
16AIO
16-Bit ADC/DAC, 32 Scanned Analog Inputs

4 Analog Outputs, 16-bit Digital I/O

PMC-16AIO/16LCAIO
PC104P-16AIO/16LCAIO

PMC-12AIO/12LCAIO
PC104P-12AIO/12LCAIO

API Library
Reference Manual

Manual Revision: July 8, 2018

Driver Release Version 5.2.79.x.0

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

16AIO API Library Reference Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2018, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or

software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Although extensive editing and reviews are performed before release, General Standards Corporation assumes no

responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are

made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this

documentation.

General Standards Corporation does not assume any liability arising out of the application or use of

documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or

any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,

software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

TenAsys® and INtime® are registered trademarks of TenAsys.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

16AIO API Library Reference Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 6

1.1. Purpose.. 6

1.2. Acronyms .. 6

1.3. Definitions .. 6

1.4. Software Overview ... 6
1.4.1. API Library ... 6
1.4.2. Device Driver ... 6

1.5. Hardware Overview .. 7

1.6. Reference Material .. 7

2. Important Support Files ... 9

2.1. Main Header File .. 9

2.2. Main Library File .. 9

2.3. Libraries .. 9
2.3.1. API Library ... 9
2.3.2. Document Source Library .. 9
2.3.3. Utilities Library .. 10

2.4. Sample Applications ... 10

3. API Library Interface ... 11

3.1. Library Use ... 11

3.2. Macros .. 11
3.2.1. IOCTL .. 11
3.2.2. Registers ... 11

3.3. Data Types .. 12

3.4. Functions ... 12
3.4.1. aio_close() .. 12
3.4.2. aio_init() ... 13
3.4.3. aio_ioctl() ... 13
3.4.4. aio_open() ... 14
3.4.5. aio_read() .. 16
3.4.6. aio_write() .. 17

3.5. IOCTL Services .. 17
3.5.1. AIO_IOCTL_AI_BUF_CLEAR .. 17
3.5.2. AIO_IOCTL_AI_BUF_THR_LVL .. 18
3.5.3. AIO_IOCTL_AI_BUF_THR_STS... 18
3.5.4. AIO_IOCTL_AI_MODE ... 18
3.5.5. AIO_IOCTL_AI_SCAN_1_CHAN ... 19
3.5.6. AIO_IOCTL_AI_SCAN_CLK_SRC ... 19
3.5.7. AIO_IOCTL_AI_SCAN_SIZE .. 19
3.5.8. AIO_IOCTL_AI_SYNC .. 20
3.5.9. AIO_IOCTL_AO_BUF_CLEAR ... 20
3.5.10. AIO_IOCTL_AO_BUF_THR_LVL .. 20
3.5.11. AIO_IOCTL_AO_BUF_THR_STS ... 20
3.5.12. AIO_IOCTL_AO_BURST_CLK_SRC ... 21

