
16AO16
16-Bit, 16 Channel High-Speed Analog Output Board

All Form Factors
…-16AO16/FLV

Linux Device Driver
And API Library

User Manual

Manual Revision: June 28, 2023

Driver Release Version 3.10.104.47.0

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

16AO16 Linux Device Driver User Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2003-2023, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or

software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Although extensive editing and reviews are performed before release, General Standards Corporation assumes no

responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are

made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this

documentation.

General Standards Corporation does not assume any liability arising out of the application or use of

documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or

any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,

software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

16AO16 Linux Device Driver User Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 8

1.1. Purpose .. 8

1.2. Acronyms ... 8

1.3. Definitions .. 8

1.4. Software Overview .. 8
1.4.1. Basic Software Architecture ... 8
1.4.2. API Library ... 9
1.4.3. Device Driver ... 9

1.5. Hardware Overview .. 9

1.6. Reference Material .. 9

1.7. Licensing .. 10

2. Installation ... 11

2.1. CPU and Kernel Support ... 11
2.1.1. 32-bit Support Under 64-bit Environments .. 12

2.2. The /proc/ File System .. 12

2.3. File List .. 12

2.4. Directory Structure ... 12

2.5. Installation ... 13

2.6. Removal ... 13

2.7. Overall Make Script ... 13

2.8. Environment Variables .. 14
2.8.1. GSC_API_COMP_FLAGS .. 14
2.8.2. GSC_API_LINK_FLAGS .. 14
2.8.3. GSC_LIB_COMP_FLAGS .. 14
2.8.4. GSC_LIB_LINK_FLAGS .. 15
2.8.5. GSC_APP_COMP_FLAGS ... 15
2.8.6. GSC_APP_LINK_FLAGS ... 15

3. Main Interface Files .. 16

3.1. Main Header File .. 16

3.2. Main Library File ... 16
3.2.1. Build ... 16
3.2.2. System Libraries ... 17

4. API Library ... 18

4.1. Files .. 18

4.2. Build ... 18

4.3. Library Use .. 18

4.4. Macros.. 19
4.4.1. IOCTL Services .. 19

16AO16 Linux Device Driver User Manual

4

General Standards Corporation, Phone: (256) 880-8787

4.4.2. Registers ... 19

4.5. Data Types ... 19

4.6. Functions.. 19
4.6.1. ao16_close() ... 20
4.6.2. ao16_init() .. 20
4.6.3. ao16_ioctl() .. 21
4.6.4. ao16_open() .. 22
4.6.5. ao16_read() ... 23
4.6.6. ao16_write() ... 24

4.7. IOCTL Services ... 25
4.7.1. AO16_IOCTL_AUTOCAL .. 25
4.7.2. AO16_IOCTL_AUTOCAL_STATUS ... 25
4.7.3. AO16_IOCTL_BUFFER_CLEAR ... 25
4.7.4. AO16_IOCTL_BUFFER_MODE .. 26
4.7.5. AO16_IOCTL_BUFFER_OVER_DATA .. 26
4.7.6. AO16_IOCTL_BUFFER_OVER_FRAME ... 26
4.7.7. AO16_IOCTL_BUFFER_SIZE ... 27
4.7.8. AO16_IOCTL_BUFFER_STATUS ... 27
4.7.9. AO16_IOCTL_BURST_ENABLE .. 28
4.7.10. AO16_IOCTL_BURST_READY .. 28
4.7.11. AO16_IOCTL_BURST_TRIG_SRC ... 28
4.7.12. AO16_IOCTL_BURST_TRIGGER ... 29
4.7.13. AO16_IOCTL_CBL_ISO_CLOCK_IO ... 29
4.7.14. AO16_IOCTL_CBL_ISO_DAC_CLK_OUT .. 29
4.7.15. AO16_IOCTL_CBL_ISO_TRIG_OUT ... 30
4.7.16. AO16_IOCTL_CBL_POL_CLOCK_IO .. 30
4.7.17. AO16_IOCTL_CBL_POL_DAC_CLK_OUT ... 30
4.7.18. AO16_IOCTL_CBL_POL_TRIG_IN .. 31
4.7.19. AO16_IOCTL_CBL_POL_TRIG_OUT .. 31
4.7.20. AO16_IOCTL_CHANNEL_SEL... 31
4.7.21. AO16_IOCTL_CLOCK_ENABLE ... 32
4.7.22. AO16_IOCTL_CLOCK_READY ... 32
4.7.23. AO16_IOCTL_CLOCK_REF_SRC .. 32
4.7.24. AO16_IOCTL_CLOCK_SRC .. 32
4.7.25. AO16_IOCTL_CLOCK_SW ... 33
4.7.26. AO16_IOCTL_DATA_FORMAT ... 33
4.7.27. AO16_IOCTL_GROUND_SENSE ... 33
4.7.28. AO16_IOCTL_INITIALIZE .. 34
4.7.29. AO16_IOCTL_IRQ_SEL ... 34
4.7.30. AO16_IOCTL_LOAD_READY .. 34
4.7.31. AO16_IOCTL_LOAD_REQUEST .. 35
4.7.32. AO16_IOCTL_NCLK .. 35
4.7.33. AO16_IOCTL_NRATE ... 35
4.7.34. AO16_IOCTL_OUTPUT_FILTER ... 35
4.7.35. AO16_IOCTL_OUTPUT_MODE ... 36
4.7.36. AO16_IOCTL_QUERY ... 36
4.7.37. AO16_IOCTL_RANGE ... 38
4.7.38. AO16_IOCTL_REG_MOD ... 39
4.7.39. AO16_IOCTL_REG_READ .. 39
4.7.40. AO16_IOCTL_REG_WRITE .. 40
4.7.41. AO16_IOCTL_TX_IO_ABORT .. 40
4.7.42. AO16_IOCTL_TX_IO_MODE ... 40
4.7.43. AO16_IOCTL_TX_IO_OVER_DATA ... 41
4.7.44. AO16_IOCTL_TX_IO_OVER_FRAME ... 41

16AO16 Linux Device Driver User Manual

5

General Standards Corporation, Phone: (256) 880-8787

4.7.45. AO16_IOCTL_TX_IO_TIMEOUT ... 42
4.7.46. AO16_IOCTL_WAIT_CANCEL .. 42
4.7.47. AO16_IOCTL_WAIT_EVENT ... 43
4.7.48. AO16_IOCTL_WAIT_STATUS ... 44
4.7.49. AO16_IOCTL_WATCHDOG_ENABLE .. 45
4.7.50. AO16_IOCTL_WATCHDOG_OUTPUT .. 46
4.7.51. AO16_IOCTL_XCVR_TYPE .. 46

5. The Driver.. 47

5.1. Files .. 47

5.2. Build ... 47

5.3. Startup ... 47
5.3.1. Manual Driver Startup Procedures ... 47
5.3.2. Automatic Driver Startup Procedures ... 48

5.4. Verification .. 50

5.5. Version ... 50

5.6. Shutdown ... 50

6. Document Source Code Examples ... 51

6.1. Files .. 51

6.2. Build ... 51

6.3. Library Use .. 51

7. Utilities Source Code... 52

7.1. Files .. 52

7.2. Build ... 52

7.3. Library Use .. 52

8. Operating Information ... 53

8.1. Debugging Aids ... 53
8.1.1. Device Identification .. 53
8.1.2. Detailed Register Dump ... 53

8.2. Analog Output Configuration .. 53

8.3. Data Transfer Modes .. 53
8.3.1. PIO - Programmed I/O ... 54
8.3.2. BMDMA - Block Mode DMA ... 54
8.3.3. DMDMA - Demand Mode DMA ... 54

9. Sample Applications ... 55

9.1. aout - Analog Output - …/aout/ ... 55

9.2. clockout - Clock Output - …/clockout/ .. 55

9.3. fsamp - Sample Rate - …/fsamp/ ... 55

9.4. id - Identify Board - …/id/ .. 55

9.5. mcao - Multi-Channel Analog Output - …/mcao/ .. 55

16AO16 Linux Device Driver User Manual

6

General Standards Corporation, Phone: (256) 880-8787

9.6. regs - Register Access - …/regs/ ... 55

9.7. sbtest - Single Board Test - …/sbtest/ .. 55

9.8. txrate - Transmit Rate - …/txrate/ .. 55

Document History ... 56

16AO16 Linux Device Driver User Manual

7

General Standards Corporation, Phone: (256) 880-8787

Table of Figures

Figure 1 Basic architectural representation.. 9

16AO16 Linux Device Driver User Manual

8

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

1.1. Purpose

The purpose of this document is to describe the interface to the 16AO16 API Library and to the underlying Linux

device driver. The API Library software provides the interface between "Application Software" and the device

driver. The driver software provides the interface between the API Library and the actual 16AO16 hardware. The

API Library and driver interfaces are based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms Description

API Application Programming Interface

BMDMA Block Mode DMA

DAC Digital to Analog Converter

DMA Direct Memory Access

DMDMA Demand Mode DMA

GSC General Standards Corporation

PCI Peripheral Component Interconnect

PIO Programmed I/O

PMC PCI Mezzanine Card

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

… This is a shortcut representation of the 16AO16 installation directory or any of its subdirectories.

16AO16 This is used as a general reference to any board supported by this driver.

API Library This is a library that provides application-level access to 16AO16 hardware.

Application This is a user mode process, which runs in user space with user mode privileges.

Driver This is the 16AO16 device driver, which runs in kernel space with kernel mode privileges.

Library This is usually a general reference to the API Library.

1.4. Software Overview

1.4.1. Basic Software Architecture

This section describes the general architecture for the basic components that comprise 16AO16 applications. The

overall architecture is illustrated in Figure 1 below.

16AO16 Linux Device Driver User Manual

9

General Standards Corporation, Phone: (256) 880-8787

16AO16

Device Driver

16ao16.ko or

16ao16.o

16AO16

API Library
lib16ao16_api.so

ao16_init()

ao16_open()

ao16_close()

ao16_ioctl()

ao16_read()

ao16_write()

/proc/16ao16 Informational

/dev/16ao16.0 Device 0

/dev/16ao16.1 Device 1

/dev/16ao16.X Device X

...
16AO16

Boards

16AO16

Application

Hardware Level

Kernel Level

Application Level

Figure 1 Basic architectural representation.

1.4.2. API Library

The primary means of accessing 16AO16 boards is via the 16AO16 API Library. This library forms a thin layer

between the application and the driver. Additional information is given in section 4 (page 18). With the library,

applications are able to open and close a device and, while open, perform I/O control and read and write operations.

1.4.3. Device Driver

The device driver is the host software that provides a means of communicating directly with 16AO16 hardware.

The driver executes under control of the operating system and runs in Kernel Mode as a Kernel Mode device driver.

The driver is implemented as a standard dynamically loadable Linux device driver written in the C programming

language. While applications can access the driver directly without use of the API Library, it is recommended that

all access is made through the library.

