao() | Source File
Source File | config ao.c Jutils/
Header File | 16a0l16 utils.h ../include/
Library File | 16a0l16 utils.a ../1ib/

8.3. Data Transfer Modes
All device 1/0O requests move data through intermediate driver buffers on its way between the device and application

memory. The data is processed in chunks no larger than the size of this intermediate buffer. The process used to

53
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

perform this transfer is according to the I/0 mode selection. Movement of data between the application buffers and
the intermediate driver buffers is performed by the kernel.

8.3.1. PIO - Programmed 1/O

In this mode data is transferred using repetitive register accesses. This is most applicable for low throughput
requirements or for small transfer requests. The driver continues the operation until either the 1/0 request is fulfilled
or the 1/O timeout expires, whichever occurs first. This is generally the least efficient mode, but for very small
transfers it is more efficient than DMA.

8.3.2. BMDMA - Block Mode DMA

For DMA transfers, hardware onboard the 16 A016 is used to transfer the data without processor intervention. In this
mode the driver checks for available space in the output buffer. Depending on the size of the write request, the
driver may break the request into smaller transfers in order to ensure data integrity. When sufficient space is
available a DMA transfer is performed. The volume of data moved in a single request is based upon the amount of
data remaining in the request and the amount of space available in the buffer. If the remaining request will fit within
the available space, then the data is transferred. Otherwise, the volume of data that is transferred is based on the
buffer fill level. If the buffer is full, then driver waits one system timer tick before trying again. The process is
repeated until the data is exhausted or the 1/0 timeout expires, whichever occurs first.

8.3.3. DMDMA - Demand Mode DMA

In Demand Mode DMA, data is moved from the intermediate buffer to the output buffer in a single DMA transfer
that occurs over time as the data appears in the output buffer. The process is repeated until the data is exhausted or
the 1/0 timeout expires, whichever occurs first.

8.4. Output Overflow Errors

When output overflow errors occur, they are discovered either because the write service (section 4.6.6, page 24)
returns an error status or because a status query (section 4.7.43, page 41 and section 4.7.44, page 41) is made. The
write service error status returned is —5. This is equivalent to ~-ET0, where the ETO is from errno . h. While these
errors always result in this error status, this error status can also come from other errors within the driver or the
kernel. When this value is returned, an overflow is the most likely cause. Overflow queries may be made at any
time, though there may seldom be a need. Both error conditions result in data loss, the result of which may likely be
desynchronization of the output data with the desired output channels.

8.4.1. Data Overflow

The driver is designed so that write requests should never overflow the output buffer. If a data overflow does occur,
it is because the application explicitly wrote to the Analog Output Data Buffer Register while a write request was
active. When this occurs, data is lost. The volume of data lost corresponds to the number of values written manually
to the output buffer register. The position, or positions, of loss in the data stream is essentially unknown.

8.4.2. Frame Overflow

Frame overflows can occur only when operating the output buffer in recirculating mode. When so doing,
applications must ensure both that an open request is granted before the write begins and that the write concludes
before the buffer closes again. Data is lost when it is written while the output buffer is closed. When this occurs, the
volume of data lost is unknown. Here too, the position, or positions, of loss in the data stream is essentially
unknown.

54
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

8.4.3. Recovery Action

It is common that an application take action to recover from output data loss. The minimum that must be done is
clearing the status bits. This can be done by clearing the buffer (section 4.7.3, page 25), which clears both status bits,
or by clearing each status bit individually (section 4.7.43, page 41 and section 4.7.44, page 41). Clearing the buffer
may be the preferred response as applications may need to reset active output channels to known, safe voltage
levels. Afterwards applications can restart the output stream to resume normal operation.

55
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

9. Sample Applications

The driver archive includes a variety of sample and test applications. While they are provided without support and
without any external documentation, any problems reported will be addressed as time permits. The applications are
command line based and produce text output for display on a console. All of the applications are built via the
Overall Make Script (section 2.7, page 13), but each may be built individually by changing to its respective directory

and issuing the commands “make clean” and “make all”. The initial output from each application includes
information on its supported command line arguments. The following gives a brief overview of each application.

9.1. aout - Analog Output - .../aout/

This application outputs a repeating pattern on the first four output channels. The pattern is different for each
channel, though they are synchronized at the same modest rate.

9.2. clockout - Clock Output - .../clockout/

This application configures the board to drive the digital output signals for a user specified period of time. This is
done to facilitate setup of test equipment to capture those signals during actual use.

9.3. fsamp - Sample Rate - .../fsamp/
This application reports the device configuration required to produce a user specified sample rate.
9.4.id - Identify Board - .../id/

This application reports detailed board identification information. This can be used with tech support to help identify
as much technical information about the board as possible from software.

9.5. mcao - Multi-Channel Analog Output - .../mcao/

This application configures a specified number of channels for operation, and then outputs the designated wave
patterns on the designated channels.

9.6. regs - Register Access - ...Iregs/

This application provides menu based interactive access to the board’s registers, and reports other pertinent
information to the console.

9.7. sbtest - Single Board Test - .../sbtest/

This application performs functional testing of the driver and a user specified board, at least to the extent possible
with just a single board and no additional equipment.

9.8. txrate - Transmit Rate - .../txrate/

This application configures the board for its highest output sample rate then writes output as fast as possible. The
purpose is to measure the peak sustainable output rate for the host, per the provided command line arguments.