16AIO API Library Reference Manual

4

General Standards Corporation, Phone: (256) 880-8787

3.5.13. AIO_IOCTL_AO_BURST_ENABLE ... 21
3.5.14. AIO_IOCTL_AO_CLK_SRC .. 21
3.5.15. AIO_IOCTL_AO_LOOPING .. 22
3.5.16. AIO_IOCTL_AO_SYNC ... 22
3.5.17. AIO_IOCTL_AO_TIMING ... 22
3.5.18. AIO_IOCTL_AUTO_CAL_STS ... 23
3.5.19. AIO_IOCTL_AUTO_CALIBRATE .. 23
3.5.20. AIO_IOCTL_AUX_READ .. 23
3.5.21. AIO_IOCTL_AUX_WRITE .. 23
3.5.22. AIO_IOCTL_DATA_FORMAT .. 24
3.5.23. AIO_IOCTL_DIO_DIR_OUT ... 24
3.5.24. AIO_IOCTL_DIO_READ ... 24
3.5.25. AIO_IOCTL_DIO_WRITE .. 24
3.5.26. AIO_IOCTL_EXT_SYNC_SRC ... 25
3.5.27. AIO_IOCTL_INITIALIZE... 25
3.5.28. AIO_IOCTL_IRQ0_SEL ... 25
3.5.29. AIO_IOCTL_IRQ1_SEL ... 26
3.5.30. AIO_IOCTL_IRQ2_SEL ... 26
3.5.31. AIO_IOCTL_QUERY.. 26
3.5.32. AIO_IOCTL_RANGE.. 27
3.5.33. AIO_IOCTL_REG_MOD .. 28
3.5.34. AIO_IOCTL_REG_READ .. 28
3.5.35. AIO_IOCTL_REG_WRITE ... 29
3.5.36. AIO_IOCTL_RGA_ENABLE ... 29
3.5.37. AIO_IOCTL_RGA_NRATE .. 29
3.5.38. AIO_IOCTL_RGB_CLK_SRC .. 30
3.5.39. AIO_IOCTL_RGB_ENABLE ... 30
3.5.40. AIO_IOCTL_RGB_NRATE .. 30
3.5.41. AIO_IOCTL_RX_IO_ABORT .. 31
3.5.42. AIO_IOCTL_RX_IO_MODE .. 31
3.5.43. AIO_IOCTL_RX_IO_TIMEOUT .. 31
3.5.44. AIO_IOCTL_TX_IO_ABORT .. 31
3.5.45. AIO_IOCTL_TX_IO_MODE .. 32
3.5.46. AIO_IOCTL_TX_IO_TIMEOUT .. 32
3.5.47. AIO_IOCTL_WAIT_CANCEL ... 32
3.5.48. AIO_IOCTL_WAIT_EVENT .. 33
3.5.49. AIO_IOCTL_WAIT_STATUS .. 35

4. Operating Information ... 37

4.1. Basic Analog Input Configuration .. 37

4.2. Basic Analog Output Configuration.. 37

4.3. I/O Modes ... 37
4.3.1. PIO - Programmed I/O ... 37
4.3.2. DMA - Block Mode DMA ... 37

4.4. Debugging Aids .. 38
4.4.1. Device Identification .. 38
4.4.2. Detailed Register Dump ... 38

Document History ... 39

16AIO API Library Reference Manual

5

General Standards Corporation, Phone: (256) 880-8787

Table of Figures

Figure 1 Architecture Representation .. 7

16AIO API Library Reference Manual

6

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

1.1. Purpose

The purpose of this document is to describe the interface to the 16AIO API Library and, to a lesser extent, the

underlying device driver. The API Library software provides the interface between "Application Software" and the

device driver. The driver software provides the interface between the API Library and the actual 16AIO hardware.

The API Library and device driver interfaces are primarily IOCTL based.

1.2. Acronyms

The following is a list of commonly occurring acronyms used throughout this document.

Acronyms Description

API Application Programming Interface

DMA Direct Memory Access

GSC General Standards Corporation

PCI Peripheral Component Interconnect

PIO Programmed I/O

PMC PCI Mezzanine Card

1.3. Definitions

The following is a list of commonly occurring terms used throughout this document.

Term Definition

… This is used as a shortcut for the 16AIO install directory path or one of its subdirectories.

16AIO This is used as a general reference to any board supported by this driver and API Library.

API Library This is the library that provides application level access to the 16AIO device driver.

Application This is the user mode process, which runs in user space with user mode privileges.

Driver This refers to the device driver.

INtime This refers to the “INtime for Windows” real-time extension for Microsoft Windows. Refer to the

16AIO INtime for Windows Driver User Manual.

Library This is usually a general reference to the API Library.

Linux This refers to the Linux operating system. Refer to the 16AIO Linux Driver User Manual.

1.4. Software Overview

An architectural representation of the software is given in Figure 1.

1.4.1. API Library

The API Library is the application level software by which applications are able to communicate with 16AIO

hardware. The library forms a layer between the application and the device driver. With the library, applications are

able to open and close access to a device and, while open, perform I/O control operations, read data from the board

and write data to the board. The interface implemented by the API Library is based on the C programming language

(section 3, page 11).