1.5. Hardware Overview

The 16AO16 is a 16-channel high speed analog output board. Each channel has a dedicated D/A converter that

provides 16-bits of resolution at up to 450K samples per second. Working together the active channels can operate at

an aggregate rate of up to 7.2M samples per second. An on-board FIFO of 256K samples buffers streaming data

between the PCI interface and the cable interface. The FIFO can also be used for pattern generation by recycling

data written to the FIFO. The PCI interface is compliant with PCI Revision 2.3, operates at up to 66MHz and

supports universal signaling (3.3V or 5V). The cable interface output voltage range is selectable as ±10 Volts, ±5

Volts, ±2.5 Volts or ±1.25 Volts. The analog outputs support 3-wire balanced differential operation or, optionally, 2-

wire single ended operation. The clocking source can be either the on-board clock or an external clock. The board

also supports multi-board synchronization.

1.6. Reference Material

The following reference material may be of particular benefit in using the 16AO16. The specifications provide the

information necessary for an in depth understanding of the specialized features implemented on this board.

• The applicable 16AO16 User Manual from General Standards Corporation.

file:///C:/gsc/16ao16/linux/doc/software_architecture.vsd

16AO16 Linux Device Driver User Manual

10

General Standards Corporation, Phone: (256) 880-8787

• The PCI9056 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE.txt in the root installation directory.

http://www.plxtech.com/

16AO16 Linux Device Driver User Manual

11

General Standards Corporation, Phone: (256) 880-8787

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 6.x, 5.x, 4.x, 3.x, 2.6, 2.4 and 2.2 running on a PC

system with one or more x86 processors. This release of the driver supports the below listed kernels.

Kernel Distribution

6.0.7 Red Hat Fedora Core 37

5.17.5 Red Hat Fedora Core 36

5.14.10 Red Hat Fedora Core 35

5.11.12 Red Hat Fedora Core 34

5.8.15 Red Hat Fedora Core 33

5.6.6 Red Hat Fedora Core 32

5.3.7 Red Hat Fedora Core 31

5.0.9 Red Hat Fedora Core 30

4.18.16 Red Hat Fedora Core 29

4.16.3 Red Hat Fedora Core 28

4.13.9 Red Hat Fedora Core 27

4.11.8 Red Hat Fedora Core 26

4.8.6 Red Hat Fedora Core 25

4.5.5 Red Hat Fedora Core 24

4.2.3 Red Hat Fedora Core 23

4.0.4 Red Hat Fedora Core 22

3.17.4 Red Hat Fedora Core 21

3.11.10 Red Hat Fedora Core 20

3.9.5 Red Hat Fedora Core 19

3.6.10 Red Hat Fedora Core 18

3.3.4 Red Hat Fedora Core 17

3.1.0 Red Hat Fedora Core 16

2.6.38 Red Hat Fedora Core 15

2.6.35 Red Hat Fedora Core 14

2.6.33 Red Hat Fedora Core 13

2.6.31 Red Hat Fedora Core 12

2.6.29 Red Hat Fedora Core 11

2.6.27 Red Hat Fedora Core 10

2.6.25 Red Hat Fedora Core 9

2.6.23 Red Hat Fedora Core 8

2.6.21 Red Hat Fedora Core 7

2.6.18 Red Hat Fedora Core 6

2.6.15 Red Hat Fedora Core 5

2.6.11 Red Hat Fedora Core 4

2.6.9 Red Hat Fedora Core 3

NOTE: Some older kernel versions are supported (the sources are maintained), but are not tested.

NOTE: While only Red Hat Fedora distributions are listed, numerous other distributions are

supported and have been tested on an as needed basis.

NOTE: The driver will have to be built before being used as it is provided in source form only.

NOTE: The driver has not been tested with a non-versioned kernel.

16AO16 Linux Device Driver User Manual

12

General Standards Corporation, Phone: (256) 880-8787

NOTE: The driver is designed for SMP support, but has not undergone SMP specific testing.

2.1.1. 32-bit Support Under 64-bit Environments

This driver supports 32-bit applications under 64-bit environments. The availability of this feature in the kernel

depends on a 64-bit kernel being configured to support 32-bit application compatibility. Additionally, 2.6 kernels

prior to 2.6.11 implemented 32-bit compatibility in a way that resulted in some drivers not being able to take

advantage of the feature. (In these kernels a driver’s IOCTL command codes must be globally unique. Beginning

with 2.6.11 this requirement has been lifted.) If the driver is not able to provide 32-bit support under a 64-bit kernel,

the “32-bit support” field in the /proc/16ao16 file will be “no”.

2.2. The /proc/ File System

While the driver is running, the text file /proc/16ao16 can be read to obtain information about the driver and the

boards it detects. Each file entry includes an entry name followed immediately by a colon, a space character, and the

entry value. Below is an example of what appears in the file, followed by descriptions of each entry.

version: 3.10.104.47

32-bit support: yes

boards: 1

models: 16AO16

Entry Description

version This gives the driver version number in the form x.x.x.x.

32-bit support
This reports the driver’s support for 32-bit applications. This will be either “yes” or “no”

for 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.

models

This gives a comma separated list of the basic model number for each board the driver

detected. The model numbers are listed in the same order that the boards are accessed via

the API Library’s open function.

2.3. File List

This release consists of the below listed primary files. The archive content is described in following subsections.

File Description
16ao16.linux.tar.gz This archive contains the driver, the API Library and all related files.
16ao16_linux_um.pdf This is a PDF version of this user manual, which is included in the archive.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory

structure is created and populated with the respective files.

Directory Description

16ao16/
This is the driver root directory. It contains the documentation, the Overall Make Script (section

2.7, page 13) and the below listed subdirectories.
…/api/ This directory contains the API Library source files (section 4, page 18).

…/docsrc/
This directory contains the source files for the code samples given in this document (section 6,

page 51).
…/driver/ This directory contains the device driver source files (section 5, page 47).
…/include/ This directory contains the header files for the various libraries.
…/lib/ This directory contains all of the libraries built from the installed sources.

16AO16 Linux Device Driver User Manual

13

General Standards Corporation, Phone: (256) 880-8787

…/samples/
This directory contains the sample application subdirectories and all of their corresponding

source files (section 9, page 55).

…/utils/
This directory contains the source files for the utility libraries used by the sample applications

(section 7, page 52).

2.5. Installation

Perform installation following the below listed steps. This installs the device driver, the API Library and all related

sources and documentation.

1. Create and change to the directory where the files are to be installed, such as /usr/src/linux/drivers/.

(The path name may vary among distributions and kernel versions.)

2. Copy the archive file 16ao16.linux.tar.gz into the current directory.

3. Issue the following command to decompress and extract the files from the provided archive. This creates the

directory 16ao16 in the current directory, and then copies all of the archive’s files into this new directory.

tar –xzvf 16ao16.linux.tar.gz

2.6. Removal

Perform removal following the below listed steps. This removes the device driver, the API Library and all related

sources and documentation.

NOTE: The following steps may require elevated privileges.

1. Shutdown the driver as described in section 5.6 (page 50).

2. Change to the directory where the driver archive was installed, which may have been

/usr/src/linux/drivers/. (The path name may vary among distributions and kernel versions.)

3. Issue the below command to remove the driver archive and all of the installed driver files.

rm -rf 16ao16.linux.tar.gz 16ao16

4. Issue the below command to remove all of the installed device nodes.

rm -f /dev/16ao16.*

5. If the automatic startup procedure was adopted (section 5.3.2, page 48), then edit the system startup script

rc.local and remove the line that invokes the 16AO16’s start script. The file rc.local should be

located in the /etc/rc.d/ directory.

2.7. Overall Make Script

An Overall Make Script is included in the root installation directory. Executing this script will perform a make for

all build targets included in the release. The script also loads the driver and copies the API Library to /usr/lib/.

The script is named make_all. Follow the below steps to perform an overall make and to load the driver.

NOTE: The following steps may require elevated privileges.

1. Change to the driver root directory (…/16ao16/).

16AO16 Linux Device Driver User Manual

14

General Standards Corporation, Phone: (256) 880-8787

2. Remove existing build targets using the below command. This does not unload the driver.

./make_all clean

3. Issue the following command to make all archive targets and to load the driver.

./make_all

2.8. Environment Variables

Some build environments may require compiler or linker options not present in the provided make files. To

accommodate local environment specific requirements, the provided make files incorporate support for the

following set of GSC specific environment variables.

2.8.1. GSC_API_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the API Library. The compiler used by the API Library make file is “gcc”. The content of this environment variable

is noted in the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in

the table refers to the contents of the environment variable. This environment variable has no effect on compiling

any other distributed source files or linking of any object files.

Undefined

or Empty

== Compiling: init.c

== Compiling: ioctl.c

== Compiling: open.c

Defined and

Not Empty

== Compiling: init.c (added 'xxx')

== Compiling: ioctl.c (added 'xxx')

== Compiling: open.c (added 'xxx')

2.8.2. GSC_API_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the API

Library. The linker used by the API Library make file is “ld”. The content of this environment variable is noted in

the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in the table

refers to the contents of the environment variable. This environment variable has no effect on compiling of any

source files or linking of any other object files.

Undefined

or Empty
==== Linking: ../lib/lib16ao16_api.so

Defined and

Not Empty
==== Linking: ../lib/lib16ao16_api.so (added 'xxx')

2.8.3. GSC_LIB_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the utility libraries. The compiler used by the utility library make files is “gcc”. The content of this environment

variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The

“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on

compiling any other distributed source files or linking of any object files.

16AO16 Linux Device Driver User Manual

15

General Standards Corporation, Phone: (256) 880-8787

Undefined

or Empty

== Compiling: close.c

== Compiling: init.c

== Compiling: ioctl.c

Defined and

Not Empty

== Compiling: close.c (added 'xxx')

== Compiling: init.c (added 'xxx')

== Compiling: ioctl.c (added 'xxx')

2.8.4. GSC_LIB_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the

utility libraries. The linker used by the utility library make files is “ld”. The content of this environment variable is

noted in the make files’ output to the screen. The table below shows a portion of the screen output. The “xxx” in the

table refers to the contents of the environment variable. This environment variable has no effect on compiling of any

source files or linking of any other object files.

Undefined

or Empty
==== Linking: ../lib/16ao16_utils.a

Defined and

Not Empty
==== Linking: ../lib/16ao16_utils.a (added 'xxx')

2.8.5. GSC_APP_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the sample applications. The compiler used by the sample application make files is “gcc”. The content of this

environment variable is noted in the make files’ output to the screen. The table below shows a portion of the screen

output. The “xxx” in the table refers to the contents of the environment variable. This environment variable has no

effect on compiling any other distributed source files or linking of any object files.

Undefined

or Empty

== Compiling: main.c

== Compiling: perform.c

Defined and

Not Empty

== Compiling: main.c (added 'xxx')

== Compiling: perform.c (added 'xxx')

2.8.6. GSC_APP_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the

sample applications. The linker used by the sample application make files is “gcc”. The content of this environment

variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The

“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on

compiling of any source files or linking of any other object files.

Undefined

or Empty
==== Linking: id

Defined and

Not Empty
==== Linking: id (added 'xxx')

16AO16 Linux Device Driver User Manual

16

General Standards Corporation, Phone: (256) 880-8787

3. Main Interface Files

This section gives general information on the suggested device interface files to use when developing 16AO16

based applications.

3.1. Main Header File

Throughout the remainder of this document references are made to various header files included as part of the

16AO16 driver installation. For ease of use it is suggested that applications include only the single header file shown

below rather than individually including those headers identified separately later in this document. Including this

header file pulls in all other pertinent 16AO16 specific header files. Therefore, sources may include only this one

16AO16 header and make files may reference only this one 16AO16 include directory.