56
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

Document History

Revision

Description

February 6, 2025

Updated to version 3.12.111.50.0. Minor editorial changes. Updated the kernel support
table. Updated the information on the NRATE setting. Updated the information on the Query
IOCTL service. Updated information on overflow errors and recovery. Removed the “util ”
prefix from the utility source file names. Added information on data and frame overflow
errors and how to handle them.

August 1, 2024

Updated to version 3.11.111.50.0. Numerous, minor editorial changes. Updated the kernel
support table. Added information on the shared object script (section 3.2.3, page 17).

June 28, 2023

Updated to version 3.10.104.47.0. Updated the kernel support table. Numerous, minor
editorial changes. Updated the description of the Output Buffer Clear service. Updated the
description of the Autocalibration service. Renamed all Auto_Cal content to Autocal.
Renamed all Auto Cal Sts content to Autocal Status.

January 30, 2023

Updated to version 3.9.102.44.0. Added notes regarding the autocalibration IOCTL service.

January 23, 2023

Updated to version 3.8.102.44.0. Updated the information for the open and close calls.
Reorganized the operations section and added 1/O transfer information. Minor editorial
alterations. Added support for the 16A016FLV. Added support for various features and
query options: Voltage Range, Cable Invert, Cable Passive, Model, Output Capacity,
Output Filter and Watchdog Bit.

July 6, 2022

Updated to version 3.7.100.42.0. Expanded automatic startup information. Minor editorial
alterations. Updated information on the main library and its use. Updated the kernel support
table. Added section on environment variables.

February 24, 2021

Updated to version 3.6.93.35.0. Updated the kernel support table. Minor editorial changes.
Added WAIT_EVENT note. Corrected the description of the XCVR_TYPE service.
Expanded automatic startup information. Added notes on the voltage range selection
following initialization.

July 15, 2019

Updated to version 3.5.86.28.0. Updated the kernel support table. Minor editorial updates.
Added a licensing subsection.

May 16, 2019

Updated to version 3.4.85.27.0. Minor editorial changes. Minor paragraph updates. Updated
the software architecture figure.

October 24, 2018

Updated to version 3.3.81.26.1. Various editorial changes. Added debugging aids. Changed
GSC WAIT IO XXXt0AO16 WAIT IO XXX.

October 23, 2018

Updated to version 3.3.81.26.0. Updated the inside cover page. Updated Block Mode DMA
macro and associated information.

June 7, 2018

Updated to version 3.2.77.22.1. The API Library is now implemented as a shared library.

June 1, 2018

Updated to version 3.2.77.22.0. Document reorganization. Numerous, minor editorial
changes. Updated the CPU and kernel support section.

November 30, 2016

Updated to version 3.1.68.18.0. Removed the built field from the /proc/ file. Updated
the kernel support table. Updated the command line arguments for the fsamp, aout and
txrate sample applications. Organized the sample applications alphabetically. Added the
mcao sample application. Updated the usage of the Wait Event timeout ms field.
Updated material on the open call. Added open access mode descriptions. Added support
for infinite I/O timeouts. Added a section for general operating information. Made various
miscellaneous updates. Some document reorganization.

September 14, 2015

Updated to version 3.0.60.8.0. Removed double underscore that prefaced various data
types.

October 23, 2014

Updated to version 2.6.57.0.

July 18, 2014

Updated to version 2.6.53.0. Changed the device name from 16a0l16n to 16a016.n.
Added support for Demand Mode DMA. Expanded the Voltage Range IOCTL service.
Added the Cable Polarity IOCTL services. Added the Cable Isolation IOCTL services.
Added the Cable Polarity IOCTL services.

February 27, 2014

Updated to version 2.5.52.0. Updated the kernel support table.

January 9, 2014

Updated to version 2.4.51.1. Updated the kernel support table.

57
General Standards Corporation, Phone: (256) 880-8787

16A016 Linux Device Driver User Manual

January 7, 2014

Updated to version 2.4.51.0.

November 8, 2013

Updated to version 2.4.48.0.

July 3, 2013 Updated to version 2.4.45.0. Updated the kernel support table.
September 5, 2012 Updated to version 2.4.39.1.
July 18, 2012 Updated to version 2.4.39.0. Updated the kernel support table.

December 12, 2011

Updated to version 2.3.34.0.

October 31, 2011

Updated to version 2.2.30.0. Various editorial changes. Removed the IRQ_ENABLE and
IRQ_STATUS IOCTL services. Renamed the IRQ_SEL IOCTL service values to IRQ.
Updated the CPU and Kernel Support information. Updated the comments for the Initialize
IOCTL service. Changed the spelling of various Autocalibration related software items.

December 24, 2009

Updated to version 2.1.13.0.

November 16, 2009

Updated to wversion 2.1.11.0. Corrected minor document errors. Changed
AOl6_ IOCTL BUFFER STATE to AOl6 IOCTL BUFFER STATUS. Added more
sample applications.

November 4, 2009

Updated to version 2.0.10.0. The interface was overhauled.

September 29, 2008

Updated to version 1.3.0.

February 6, 2007

Updated to version 1.2.0.

July 1, 2005

Initial release.

58
General Standards Corporation, Phone: (256) 880-8787