1.4.2. Device Driver

The device driver is the host software that provides a means of communicating directly with 16AIO hardware.

Depending on the OS, the driver may be a user space application, a kernel mode process, or something in between.

16AIO API Library Reference Manual

7

General Standards Corporation, Phone: (256) 880-8787

The software interface to the device driver is analogous to that of the API Library, and is based on the board’s

functionality.

16AIO

Hardware

16AIO

Device Driver

Hardware Level

16AIO

API Library

16AIO

Application

Kernel Level (Linux)

Application Level (INtime)

Application Level

Figure 1 Architecture Representation

1.5. Hardware Overview

The 16AIO is a high-speed analog Input/Output board. The 16AIO offers 16-bits of resolution. The 12AIO offers

12-bits of resolution. The inputs are configurable as either 32 single-ended input channels or as 16 differential input

pairs. There are also four analog output channels. The input sampling rate is at an aggregate rate of up to 300,000

samples per second for the 16AIO and it is up to 1,500,000 for the 12AIO. The output sampling rate is up to 300,000

samples per second per channel for the 16AIO and up to 400,000 for the 12AIO. The analog channels can be

clocked from either of two independently configurable on-board clocks. Input and output clocking can be either

synchronized or independent and can use either on-board or external synchronization signals. A synchronization

output is included so that multiple boards can operate in unison. The analog I/O voltage range is software selectable

as +/-2.5V, +/-5V or +/-10V. Internal auto calibration networks permit periodic calibration to be performed without

removing the board from the system. The board also features two independent 32K deep FIFOs; one for input and

one for output. The output FIFO can be configured for single-shot or continuous waveform output. A 16-bit bi-

directional digital I/O port is also provided, along with two auxiliary I/O lines. The board also includes DMA and

interrupt capabilities.

1.6. Reference Material

The following reference material may be of particular benefit in using the 16AIO. The specifications provide the

information necessary for an in depth understanding of the specialized features implemented on this board.

 The applicable 16AIO Driver User Manual from General Standards Corporation.

 The applicable 16AIO User Manual from General Standards Corporation.

 The PCI9080 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

PLX Technology Inc.

16AIO API Library Reference Manual

8

General Standards Corporation, Phone: (256) 880-8787

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com

http://www.plxtech.com/

16AIO API Library Reference Manual

9

General Standards Corporation, Phone: (256) 880-8787

2. Important Support Files

2.1. Main Header File

The 16AIO driver package provides a main header file that does an include of all application level 16AIO headers.

Throughout this document references are given for a variety of 16AIO specific header files. Plus, these collectively

include numerous others not specifically named in this document, but which are also included in the 16AIO driver

package. For ease of use it is suggested that applications include only the main header file shown below rather than

individually including those headers identified separately throughout this document. Including the main header file

pulls in all other pertinent 16AIO specific header files. Therefore, sources may include only this one 16AIO header

and makefiles may reference only this one 16AIO include directory. All 16AIO API Library headers and all

affiliated headers are included via this one header file and are all located in this one directory.

Description File Location OS

Header File 16aio_main.h …/include/ All

2.2. Main Library File

The 16AIO driver package provides a main statically linkable library that is a substitute for separately linking all

static libraries built individually as a part of the driver package. Throughout this document references are given for a

variety of 16AIO specific static libraries. For ease of use it is suggested that applications link only the main static

library file shown below rather than individually linking the entire set of 16AIO static libraries. Linking the main

library file pulls in all other pertinent 16AIO specific libraries. Therefore, makefiles may link only this one 16AIO

library and may reference only this one 16AIO library directory. The 16AIO API Library file and all affiliated

libraries are incorporate via this one library file and all are located in this one directory.

Description File Location OS

Library File 16aio_main.a …/lib/ Linux

16aio_main.lib …\lib\… * INtime

* Debug and release versions of the library are included under corresponding subdirectories.