Description File Location

Header File 16ao16_main.h …/include/

3.2. Main Library File

Throughout the remainder of this document references are made to various statically linkable libraries included as

part of the 16AO16 driver installation. For ease of use it is suggested that applications link only the single library

file shown below rather than individually linking those libraries identified separately later in this document. Linking

this library file pulls in all other static libraries included with the driver. Therefore, make files may reference only

this one 16AO16 static library and only this one 16AO16 library directory.

Description File Location

Static Library
16ao16_main.a

…/lib/
16ao16_multi.a

NOTE: For applications using the 16AO16 and no other GSC devices, link the

16ao16_main.a library. For applications using multiple GSC device types, link the

xxxx_main.a library for one of the devices and the xxxx_multi.a library for the others.

Linking multiple xxxx_main.a libraries may likely produce link errors due to duplicate

symbols being defined. While it may make little or no difference, it is recommended that one

choose the xxxx_main.a library from the driver with the largest number in positions three

(x.x.X.x.x) and/or four (x.x.x.X.x) in the driver release version number.

NOTE: The 16AO16 API Library is implemented as a shared library and is thus not linked with

the 16AO16 Main Library. The API Library must be linked with applications by adding the

argument –l16ao16_api to the linker command line.

3.2.1. Build

The main library is built via the Overall Make Script (section 2.7, page 13). However, the main library can be built

separately following the below steps.

1. Change to the directory where the main library resides (…/lib/).

2. Remove existing build targets using the below command.

make clean

3. Rebuild the main library by issuing the below command.

make

16AO16 Linux Device Driver User Manual

17

General Standards Corporation, Phone: (256) 880-8787

3.2.2. System Libraries

In addition to linking the static library named above, as well as the API Library shared object file, applications may

need to also link in additional system libraries as noted below.

Library gcc Link Flag

Math -lm

POSIX Thread -lpthread

Real Time -lrt

16AO16 Linux Device Driver User Manual

18

General Standards Corporation, Phone: (256) 880-8787

4. API Library

The 16AO16 API Library is the software interface between user applications and the 16AO16 device driver. The

interface is accessed by including the header file 16ao16_api.h.

NOTE: Contact General Standards Corporation if additional library functionality is required.

4.1. Files

The library files are summarized in the table below.

Description File Location

Source Files *.c, *.h … …/api/

Header File 16ao16_api.h …/include/

Library File lib16ao16_api.so
…/lib/

/usr/lib/ †

† The shared object library is automatically copied to /usr/lib/ when it is built.

4.2. Build

The API Library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the

below steps.

NOTE: The API Library shared library is copied to /usr/lib/. Therefore, these steps may

require elevated privileges.

1. Change to the directory where the library sources are installed (…/api/).

2. Remove existing build targets using the below command.

make clean

3. Compile the source files and build the library by issuing the below command. This step copies the API Library

file to /usr/lib/.

make

4.3. Library Use

The library is used at application compile time, at application link time and at application run time. At compile time

include the below listed header file in each source file using a component of the Library interface. Also, edit the

include file search path to locate the header file in the below listed directory. At link time the Library’s shared object

file is linked via the linker command line. This can be done by naming the .so file explicitly or by adding the below

linker command line argument. At run time the library is found in the directory /usr/lib/. (The shared object

file is automatically copied to /usr/lib/ when it is built.)

Description File Location Linker Argument

Header File 16ao16_api.h …/include/

Shared Object Library lib16ao16_api.so
…/lib/

/usr/lib/ -l16ao16_api

16AO16 Linux Device Driver User Manual

19

General Standards Corporation, Phone: (256) 880-8787

4.4. Macros

The API Library and driver interfaces include the following macros, which are defined in 16ao16.h.

4.4.1. IOCTL Services

The IOCTL macros are documented in section 4.7 beginning on page 25.

4.4.2. Registers

The following gives the complete set of 16AO16 registers.

4.4.2.1. GSC Registers

The following tables give the complete set of GSC specific 16AO16 registers. For detailed definitions of these

registers refer to the relevant 16AO16 User Manual. Please note that the set of registers supported by any given

device may vary according to model and firmware version. For the set of supported registers and detailed definitions

of these registers please refer to the appropriate 16AO16 User Manual.

NOTE: Refer to the output of the “id” sample application (…/id/) for a complete list of the

registers supported by the device being accessed.

Macro Description
AO16_GSC_ACR Adjustable Clock Register (ACR)
AO16_GSC_AVR Autocalibration Values Register (AVR)
AO16_GSC_BCR Board Control Register (BCR)
AO16_GSC_BOR Buffer Operations Register (BOR)
AO16_GSC_CSR Channel Selection Register (CSR)
AO16_GSC_FOR Firmware Options Register (FOR)
AO16_GSC_ODBR Output Data Buffer Register (ODBR)
AO16_GSC_SRR Sample Rate Register (SRR)

4.4.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of the PCI

register identifiers refer to the driver header file gsc_pci9056.h, which is automatically included via

16ao16_api.h.

4.4.2.3. PLX PCI9056 Feature Set Registers

Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX

register identifiers refer to the driver header file gsc_pci9056.h, which is automatically included via

16ao16_api.h.

4.5. Data Types

The data types used by the API Library are described with the IOCTL services with which they are used.

4.6. Functions

The interface includes the following functions. The return values reflect the completion status of the requested

operation. A return value less than zero always reflects an error condition. The table below summarizes the error

status values. For the I/O function, read, non-negative return values reflect the number of bytes transferred between

the application and the interface. A value equal to the requested transfer size indicates complete success. Return

16AO16 Linux Device Driver User Manual

20

General Standards Corporation, Phone: (256) 880-8787

values less than the requested transfer size indicate that the I/O timeout expired. For the other API function calls a

return value of zero indicates success.

Return Value Description
< 0 This is the value “(-errno)” (see errno.h).

4.6.1. ao16_close()

This function is the entry point to close a connection to an open 16AO16 board. The board is put in an initialized

state before this call returns.

Prototype

int ao16_close(int fd);

Argument Description
fd This is the file descriptor of the device to be closed.

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "16ao16_dsl.h"

int ao16_close_dsl(int fd)

{

 int errs;

 int ret;

 ret = ao16_close(fd);

 if (ret)

 printf("ERROR: ao16_close() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.2. ao16_init()

This function is the entry point to initializing the 16AO16 API Library and must be the first call into the Library.

This function may be called more than once, but only the first successful call actually initializes the library.

Subsequent calls perform no operation at all. All other API calls return a failure status when the API Library is not

initialized.

Prototype

int ao16_init(void);

16AO16 Linux Device Driver User Manual

21

General Standards Corporation, Phone: (256) 880-8787

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "16ao16_dsl.h"

int ao16_init_dsl(void)

{

 int errs;

 int ret;

 ret = ao16_init();

 if (ret)

 printf("ERROR: ao16_init() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.3. ao16_ioctl()

This function is the entry point to performing setup and control operations on a 16AO16 board. This function should

only be called after a successful open of the respective device. The specific operation performed varies according to

the request argument. The request argument also governs the use and interpretation of the arg argument. The

set of supported options for the request argument consists of the IOCTL services supported by the driver, which

are defined in section 4.7 beginning on page 25.

NOTE: IOCTL operations are not supported for an open on device index -1.

Prototype

int ao16_ioctl(int fd, int request, void* arg);

Argument Description
fd This is the file descriptor of the device to access.
request This specifies the desired operation to be performed (section 4.7, page 25).

arg This is specific to the IOCTL operation specified by the request argument.

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "16ao16_dsl.h"

int ao16_ioctl_dsl(int fd, int request, void* arg)

{

16AO16 Linux Device Driver User Manual

22

General Standards Corporation, Phone: (256) 880-8787

 int errs;

 int ret;

 ret = ao16_ioctl(fd, request, arg);

 if (ret)

 printf("ERROR: ao16_ioctl() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.4. ao16_open()

This function is the entry point to open a connection to a 16AO16 board. Before returning, the initialize IOCTL

service is called to reset all hardware and software settings to their defaults.

Prototype

int ao16_open(int device, int share, int* fd);

Argument Description
device This is the zero-based index of the 16AO16 to access. †

share
Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).

fd

The device handle is returned here. The pointer cannot be NULL. Values returned are as

follows.

Value Description
>= 0 This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

† If the index value is -1, then the API Library accesses /proc/16ao16.

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "16ao16_dsl.h"

int ao16_open_dsl(int device, int share, int* fd)

{

 int errs;

 int ret;

 ret = ao16_open(device, share, fd);

 if (ret)

 printf("ERROR: ao16_open() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

16AO16 Linux Device Driver User Manual

23

General Standards Corporation, Phone: (256) 880-8787

}

4.6.4.1. Access Modes

The value of the share argument determines the device access mode, as follows.

Shared Access Mode:

Shared Access Mode allows multiple applications to access the same device simultaneously. In this mode, the first

successful open request returns with the device in an initialized state. Subsequent successful Shared Access Mode

open requests do not affect the state of the device. Once opened in Shared Access Mode, the device access remains

in this mode until all Shared Access Mode accesses release the device with a close request.

Exclusive Access Mode:

Exclusive Access Mode allows a single application to acquire exclusive access to a device. In this mode, a

successful open request returns with the device in an initialized state. While open in this mode all subsequent open

requests will fail regardless of the access mode requested. Once opened in Exclusive Access Mode, the device

access remains in this mode until released by the application with a close request.

4.6.5. ao16_read()

This function is the entry point to reading data from an open connection. The function reads up to bytes bytes

from the device.

NOTE: If an open was performed using an index of -1, then read requests will acquire driver

information (section 2.2, page 12).

NOTE: The read service has no functionality for reading from 16AO16 devices. Attempts to read

from 16AO16 devices will return an error.

Prototype

int ao16_read(int fd, void* dst, size_t bytes);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
dst The data read will be put here.
bytes This is the desired number of bytes to read.

Return Value Description

0 to bytes The operation succeeded. A value less than bytes indicates that the request timed out.

< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "16ao16_dsl.h"

int ao16_read_dsl(int fd, void* dst, size_t bytes, size_t* qty)

{

 int errs;

 int ret;

16AO16 Linux Device Driver User Manual

24

General Standards Corporation, Phone: (256) 880-8787

 ret = ao16_read(fd, dst, bytes);

 if (ret < 0)

 printf("ERROR: ao16_read() returned %d\n", ret);

 if (qty)

 qty[0] = (ret < 0) ? 0 : (size_t) ret;

 errs = (ret < 0) ? 1 : 0;

 return(errs);

}

4.6.6. ao16_write()

This function is the entry point to writing data to an open 16AO16. This function should only be called after a

successful open of the respective device. The function writes up to bytes bytes to the board.

NOTE: Write requests are not supported for an open on device index -1.

Prototype

int ao16_write(int fd, const void* src, size_t bytes);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
src The data written comes from here.
bytes This is the desired number of bytes to write. This must be a multiple of four (4).

Return Value Description

0 to bytes The operation succeeded. A value less than bytes indicates that the request timed out.

< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "16ao16_dsl.h"

int ao16_write_dsl(int fd, const void* src, size_t bytes, size_t*

qty)

{

 int errs;

 int ret;

 ret = ao16_write(fd, src, bytes);

 if (ret < 0)

 printf("ERROR: ao16_write() returned %d\n", ret);

 if (qty)

 qty[0] = (ret < 0) ? 0 : (size_t) ret;

 errs = (ret < 0) ? 1 : 0;

 return(errs);

16AO16 Linux Device Driver User Manual

25

General Standards Corporation, Phone: (256) 880-8787

}

4.7. IOCTL Services

The 16AO16 API Library and device driver implement the following IOCTL services. Each service is described

along with the applicable ao16_ioctl() function arguments.

4.7.1. AO16_IOCTL_AUTOCAL

This service initiates an autocalibration cycle. Most configuration setting should be made before running an

autocalibration cycle. The driver waits for the operation to complete before returning.

NOTE: The autocalibration cycle for the 16AO16FLV takes noticeably longer than for the basic

16AO16; 20 seconds vs 5. However, both periods are reduced somewhat for 12 channel and eight

channel boards.

NOTE: This service overwrites the current interrupt selection in order to detect the

Autocalibration Done interrupt.

NOTE: When an error is encountered, the service writes a brief, descriptive error message to the

system log.

Usage

Argument Description
request AO16_IOCTL_AUTOCAL

arg Not used.

4.7.2. AO16_IOCTL_AUTOCAL_STATUS

This service retrieves the autocalibration completion status.

Usage

Argument Description
Request AO16_IOCTL_AUTOCAL_STATUS

arg s32*

The value returned will be one of the following.

Value Description
AO16_AUTOCAL_STATUS_ACTIVE Autocalibration is in progress.
AO16_AUTOCAL_STATUS_FAIL Autocalibration failed.
AO16_AUTOCAL_STATUS_PASS Autocalibration passed.

4.7.3. AO16_IOCTL_BUFFER_CLEAR

This service immediately clears the current content from the output buffer. It also clears the associated data overflow

and frame overflow status bits. This service does not halt output.

16AO16 Linux Device Driver User Manual

26

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AO16_IOCTL_BUFFER_CLEAR

arg Not used.

4.7.4. AO16_IOCTL_BUFFER_MODE

This service configures the board to reuse or discard data after it exits the output buffer.

Usage

Argument Description
request AO16_IOCTL_BUFFER_MODE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current state.
AO16_BUFFER_MODE_CIRC This refers to circular mode.
AO16_BUFFER_MODE_OPEN This refers to open mode.

4.7.5. AO16_IOCTL_BUFFER_OVER_DATA

This service operates on the output buffer data overflow status.

Usage

Argument Description
request AO16_IOCTL_BUFFER_OVER_DATA

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current state.
AO16_BUFFER_OVER_DATA_CHK Check to see if there was a data overflow.
AO16_BUFFER_OVER_DATA_CLR Clear a data over flow.

The current state is reported as one of the following values.

Value Description
AO16_BUFFER_OVER_DATA_NO A data overflow has not occurred.
AO16_BUFFER_OVER_DATA_YES A data overflow has occurred.

4.7.6. AO16_IOCTL_BUFFER_OVER_FRAME

This service operates on the output buffer frame overflow status.

16AO16 Linux Device Driver User Manual

27

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AO16_IOCTL_BUFFER_OVER_FRAME

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current state.
AO16_BUFFER_OVER_FRAME_CHK Check to see if there was a frame overflow.
AO16_BUFFER_OVER_FRAME_CLR Clear a data over flow.

The current state is reported as one of the following values.

Value Description
AO16_BUFFER_OVER_FRAME_NO A frame overflow has not occurred.
AO16_BUFFER_OVER_FRAME_YES A frame overflow has occurred.

4.7.7. AO16_IOCTL_BUFFER_SIZE

This service sets the size of the virtual output buffer.

Usage

Argument Description
request AO16_IOCTL_BUFFER_SIZE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current state.
AO16_BUFFER_SIZE_8 This refers to a buffer size of 8 samples deep.
AO16_BUFFER_SIZE_16 This refers to a buffer size of 16 samples deep.
AO16_BUFFER_SIZE_32 This refers to a buffer size of 32 samples deep.
AO16_BUFFER_SIZE_64 This refers to a buffer size of 64 samples deep.
AO16_BUFFER_SIZE_128 This refers to a buffer size of 128 samples deep.
AO16_BUFFER_SIZE_256 This refers to a buffer size of 256 samples deep.
AO16_BUFFER_SIZE_512 This refers to a buffer size of 512 samples deep.
AO16_BUFFER_SIZE_1K This refers to a buffer size of 1K (1,024) samples deep.
AO16_BUFFER_SIZE_2K This refers to a buffer size of 2K (2,048) samples deep.
AO16_BUFFER_SIZE_4K This refers to a buffer size of 4K (4,096) samples deep.
AO16_BUFFER_SIZE_8K This refers to a buffer size of 8K (8,192) samples deep.
AO16_BUFFER_SIZE_16K This refers to a buffer size of 16K (16,384) samples deep.
AO16_BUFFER_SIZE_32K This refers to a buffer size of 32K (32,768) samples deep.
AO16_BUFFER_SIZE_64K This refers to a buffer size of 64K (65,536) samples deep.
AO16_BUFFER_SIZE_128K This refers to a buffer size of 128K (131,072) samples deep.
AO16_BUFFER_SIZE_256K This refers to a buffer size of 256K (262,144) samples deep.

4.7.8. AO16_IOCTL_BUFFER_STATUS

This service retrieves the current output buffer fill level status.

16AO16 Linux Device Driver User Manual

28

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AO16_IOCTL_BUFFER_STATUS

arg s32*

The current state is reported as one of the following values.

Value Description
AO16_BUFFER_STATUS_EMPTY The output buffer is empty.
AO16_BUFFER_STATUS_1Q_FULL The output buffer is ¼ full or less.
AO16_BUFFER_STATUS_MEDIUM The output buffer is between ¼ and ¾ full.
AO16_BUFFER_STATUS_3Q_FULL The output buffer is ¾ full or more.
AO16_BUFFER_STATUS_FULL The output buffer is full.

4.7.9. AO16_IOCTL_BURST_ENABLE

This service enables or disables output bursting.

Usage

Argument Description
request AO16_IOCTL_BURST_ENABLE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current state.
AO16_BURST_ENABLE_NO This refers to output bursting being disabled.
AO16_BURST_ENABLE_YES This refers to output bursting being enabled.

4.7.10. AO16_IOCTL_BURST_READY

This service reports the output buffer’s readiness for an output burst.

Usage

Argument Description
request AO16_IOCTL_BURST_READY

arg s32*

The current state is reported as one of the following values.

Value Description
AO16_BURST_READY_NO The output buffer is not ready to output a burst.
AO16_BURST_READY_YES The output buffer is ready to output a burst.

4.7.11. AO16_IOCTL_BURST_TRIG_SRC

This service configures the source for the bursting trigger.

16AO16 Linux Device Driver User Manual

29

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AO16_IOCTL_BURST_TRIG_SRC

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current state.
AO16_BURST_TRIG_SRC_EXT This refers to the external burst trigger input.
AO16_BURST_TRIG_SRC_SW This refers to the software burst trigger source.

4.7.12. AO16_IOCTL_BURST_TRIGGER

This service initiates a software triggered output burst.

Usage

Argument Description
request AO16_IOCTL_BURST_TRIGGER

arg Not used.

4.7.13. AO16_IOCTL_CBL_ISO_CLOCK_IO

This service configures the operation (the functional isolation) of the cable’s Clock I/O signal.

Usage

Argument Description
request AO16_IOCTL_CBL_ISO_CLOCK_IO

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current state.
AO16_CBL_ISO_NORM This refers to the signal being in its default state. †
AO16_CBL_ISO_OUT_0 This refers to the signal being configured to output a logic low.

† If the polarity feature is unsupported, then the normal option is always returned.

4.7.14. AO16_IOCTL_CBL_ISO_DAC_CLK_OUT

This service configures the operation (the functional isolation) of the cable’s DSC Clock Output signal.

Usage

Argument Description
request AO16_IOCTL_CBL_ISO_DAC_CLK_OUT

arg s32*

Valid argument values are as follows.

16AO16 Linux Device Driver User Manual

30

General Standards Corporation, Phone: (256) 880-8787

Value Description
-1 Retrieve the current state.
AO16_CBL_ISO_NORM This refers to the signal being in its default state. †
AO16_CBL_ISO_OUT_0 This refers to the signal being configured to output a logic low.

† If the polarity feature is unsupported, then the normal option is always returned.

4.7.15. AO16_IOCTL_CBL_ISO_TRIG_OUT

This service configures the operation (the functional isolation) of the cable’s Trigger Output signal.

Usage

Argument Description
request AO16_IOCTL_CBL_ISO_TRIG_OUT

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current state.
AO16_CBL_ISO_NORM This refers to the signal being in its default state. †
AO16_CBL_ISO_OUT_0 This refers to the signal being configured to output a logic low.

† If the polarity feature is unsupported, then the normal option is always returned.

4.7.16. AO16_IOCTL_CBL_POL_CLOCK_IO

This service configures the polarity of the cable’s Clock I/O signal.

Usage

Argument Description
request AO16_IOCTL_CBL_POL_CLOCK_IO

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current state.
AO16_CBL_POL_INV This refers to the signal being inverted.
AO16_CBL_POL_NORM This refers to the signal being in its default state. †

† If the polarity feature is unsupported, then the normal option is always returned.

4.7.17. AO16_IOCTL_CBL_POL_DAC_CLK_OUT

This service configures the polarity of the cable’s DAC Clock Out signal.

Usage

Argument Description
request AO16_IOCTL_CBL_POL_DAC_CLK_OUT

arg s32*

Valid argument values are as follows.

16AO16 Linux Device Driver User Manual

31

General Standards Corporation, Phone: (256) 880-8787

Value Description
-1 Retrieve the current state.
AO16_CBL_POL_INV This refers to the signal being inverted.
AO16_CBL_POL_NORM This refers to the signal being in its default state. †

† If the polarity feature is unsupported, then the normal option is always returned.

4.7.18. AO16_IOCTL_CBL_POL_TRIG_IN

This service configures the polarity of the cable’s Trigger Input signal.

Usage

Argument Description
request AO16_IOCTL_CBL_POL_TRIG_IN

arg s32*

Valid argument values are as follows.

Value Passed To API Returned By API
AO16_CBL_POL_INV This refers to the signal being inverted.
AO16_CBL_POL_NORM This refers to the signal being in its default state. †

† If the polarity feature is unsupported, then the normal option is always returned.

4.7.19. AO16_IOCTL_CBL_POL_TRIG_OUT

This service configures the polarity of the cable’s Trigger Output signal.

Usage

Argument Description
request AO16_IOCTL_CBL_POL_TRIG_OUT

arg s32*

Valid argument values are as follows.

Value Passed To API Returned By API
AO16_CBL_POL_INV This refers to the signal being inverted.
AO16_CBL_POL_NORM This refers to the signal being in its default state. †

† If the polarity feature is unsupported, then the normal option is always returned.

4.7.20. AO16_IOCTL_CHANNEL_SEL

This service selects the set of channels that generate output.

Usage

Argument Description
request AO16_IOCTL_CHANNEL_SEL

arg s32*

Valid argument values are -1 to retrieve the current enable mask and any combination of bits from 0x0 for no

channels to 0xFFFF for all 16 channels. The upper limit is 0xFF for eight channel boards and 0xFFF for 12

channel boards.

16AO16 Linux Device Driver User Manual

32

General Standards Corporation, Phone: (256) 880-8787

4.7.21. AO16_IOCTL_CLOCK_ENABLE

This service enables or disabled output clocking.

Usage

Argument Description
request AO16_IOCTL_CLOCK_ENABLE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current state.
AO16_CLOCK_ENABLE_NO This refers to output clocking being disabled.
AO16_CLOCK_ENABLE_YES This refers to output clocking being enabled.

4.7.22. AO16_IOCTL_CLOCK_READY

This service indicates if the board is ready to accept an output clock.

Usage

Argument Description
request AO16_IOCTL_CLOCK_READY

arg s32*

The current state is reported as one of the following values.

Value Description
AO16_CLOCK_READY_NO The board is not ready to accept an output clock.
AO16_CLOCK_READY_YES The board is ready to accept an output clock.

4.7.23. AO16_IOCTL_CLOCK_REF_SRC

This service sets the source for the reference clock.

Usage

Argument Description
request AO16_IOCTL_CLOCK_REF_SRC

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current state.
AO16_CLOCK_REF_SRC_ALT This refers to the alternate source, whose reference is configurable.
AO16_CLOCK_REF_SRC_PRI This refers to the primary source, whose reference is fixed.

4.7.24. AO16_IOCTL_CLOCK_SRC

This service selects the output clocking source.

16AO16 Linux Device Driver User Manual

33

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AO16_IOCTL_CLOCK_SRC

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current state.
AO16_CLOCK_SRC_EXT_SW This refers to the external clock source as well as the software source.
AO16_CLOCK_SRC_INT This refers to the internal clock source.

4.7.25. AO16_IOCTL_CLOCK_SW

This service generates a single output clock strobe.

Usage

Argument Description
request AO16_IOCTL_CLOCK_SW

arg Not used.

4.7.26. AO16_IOCTL_DATA_FORMAT

This service configures the data encoding format.

Usage

Argument Description
request AO16_IOCTL_DATA_FORMAT

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AO16_DATA_FORMAT_2S_COMP This refers to the Twos Compliment data format.
AO16_DATA_FORMAT_OFF_BIN This refers to the Offset Binary encoding format.

4.7.27. AO16_IOCTL_GROUND_SENSE

This service enables or disables use of remote ground sense.

Usage

Argument Description
request AO16_IOCTL_GROUND_SENSE

arg s32*

Valid argument values are as follows.

16AO16 Linux Device Driver User Manual

34

General Standards Corporation, Phone: (256) 880-8787

Value Description
-1 Retrieve the current state.
AO16_GROUND_SENSE_DISABLE This refers to remote ground sense being disabled.
AO16_GROUND_SENSE_REMOTE This refers to remote ground sense being enabled.

4.7.28. AO16_IOCTL_INITIALIZE

This service returns all driver interface settings for the board to the state they were in when the board was first

opened. This includes both hardware-based settings and software-based settings.

NOTE: If the initialization service returns an error status, an error message will be posted to the

system log briefly describing the error condition.

NOTE: For boards with the high voltage range feature (the -HL ordering option) the initialization

service sets the voltage range option to the ±5-volt range before returning. For low voltage range

boards, the voltage range after initialization is the ±2.5-volt option.

Usage

Argument Description
request AO16_IOCTL_INITIALIZE

arg Not used.

4.7.29. AO16_IOCTL_IRQ_SEL

This service configures the firmware’s interrupt source selection.

Usage

Argument Description
request AO16_IOCTL_IRQ_SEL

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AO16_IRQ_AUTOCAL_DONE This refers to the completion of an autocalibration cycle.
AO16_IRQ_BUF_1Q_FULL This refers to the buffer falling to the ¼ full level.
AO16_IRQ_BUF_3Q_FULL This refers to the buffer rising to the ¾ full level.
AO16_IRQ_BUF_EMPTY This refers to the buffer becoming empty.
AO16_IRQ_BURST_TRIG_READY This refers to the readiness of the board to accept a burst trigger.
AO16_IRQ_INIT_DONE This refers to the completion of an initialization cycle.

AO16_IRQ_LOAD_READY
This refers to the condition where the output buffer becomes

ready to accept data.

AO16_IRQ_LOAD_READY_END
This refers to the condition where the output buffer is no longer

ready to accept data.

4.7.30. AO16_IOCTL_LOAD_READY

This service reports if the output buffer is ready to receive data.

16AO16 Linux Device Driver User Manual

35

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AO16_IOCTL_LOAD_READY

arg s32*

The current state is reported as one of the following values.

Value Description
AO16_LOAD_READY_NO The buffer is not ready to receive data.
AO16_LOAD_READY_YES The buffer is ready to receive data.

4.7.31. AO16_IOCTL_LOAD_REQUEST

This service requests access to the output buffer, which should be configured for circular operation. The driver

requests access and returns immediately rather than waiting for access to be granted.

Usage

Argument Description
request AO16_IOCTL_LOAD_REQUEST

arg Not used.

4.7.32. AO16_IOCTL_NCLK

This service configures the alternate reference frequency by setting the NCLK divider value.

Usage

Argument Description
request AO16_IOCTL_NCLK

arg s32*

Valid argument values are -1 to retrieve the current setting and 0x0 to 0x1FF.

4.7.33. AO16_IOCTL_NRATE

This service configures the rate generator by setting the NRATE divider value.

Usage

Argument Description
request AO16_IOCTL_NRATE

arg s32*

Valid argument values are -1 to retrieve the current setting and 0x64 to 0x3FFFF.

4.7.34. AO16_IOCTL_OUTPUT_FILTER

This service selects the output filter option.

16AO16 Linux Device Driver User Manual

36

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AO16_IOCTL_OUTPUT_FILTER

arg s32*

Valid argument values are as follows.

Value Passed To API Returned By API
-1 Retrieve the current state. The feature is unsupported.
AO16_OUTPUT_FILTER_A This refers to sequential output.
AO16_OUTPUT_FILTER_B This refers to simultaneous output.
AO16_OUTPUT_FILTER_NONE This refers to simultaneous output.

4.7.35. AO16_IOCTL_OUTPUT_MODE

This service selects the mode for the output clock.

Usage

Argument Description
request AO16_IOCTL_OUTPUT_MODE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current state.
AO16_OUTPUT_MODE_SEQ This refers to sequential output.
AO16_OUTPUT_MODE_SIM This refers to simultaneous output.

4.7.36. AO16_IOCTL_QUERY

This service queries the driver for various pieces of information about the board and the driver.

Usage

Argument Description
request AO16_IOCTL_QUERY

arg s32*

Valid argument values are as follows.

Value Description

AO16_QUERY_AUTOCAL_MS
This returns the maximum duration of the Autocalibration cycle

in milliseconds.

AO16_QUERY_CABLE_INVERT_4

This returns an indication if the firmware supports inverting the

four cable interface signals Trigger Input, Trigger Output, DAC

Clock Out and Clock I/O.

AO16_QUERY_CABLE_PASSIVE_3

This returns an indication if the firmware supports isolating the

normal interface functionality of the three cable interface signals

Trigger Output, DAC Clock Out and Clock I/O.
AO16_QUERY_CHANNEL_MASK This returns the mask of valid channel enable bits.

16AO16 Linux Device Driver User Manual

37

General Standards Corporation, Phone: (256) 880-8787

AO16_QUERY_CHANNEL_MAX

This returns the maximum number of output channels supported

by the board, which may be more that the board’s current

configuration.

AO16_QUERY_CHANNEL_QTY

This returns the actual number of output channels on the current

board. If the value returned is -1, then the driver was unable to

determine the number of channels.

AO16_QUERY_COUNT
This returns the number of query options supported by the

IOCTL service.

AO16_QUERY_DEVICE_TYPE
This returns the identifier value for the board’s type. This should

be GSC_DEV_TYPE_16AO16.

AO16_QUERY_DIFFERENTIAL
This returns a value indicating if the board has differential

outputs (0 = no, 1 = yes).

AO16_QUERY_DMDMA
This returns a value indicating if Demand Mode DMA is

supported (0 = no, 1 = yes).
AO16_QUERY_FIFO_SIZE This returns the size of the output buffer in 32-bit A/D values.

AO16_QUERY_FILTER
This returns an indicator of the board’s output filter options.

Valid return values are listed in a table below.
AO16_QUERY_FREF_DEFAULT This returns the default reference frequency.
AO16_QUERY_FSAMP_MAX This gives the maximum FSAMP value in S/S.
AO16_QUERY_FSAMP_MIN This gives the minimum FSAMP value in S/S.

AO16_QUERY_INIT_MS
This returns the duration of a board initialization in

milliseconds.
AO16_QUERY_LAST This gives the last enumeration value.
AO16_QUERY_MODEL This returns the device’s model type. See below.

AO16_QUERY_NCLK_MASK
This returns the mask for the alternate reference source’s NCLK

divider value.
AO16_QUERY_NCLK_MAX This returns the maximum valid NCLK value.
AO16_QUERY_NCLK_MIN This returns the minimum valid NCLK value.
AO16_QUERY_NRATE_MASK This returns the mask for the board’s NRATE divider value.
AO16_QUERY_NRATE_MAX This returns the maximum supported NRATE divider value.
AO16_QUERY_NRATE_MIN This returns the minimum supported NRATE divider value.

AO16_QUERY_OUTPUT_CAPACITY
This indicates the device’s support for high voltage vs high

current capacity capability. See below.
AO16_QUERY_OUTPUT_FILTER This indicates if the device supports selecting the Output Filter.
AO16_QUERY_VOLT_RANGE This returns the device’s supported voltage range. See below.
AO16_QUERY_WATCHDOG This indicates if the device supports the Watchdog Bit feature.

Valid return values are as indicated in the above table and as given in the below table.

Value Description

AO16_IOCTL_QUERY_ERROR
Either there was a processing error or the query option is

unrecognized.

Valid return values for the filter query are as follows.

Value Description
AO16_FILTER_NONE No custom filter option is installed.
AO16_FILTER_10KHZ A 10 KHz filter is installed.
AO16_FILTER_100KHZ A 100 KHz filter is installed.
AO16_FILTER_F1 The device has the F1 filters documented in the reference manual.
AO16_FILTER_F2 The device has the F2 filters documented in the reference manual.
AO16_FILTER_F3 The device has the F3 filters documented in the reference manual.
AO16_FILTER_F4 The device has the F4 filters documented in the reference manual.

16AO16 Linux Device Driver User Manual

38

General Standards Corporation, Phone: (256) 880-8787

Valid return values for the model query are as follows.

Value Description

AO16_MODEL_16AO16
This indicates that the device is a 16AO16, though the form factor is

unknown.

AO16_MODEL_16AO16FLV
This indicates that the device is a 16AO16FLV, though the form factor is

unknown.

Valid return values for the output capacity query are as follows.

Value Description
-1 This feature is not supported.

AO16_OUTPUT_CAPACITY_HI_CURRENT

The board is factory configured for the high current

option, which supports voltage settings of ±1.5V and

±2.5V.

AO16_OUTPUT_CAPACITY_HI_LEVEL
The board is factory configured for the high-level option,

which supports voltage settings of ±5V and ±10V.

Valid return values for the voltage range query are as follows.

Value Description
-1 This feature is not supported.

AO16_VOLT_RANGE_LOW
This refers to the low voltage range, which includes selection options of

±1.25V, ±2.5V, ±5± and ±10V.

AO16_VOLT_RANGE_HIGH
This refers to the high voltage range, which includes selection options of

±5V, ±10± and ±20V.

4.7.37. AO16_IOCTL_RANGE

This service sets the output voltage range.

NOTE: For boards with the high voltage range feature (the -HL ordering option) the initialization

service sets the voltage range option to the ±5-volt range before returning. For low voltage range

boards, the voltage range after initialization is the ±2.5-volt option.

Usage

Argument Description
request AO16_IOCTL_RANGE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current state.
AO16_RANGE_1_25 This refers to the voltage range of ±1.25 volts.
AO16_RANGE_2_5 This refers to the voltage range of ±2.5 volts.
AO16_RANGE_5 This refers to the voltage range of ±5 volts.
AO16_RANGE_10 This refers to the voltage range of ±10 volts.

16AO16 Linux Device Driver User Manual

39

General Standards Corporation, Phone: (256) 880-8787

4.7.38. AO16_IOCTL_REG_MOD

This service performs a read-modify-write of a 16AO16 register. This includes only the GSC firmware registers.

The PCI and PLX Feature Set Registers are read-only. Refer to 16ao16.h for the complete list of GSC firmware

registers.

Usage

Argument Description
request AO16_IOCTL_REG_MOD

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This contains the value for the register bits to modify.

mask
This specifies the set of bits to modify. If a bit here is set, then the respective register bit is

modified. If a bit here is zero, then the respective register bit is unmodified.

4.7.39. AO16_IOCTL_REG_READ

This service reads the value of a 16AO16 register. This includes the PCI registers, the PLX Feature Set Registers

and the GSC firmware registers. Refer to 16ao16.h and gsc_pci9056.h for the complete list of accessible

registers.

Usage

Argument Description
request AO16_IOCTL_REG_READ

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This is the value read from the specified register.
mask This is ignored for read request.

16AO16 Linux Device Driver User Manual

40

General Standards Corporation, Phone: (256) 880-8787

4.7.40. AO16_IOCTL_REG_WRITE

This service writes a value to a 16AO16 register. This includes only the GSC firmware registers. The PCI and PLX

Feature Set Registers are read-only. Refer to 16ao16.h for a complete list of the GSC firmware registers.

Usage

Argument Description
request AO16_IOCTL_REG_WRITE

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This is the value to write to the specified register.
mask This is ignored for write request.

4.7.41. AO16_IOCTL_TX_IO_ABORT

This service aborts an ongoing write() request.

Usage

Argument Description
request AO16_IOCTL_TX_IO_ABORT

arg s32*

The results are reported as one of the following values.

Value Description
AO16_IO_ABORT_NO A write() request was not aborted as none were ongoing.

AO16_IO_ABORT_YES An ongoing write() request was aborted.

4.7.42. AO16_IOCTL_TX_IO_MODE

This service sets the I/O mode used for data write requests.

Usage

Argument Description
request AO16_IOCTL_TX_IO_MODE

arg s32*

Valid argument values are as follows.

16AO16 Linux Device Driver User Manual

41

General Standards Corporation, Phone: (256) 880-8787

Value Description
-1 Retrieve the current setting.
GSC_IO_MODE_BMDMA This refers to Block Mode DMA.
GSC_IO_MODE_DMDMA This refers to Demand Mode DMA. †

GSC_IO_MODE_PIO
This refers to PIO mode, which is repetitive register access. This is the

default.

† Demand Mode DMA is not supported on all boards. Use to the DMDMA query option to find

out if Demand Mode DMA is supported (section 4.7.36, page 36).

4.7.43. AO16_IOCTL_TX_IO_OVER_DATA

This service configures the write service to check for an output buffer data overflow before performing write

operations. Sample data is lost when there is a data overflow.

NOTE: The check for a data overflow is performed upon entry to the write service. The write

service does not check for data overflows that occur while the write is in progress. For in-progress

data overflows an application must perform the check manually or wait for the check performed

by a subsequent write request.

Usage

Argument Description
request AO16_IOCTL_TX_IO_OVER_DATA

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AO16_TX_IO_OVER_DATA_CHECK This refers to the check being performed. This is the default.
AO16_TX_IO_OVER_DATA_IGNORE This refers to the check not being performed.

4.7.44. AO16_IOCTL_TX_IO_OVER_FRAME

This service configures the write service to check for an output buffer frame overflow before performing write

operations. Sample data is lost when there is a frame overflow.

NOTE: The check for a frame overflow is performed upon entry to the write service. The write

service does not check for frame overflows that occur while the write is in progress. For in-

progress frame overflows an application must perform the check manually or wait for the check

performed by a subsequent write request.

Usage

Argument Description
request AO16_IOCTL_TX_IO_OVER_FRAME

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AO16_TX_IO_OVER_FRAME_CHECK This refers to the check being performed. This is the default.
AO16_TX_IO_OVER_FRAME_IGNORE This refers to the check not being performed.

16AO16 Linux Device Driver User Manual

42

General Standards Corporation, Phone: (256) 880-8787

4.7.45. AO16_IOCTL_TX_IO_TIMEOUT

This service sets the timeout limit for write requests. The value is expressed in seconds.

Usage

Argument Description
request AO16_IOCTL_TX_IO_TIMEOUT

arg s32*

Valid argument values are in the range from zero to 3600, -1, and AO16_IO_TIMEOUT_INFINITE. A value of

zero tells the driver not to sleep in order to wait for more space, and should only be used with PIO mode reads. A

value of -1 is used to retrieve the current setting. If the option AO16_IO_TIMEOUT_INFINITE is used, then the

driver will wait indefinitely rather than timing out. The default is 10 seconds.

4.7.46. AO16_IOCTL_WAIT_CANCEL

This service resumes all threads blocked via AO16_IOCTL_WAIT_EVENT IOCTL calls (section 4.7.47, page 43),

according to the provided criteria. When a blocked thread is waiting for any event specified in the structure, then the

thread is resumed.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver

initiated waits are unaffected by application cancel requests.

Usage

Argument Description
request AO16_IOCTL_WAIT_CANCEL

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description
flags This is unused by wait cancel operations.

main
This specifies the set of GSC_WAIT_MAIN_* events whose wait requests are to be

cancelled. Refer to section 4.7.47.2 on page 44.

gsc
This specifies the set of AO16_WAIT_GSC_* events whose wait requests are to be

cancelled. Refer to section 4.7.47.3 on page 44.
alt This is unused by the 16AO16 driver and should be zero.

io
This specifies the set of AO16_WAIT_IO_* events whose wait requests are to be

cancelled. Refer to section 4.7.47.4 on page 44.
timeout_ms This is unused by wait cancel operations.
count Upon return this indicates the number of waits that were cancelled.

16AO16 Linux Device Driver User Manual

43

General Standards Corporation, Phone: (256) 880-8787

4.7.47. AO16_IOCTL_WAIT_EVENT

This service blocks a thread until any one of a specified set of events occurs, or until a timeout lapses, whichever

occurs first. The set of possible events to wait for are specified in the structure’s main, gsc, alt and io fields. All

field values must be valid and at least one event must be specified. If the thread is resumed because one of the

referenced events has occurred, then the bit for the respective event is the only event bit that will be set. All other

event bits and fields will be zero. (Multiple event bits will be set only if the events occur simultaneously.)

NOTE: The service waits only for the first of the specified events, not for all specified events.

NOTE: A wait timeout is reported via the gsc_wait_t structure’s flags field having the

GSC_WAIT_FLAG_TIMEOUT flag set, rather than via an ETIMEDOUT error.

Usage

Argument Description
request AO16_IOCTL_WAIT_EVENT

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description

flags
This must initially be zero. Upon return this indicates the reason that the thread was

resumed. Refer to section 4.7.47.1on page 43.

main
This specifies any number of GSC_WAIT_MAIN_* events that the thread is to wait for.

Refer to section 4.7.47.2 on page 44.

gsc
This specifies any number of AO16_WAIT_GSC_* events that the thread is to wait for.

Refer to section 4.7.47.3 on page 44.
alt This is unused by the 16AO16 driver and must be zero.

io
This specifies any number of AO16_WAIT_IO_* events that the thread is to wait for.

Refer to section 4.7.47.4 on page 44.

timeout_ms

This specified the maximum amount of time, in milliseconds, that the thread is to wait

for any of the referenced events. A value of zero means do not timeout at all. If non-

zero, then upon return the value will be the approximate amount of time actually waited.
count This is unused by wait event operations and must be zero.

4.7.47.1. gsc_wait_t.flags Options

Upon return from a wait request the wait structure’s flags field will indicate the reason that the thread was

resumed. Only one of the below options will be set.

Fields Description
GSC_WAIT_FLAG_CANCEL The wait request was cancelled.

16AO16 Linux Device Driver User Manual

44

General Standards Corporation, Phone: (256) 880-8787

GSC_WAIT_FLAG_DONE One of the referenced events occurred.
GSC_WAIT_FLAG_TIMEOUT The timeout period lapsed before a referenced event occurred.

4.7.47.2. gsc_wait_t.main Options

The wait structure’s main field may specify any of the below primary interrupt options. These interrupt options are

supported by the 16AO16 and other General Standards products.

Fields Description
GSC_WAIT_MAIN_DMA0 This refers to the DMA Done interrupt on DMA engine number zero.
GSC_WAIT_MAIN_DMA1 This refers to the DMA Done interrupt on DMA engine number one.
GSC_WAIT_MAIN_GSC This refers to any of the Interrupt Control/Status Register interrupts.

GSC_WAIT_MAIN_OTHER
This generally refers to an interrupt generated by another device sharing the

same interrupt as the 16AO16.
GSC_WAIT_MAIN_PCI This refers to any interrupt generated by the 16AO16.
GSC_WAIT_MAIN_SPURIOUS This refers to board interrupts which should never be generated.
GSC_WAIT_MAIN_UNKNOWN This refers to board interrupts whose source could not be identified.

4.7.47.3. gsc_wait_t.gsc Options

The wait structure’s gsc field may specify any combination of the below interrupt options. These are the interrupt

options referenced in the Board Control Register. Applications are responsible for selecting the desired interrupt

options. Refer to AO16_IOCTL_IRQ_SEL (section 4.7.29, page 34).

Value Description
AO16_WAIT_GSC_AUTOCAL_DONE This refers to the completion of an autocalibration cycle.
AO16_WAIT_GSC_BUF_1Q_FULL This refers to the buffer falling to the ¼ full level.
AO16_WAIT_GSC_BUF_3Q_FULL This refers to the buffer rising to the ¾ full level.
AO16_WAIT_GSC_BUF_EMPTY This refers to the buffer becoming empty.
AO16_WAIT_GSC_BURST_TRIG_READY This refers to the readiness of the board to accept a burst trigger.
AO16_WAIT_GSC_INIT_DONE This refers to the completion of an initialization cycle.

AO16_WAIT_GSC_LOAD_READY
This refers to the condition where the output buffer becomes ready

to accept data.

AO16_WAIT_GSC_LOAD_READY_END
This refers to the condition where the output buffer is no longer

ready to accept data.

4.7.47.4. gsc_wait_t.io Options

The wait structure’s io field may specify any of the below event options. These events are generated in response to

application board data read requests.

Fields Description
AO16_WAIT_IO_TX_ABORT This refers to write requests which have been aborted.
AO16_WAIT_IO_TX_DONE This refers to write requests which have been satisfied.
AO16_WAIT_IO_TX_ERROR This refers to write requests which end due to an error.
AO16_WAIT_IO_TX_TIMEOUT This refers to write requests which end due to the timeout period lapse.

4.7.48. AO16_IOCTL_WAIT_STATUS

This service counts all threads blocked via the AO16_IOCTL_WAIT_EVENT IOCTL service (section 4.7.47, page

43), according to the provided criteria. A match is made when a waiting thread’s wait criteria matches any of the

criteria specified in the structure passed to this service.

16AO16 Linux Device Driver User Manual

45

General Standards Corporation, Phone: (256) 880-8787

NOTE: The driver itself makes use of the wait services for various internal operations. Driver

initiated waits are ignored by application status requests.

Usage

Argument Description
request AO16_IOCTL_WAIT_STATUS

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description
flags This is unused by wait status operations.

main
This specifies the set of GSC_WAIT_MAIN_* events whose wait requests are to be

counted. Refer to section 4.7.47.2 on page 44.

gsc
This specifies the set of AO16_WAIT_GSC_* events whose wait requests are to be

counted. Refer to section 4.7.47.3 on page 44.
alt This is unused by the 16AO16 driver and should be zero.

io
This specifies the set of AO16_WAIT_IO_* events whose wait requests are to be

counted. Refer to section 4.7.47.4 on page 44.
timeout_ms This is unused by wait status operations.
count Upon return this indicates the number of waits that met any of the specified criteria.

4.7.49. AO16_IOCTL_WATCHDOG_ENABLE

This service enables or disables the Watchdog Bit feature, when supported by firmware.

Usage

Argument Description
request AO16_IOCTL_WATCHDOG_ENABLE

arg s32*

Valid argument values are as follows.

Value Passed To API Returned By API
-1 Retrieve the current setting. The feature is unsupported.
AO16_WATCHDOG_ENABLE_NO This disables the Watchdog Bit feature.
AO16_WATCHDOG_ENABLE_YES This enables the Watchdog Bit feature.

16AO16 Linux Device Driver User Manual

46

General Standards Corporation, Phone: (256) 880-8787

4.7.50. AO16_IOCTL_WATCHDOG_OUTPUT

This service set the Watchdog Bit output level, when supported by firmware.

Usage

Argument Description
request AO16_IOCTL_WATCHDOG_OUTPUT

arg s32*

Valid argument values are as follows.

Value Passed To API Returned By API
-1 Retrieve the current setting. The feature is unsupported.
AO16_WATCHDOG_OUTPUT_0 This sets the Watchdog Bit output level to low.
AO16_WATCHDOG_OUTPUT_1 This sets the Watchdog Bit output level to high.

4.7.51. AO16_IOCTL_XCVR_TYPE

This service selects the transceiver type used by the clock and trigger lines on the cable interface.

Usage

Argument Description
request AO16_IOCTL_XCVR_TYPE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AO16_XCVR_TYPE_LVDS This refers to LVDS transceivers.
AO16_XCVR_TYPE_TTL This refers to TTL transceivers.

16AO16 Linux Device Driver User Manual

47

General Standards Corporation, Phone: (256) 880-8787

5. The Driver

NOTE: Contact General Standards Corporation if additional driver functionality is required.

5.1. Files

The device driver files are summarized in the table below.

Description Files Location

Source Files *.c, *.h …

…/driver/
Header File 16ao16.h

Driver File
16ao16.ko †

16ao16.o ‡

† This is for kernel versions 2.6 and later.

‡ This is for kernel versions 2.4 are earlier.

5.2. Build

NOTE: Building the driver requires installation of the kernel headers and possibly other packages.

The device driver is built via the Overall Make Script (section 2.7, page 13), but can be built separately following

the below steps.

1. Change to the directory where the driver and its sources are installed (…/driver/).

2. Remove existing build targets by issuing the below command.

make clean

3. Build the driver by issuing the below command.

make

NOTE: Due to the differences between the many Linux distributions some build errors may

occur. These errors may include system header location differences, which should be easily

corrected.

5.3. Startup

NOTE: The driver will have to be built before being used as it is provided in source form only.

The startup script used in this procedure is designed to load the device driver and create fresh device nodes. This is

accomplished by unloading the current driver, if loaded, and then loading the accompanying driver executable. In

addition, the script deletes and recreates the device nodes. This is done to ensure that the device nodes in use have

the same major number as assigned dynamically to the driver by the kernel, and so that the number of device nodes

corresponds to the number of boards identified by the driver.

5.3.1. Manual Driver Startup Procedures

Start the driver manually by following the below listed steps.

NOTE: The following steps may require elevated privileges.

16AO16 Linux Device Driver User Manual

48

General Standards Corporation, Phone: (256) 880-8787

1. Change to the directory where the driver sources are installed (…/driver/).

2. Install the driver module and create the device nodes by executing the below command. If any errors are

encountered then an appropriate error message will be displayed.

./start

NOTE: This script must be executed each time the host is booted.

NOTE: The 16AO16 device node major number is assigned dynamically by the kernel. The minor

numbers and the device node suffix numbers are index numbers beginning with zero, and increase

by one for each additional board installed.

3. Verify that the device driver module has been loaded by issuing the below command and examining the output.

The module name 16ao16 should be included in the output.

lsmod

4. Verify that the device nodes have been created by issuing the below command and examining the output. The

output should include one node for each installed board.

ls –l /dev/16ao16.*

5.3.2. Automatic Driver Startup Procedures

Start the driver automatically with each system reboot by following the below listed steps.

1. Locate and edit the system startup script rc.local, which should be in the /etc/rc.d/ directory. Modify

the file by adding the below line so that it is executed with every reboot. The example is based on the driver

being installed in /usr/src/linux/drivers/, though it may have been installed elsewhere.

/usr/src/linux/drivers/16ao16/driver/start

NOTE: For systemd installations the file rc.local may be located under the /etc/

directory rather than under /etc/rc.d/.

2. Load the driver and create the required device nodes by rebooting the system.

3. Verify that the driver is loaded and that the device nodes have been created. Do this by following the

verification steps given in the manual startup procedures.

5.3.2.1. File rc.local Not Present

Some distributions may not install a default version of rc.local. Some may not even create the directory

/etc/rc.d/. If the directory is not present, then it may be created. The directory must be created with the owner

and group set to root. The directory permissions must be set to rwxr-xr-x. If the file /etc/rc.d/rc.local

is not present, then it too may be created. The file must also be created with the owner and group set to root.

Additionally, the file permissions must also be set to rwxr-xr-x. After the directory and file are created as

described, reboot to verify boot time loading of the driver. Here is an example of a default version of rc.local.

16AO16 Linux Device Driver User Manual

49

General Standards Corporation, Phone: (256) 880-8787

#!/bin/bash

Add your local content here.

5.3.2.2. Default rc.local File Permissions

The rc.local script may fail to run at boot time because some distributions install a default version of the file

without execute permissions. Without execute permissions, boot time invocation of the script fails, which inhibits

boot time loading of the driver. If this is the case, then change the file permissions to rwxr-xr-x. After the file

permissions are adjusted as described, reboot to verify boot time loading of the driver.

5.3.2.3. systemd Installations

With the advent of the systemd startup implementation, rc.local may be accessed via a systemd startup

service. The service name may be rc-local, rc-local.service or something similar. This service may or

may not be enabled by default. If the service is disabled, then the script will not execute, which prevents boot time

loading of the driver. The service can be enabled with the below command line. After the service is enabled, reboot

to verify boot time loading of the driver.

systemctl enable rc-local

NOTE: For systemd installations the file rc.local may be located under the /etc/

directory rather than under /etc/rc.d/.

5.3.2.4. systemd and rc.local Timing

If the above steps have been performed but the driver still does not start then examine the dmesg output for driver

messages. If the output shows that the driver starts and immediately stops, then the problem may be timing. That is,

since systemd doesn’t serialize startup initialization as done in the past, driver loading may fail if required services

have not completed their own initialization. If this is the problem, then it may be corrected simply by inserting a

delay in rc.local prior to it calling the driver’s start script (i.e., sleep for one or more seconds).

5.3.2.5. SElinux Implications

If not disabled, then SElinux may prevent boot time loading of the driver. If this is the case, then it can be verified

and corrected using SElinux related tools and utilities. First, install the necessary software using the below

command. (As necessary, replace the yum command line with that which is available for your distribution.)

yum install setroubleshoot setools

Next, run the below command to determine if SElinux is preventing the driver from loading at boot time.

sealert –a /var/log/audit/audit.log

If SElinux is preventing the driver from loading, then the output from the above command should include a

reference to the driver’s start script, the insmod command that loads the driver or the name of the driver

executable. If so, then the output should also indicate the commands necessary to resolve the issue. The following is

an example of the instructions given when the culprit is insmod, which is the start script command that loads the

driver. After running these commands reboot the system to verify boot time loading of the driver.

ausearch -c 'insmod' --raw | audit2allow -M my-insmod

semodule -X 300 -i my-insmod.pp

16AO16 Linux Device Driver User Manual

50

General Standards Corporation, Phone: (256) 880-8787

5.4. Verification

Follow the below steps to verify that the driver has been properly installed and started.

1. Verify that the file /proc/16ao16 is present. If the file is present then the driver is loaded and running.

Verify the file’s presence by viewing its content with the below command.

cat /proc/16ao16

5.5. Version

The driver version number can be obtained in a variety of ways. It is reported by the driver both when the driver is

loaded and when it is unloaded (depending on kernel configuration options, this may be visible only in places such

as /var/log/messages). It is reported in the text file /proc/16ao16 while the driver is loaded and running.

The version number is also given in the file release.txt in the root install directory.

5.6. Shutdown

Shutdown the driver following the below listed steps.

NOTE: The following steps may require elevated privileges.

1. If the driver is currently loaded then issue the below command to unload the driver.

rmmod 16ao16

2. Verify that the driver module has been unloaded by issuing the below command. The module name 16ao16

should not be in the listed output.

lsmod

16AO16 Linux Device Driver User Manual

51

General Standards Corporation, Phone: (256) 880-8787

6. Document Source Code Examples

The source code examples included in this document are built into a statically linkable library usable with console

applications. The purpose of these files is to verify that the documentation samples compile and to provide a library

of working sample code to assist in a user’s learning curve and application development effort.

6.1. Files

The library files are summarized in the table below.

Description Files Location

Source Files *.c, *.h … …/docsrc/

Header File 16ao16_dsl.h …/include/

Library File 16ao16_dsl.a …/lib/

6.2. Build

The library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the

below steps.

1. Change to the directory where the documentation sources are installed (…/docsrc/).

2. Remove existing build targets by issuing the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make

4. Rebuild the Main Library (section 3.2.1, page 16).

6.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above

listed header file in each source file using a component of the library interface. At link time include the above listed

static library file with the objects being linked with the application.

16AO16 Linux Device Driver User Manual

52

General Standards Corporation, Phone: (256) 880-8787

7. Utilities Source Code

The API Library installation includes a body of utility source code designed to aid in the understanding and use of

the interface calls and IOCTL services. Utility sources are also included for device independent and common,

general-purpose services. Most of the utilities are implemented as visual wrappers around the corresponding services

to facilitate structured console output for the sample applications. The utility sources are compiled and linked into

static libraries to simplify their use. An additional purpose of these utility services is to provide a library of working

sample code to assist in a user’s learning curve and application development effort.

For each API function there is a corresponding utility source file with a corresponding utility service. As an

example, for the API function ao16_open() there is the utility file open.c containing the utility function

ao16_open_util(). The naming pattern is as follows: API function ao16_xxxx(), utility file name xxxx.c,

utility function ao16_xxxx_util(). Additionally, for each IOCTL code there is a corresponding utility source

file with a corresponding utility service. As an example, for IOCTL code AO16_IOCTL_QUERY there is the utility

file util_query.c containing the utility function ao16_query(). The naming pattern is as follows: IOCTL

code AO16_IOCTL_XXXX, utility file name util_xxxx.c, utility function ao16_xxxx().

7.1. Files

The utility files are summarized in the table below.

Description Files Location

Source Files *.c, *.h … …/utils/

Header File 16ao16_utils.h …/include/

Library Files

16ao16_utils.a

gsc_utils.a

os_utils.a

plx_utils.a

…/lib/

7.2. Build

The libraries are built via the Overall Make Script (section 2.7, page 13), but can be built separately following the

below steps.

1. Change to the directory where the utility sources are installed (…/utils/).

2. Remove existing build targets by issuing the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make

4. Rebuild the Main Library (section 3.2.1, page 16).

7.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above

listed header file in each source file using a component of the library interface. At link time include the above listed

static library file with the objects being linked with the application.

16AO16 Linux Device Driver User Manual

53

General Standards Corporation, Phone: (256) 880-8787

8. Operating Information

This section explains some basic operational procedures for using the 16AO16. This is in no way intended to be a

comprehensive guide. This is simply to address a very few issues relating to their use.

8.1. Debugging Aids

The driver package includes the following items useful for development and/or debugging aids.

8.1.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id

example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as

follows.

Description File Location

Application id …/id/

8.1.2. Detailed Register Dump

Among the utility services provided is a function to generate a detailed listing of device registers to the console.

When used, the function is typically used to verify device configuration. In these cases, the function should be called

after complete device configuration and before the first I/O call. When intended for sending to GSC tech support,

please set the detail arguments to 1. The function arguments are as follows. The utility location is given in the

subsequent table.

Argument Description
fd This is the file descriptor used to access the device.
detail If non-zero the register dump will include details of each register field.

Description File/Name Location

Function ao16_reg_list() Source File

Source File util_reg.c …/utils/

Header File 16ao16_utils.h …/include/

Library File 16ao16_utils.a …/lib/

8.2. Analog Output Configuration

The basic steps for Analog Output configuration are illustrated in the utility function noted below. The table also

gives the location of the source file, the header file and the corresponding library containing the executable code.

Item Name/File Location

Function ao16_config_ao() Source File

Source File util_config_ao.c …/utils/

Header File 16ao16_utils.h …/include/

Library File 16ao16_utils.a …/lib/

8.3. Data Transfer Modes

All device I/O requests move data through intermediate driver buffers on its way between the device and application

memory. The data is processed in chunks no larger than the size of this intermediate buffer. The process used to

16AO16 Linux Device Driver User Manual

54

General Standards Corporation, Phone: (256) 880-8787

perform this transfer is according to the I/O mode selection. Movement of data between the application buffers and

the intermediate driver buffers is performed by the kernel.

8.3.1. PIO - Programmed I/O

In this mode data is transferred using repetitive register accesses. This is most applicable for low throughput

requirements or for small transfer requests. The driver continues the operation until either the I/O request is fulfilled

or the I/O timeout expires, whichever occurs first. This is generally the least efficient mode, but for very small

transfers it is more efficient than DMA.

8.3.2. BMDMA - Block Mode DMA

For DMA transfers, hardware onboard the 16AO16 is used to transfer the data without processor intervention. In this

mode the driver checks for available space in the output buffer. Depending on the size of the write request, the

driver may break the request into smaller transfers in order to ensure data integrity. When sufficient space is

available a DMA transfer is performed. The volume of data moved in a single request is based upon the amount of

data remaining in the request and the amount of space available in the buffer. If the remaining request will fit within

the available space, then the data is transferred. Otherwise, the volume of data that is transferred is based on the

buffer fill level. If the buffer is full, then driver waits one system timer tick before trying again. The process is

repeated until the data is exhausted or the I/O timeout expires, whichever occurs first.

8.3.3. DMDMA - Demand Mode DMA

In Demand Mode DMA, data is moved from the intermediate buffer to the output buffer in a single DMA transfer

that occurs over time as the data appears in the output buffer. The process is repeated until the data is exhausted or

the I/O timeout expires, whichever occurs first.

16AO16 Linux Device Driver User Manual

55

General Standards Corporation, Phone: (256) 880-8787

9. Sample Applications

The driver archive includes a variety of sample and test applications. While they are provided without support and

without any external documentation, any problems reported will be addressed as time permits. The applications are

command line based and produce text output for display on a console. All of the applications are built via the

Overall Make Script (section 2.7, page 13), but each may be built individually by changing to its respective directory

and issuing the commands “make clean” and “make all”. The initial output from each application includes

information on its supported command line arguments. The following gives a brief overview of each application.

9.1. aout - Analog Output - …/aout/

This application outputs a repeating pattern on the first four output channels. The pattern is different for each

channel, though they are synchronized at the same modest rate.

9.2. clockout - Clock Output - …/clockout/

This application configures the board to drive the digital output signals for a user specified period of time. This is

done to facilitate setup of test equipment to capture those signals during actual use.

9.3. fsamp - Sample Rate - …/fsamp/

This application reports the device configuration required to produce a user specified sample rate.

9.4. id - Identify Board - …/id/

This application reports detailed board identification information. This can be used with tech support to help identify

as much technical information about the board as possible from software.

9.5. mcao - Multi-Channel Analog Output - …/mcao/

This application configures a specified number of channels for operation, and then outputs the designated wave

patterns on the designated channels.

9.6. regs - Register Access - …/regs/

This application provides menu based interactive access to the board’s registers, and reports other pertinent

information to the console.

9.7. sbtest - Single Board Test - …/sbtest/

This application performs functional testing of the driver and a user specified board, at least to the extent possible

with just a single board and no additional equipment.

9.8. txrate - Transmit Rate - …/txrate/

This application configures the board for its highest output sample rate then writes output as fast as possible. The

purpose is to measure the peak sustainable output rate for the host, per the provided command line arguments.

16AO16 Linux Device Driver User Manual

56

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

June 28, 2023

Updated to version 3.10.104.47.0. Updated the kernel support table. Numerous, minor

editorial changes. Updated the description of the Output Buffer Clear service. Updated the

description of the Autocalibration service. Renamed all Auto_Cal content to Autocal.

Renamed all Auto_Cal_Sts content to Autocal_Status.

January 30, 2023 Updated to version 3.9.102.44.0. Added notes regarding the autocalibration IOCTL service.

January 23, 2023

Updated to version 3.8.102.44.0. Updated the information for the open and close calls.

Reorganized the operations section and added I/O transfer information. Minor editorial

alterations. Added support for the 16AO16FLV. Added support for various features and

query options: Voltage Range, Cable Invert, Cable Passive, Model, Output Capacity,

Output Filter and Watchdog Bit.

July 6, 2022

Updated to version 3.7.100.42.0. Expanded automatic startup information. Minor editorial

alterations. Updated information on the main library and its use. Updated the kernel support

table. Added section on environment variables.

February 24, 2021

Updated to version 3.6.93.35.0. Updated the kernel support table. Minor editorial changes.

Added WAIT_EVENT note. Corrected the description of the XCVR_TYPE service.

Expanded automatic startup information. Added notes on the voltage range selection

following initialization.

July 15, 2019
Updated to version 3.5.86.28.0. Updated the kernel support table. Minor editorial updates.

Added a licensing subsection.

May 16, 2019
Updated to version 3.4.85.27.0. Minor editorial changes. Minor paragraph updates. Updated

the software architecture figure.

October 24, 2018
Updated to version 3.3.81.26.1. Various editorial changes. Added debugging aids. Changed

GSC_WAIT_IO_XXX to AO16_WAIT_IO_XXX.

October 23, 2018
Updated to version 3.3.81.26.0. Updated the inside cover page. Updated Block Mode DMA

macro and associated information.

June 7, 2018 Updated to version 3.2.77.22.1. The API Library is now implemented as a shared library.

June 1, 2018
Updated to version 3.2.77.22.0. Document reorganization. Numerous, minor editorial

changes. Updated the CPU and kernel support section.

November 30, 2016

Updated to version 3.1.68.18.0. Removed the built field from the /proc/ file. Updated

the kernel support table. Updated the command line arguments for the fsamp, aout and

txrate sample applications. Organized the sample applications alphabetically. Added the

mcao sample application. Updated the usage of the Wait Event timeout_ms field.

Updated material on the open call. Added open access mode descriptions. Added support

for infinite I/O timeouts. Added a section for general operating information. Made various

miscellaneous updates. Some document reorganization.

September 14, 2015
Updated to version 3.0.60.8.0. Removed double underscore that prefaced various data

types.

October 23, 2014 Updated to version 2.6.57.0.

July 18, 2014

Updated to version 2.6.53.0. Changed the device name from 16ao16n to 16ao16.n.

Added support for Demand Mode DMA. Expanded the Voltage Range IOCTL service.

Added the Cable Polarity IOCTL services. Added the Cable Isolation IOCTL services.

Added the Cable Polarity IOCTL services.

February 27, 2014 Updated to version 2.5.52.0. Updated the kernel support table.

January 9, 2014 Updated to version 2.4.51.1. Updated the kernel support table.

January 7, 2014 Updated to version 2.4.51.0.

November 8, 2013 Updated to version 2.4.48.0.

July 3, 2013 Updated to version 2.4.45.0. Updated the kernel support table.

September 5, 2012 Updated to version 2.4.39.1.

July 18, 2012 Updated to version 2.4.39.0. Updated the kernel support table.

December 12, 2011 Updated to version 2.3.34.0.

16AO16 Linux Device Driver User Manual

57

General Standards Corporation, Phone: (256) 880-8787

October 31, 2011

Updated to version 2.2.30.0. Various editorial changes. Removed the IRQ_ENABLE and

IRQ_STATUS IOCTL services. Renamed the IRQ_SEL IOCTL service values to IRQ.

Updated the CPU and Kernel Support information. Updated the comments for the Initialize

IOCTL service. Changed the spelling of various Autocalibration related software items.

December 24, 2009 Updated to version 2.1.13.0.

November 16, 2009

Updated to version 2.1.11.0. Corrected minor document errors. Changed

AO16_IOCTL_BUFFER_STATE to AO16_IOCTL_BUFFER_STATUS. Added more

sample applications.

November 4, 2009 Updated to version 2.0.10.0. The interface was overhauled.

September 29, 2008 Updated to version 1.3.0.

February 6, 2007 Updated to version 1.2.0.

July 1, 2005 Initial release.