2.3. Libraries

2.3.1. API Library

The Library is provided as a static library directly linkable with applications. The pertinent files are identified in the

following table. Some source files are specific only to the 16AIO, some are specific only to the OS and some are

16AIO and OS independent.

Description Files Location OS

Source Files *.c …/api/ All

Header File 16aio_api.h …/include/ All

Library File 16aio_api.a …/lib/ Linux

16aio_api.lib

16aio_api.rtl †

…\lib\… * INtime

* Debug and release versions of the libraries are included under corresponding subdirectories.

† The run time executable is provided in the form of an INtime DLL.

2.3.2. Document Source Library

The source code examples given in this document with the API Library function calls are provided as C files

included with the driver package. This is done to verify that the code compiles correctly. Additionally, the sources

are compiled and linked into a static library to simplify use of the examples. The pertinent files are identified in the

following table. All source files are specific to the 16AIO, but independent of the OS.

16AIO API Library Reference Manual

10

General Standards Corporation, Phone: (256) 880-8787

Description Files Location OS

Source Files *.c …/docsrc/ All

Header File 16aio_dsl.h …/include/ All

Library File 16aio_dsl.a …/lib/ Linux

16aio_dsl.lib …\lib\… * INtime

* Debug and release versions of the library are included under corresponding subdirectories.

2.3.3. Utilities Library

The 16AIO API Library includes a body of utility source code designed to aid in the understanding and use of all

API calls and all IOCTL services. The essence of these utilities is to implement visual wrappers around the

corresponding services. Utility sources are also included for device independent and common, general purpose

services. The utility services are used extensively by the sample applications. For each API function there is a

corresponding utility source file with a corresponding utility service. As an example, for the API function

aio_open() there is the utility file open.c containing the utility function aio_open_util(). The naming

pattern is as follows: API function aio_xxxx(), utility file name xxxx.c, utility function aio_xxxx_util().

Additionally, for each IOCTL code there is a corresponding utility source file with a corresponding utility service.

As an example, for IOCTL code AIO_IOCTL_AI_MODE there is the utility file util_ai_mode.c containing

the utility function aio_ai_mode(). The naming pattern is as follows: IOCTL code AIO_IOCTL_XXXX, utility

file name util_xxxx.c, utility function aio_xxxx(). The utility sources are compiled and linked into a static

library to simplify their use. The pertinent files are identified in the following table. Some source files are specific

only to the 16AIO, some are specific only to the OS and some are 16AIO and OS independent.

Description Files Location OS

Source Files *.c …/utils/ All

Header File 16aio_utils.h …/include/ All

Library File 16aio_utils.a …/lib/ Linux

16aio_utils.lib …\lib\… * INtime

* Debug and release versions of the library are included under corresponding subdirectories.

2.4. Sample Applications

The driver package includes several example applications. These may be useful both for testing and for

programming demonstration purposes. The examples make extensive use of the utility libraries also included in the

driver package. The files are located as given in the table below. Most source files are specific to the 16AIO, but

independent of the OS.

Description Files Location OS

Source Files *.c …/samples/ All *

* Some sample applications are OS specific and not included with all driver packages.

16AIO API Library Reference Manual

11

General Standards Corporation, Phone: (256) 880-8787

3. API Library Interface

The 16AIO API Library is the software interface between user applications and the 16AIO device driver. All driver

functionality is accessible through this interface.

NOTE: Contact General Standards Corporation if additional library functionality is required.

3.1. Library Use

The library is used both at application compile time and at application link time. At compile time include the below

listed header file in each source file using a component of the library interface. At link time include the below listed

library files with the objects being linked with the application.

Description Files Location OS

Header File 16aio_api.h …/include/ All

Library Files 16aio_api.a …/lib/ Linux

16aio_api.lib

16aio_api.rtl †

…\lib\… * INtime

* Debug and release versions of the libraries are included under corresponding subdirectories.

† The run time executable is provided in the form of an INtime DLL.

3.2. Macros

The Library interface includes the following macros, which are defined in 16aio.h.

3.2.1. IOCTL

The IOCTL macros are documented in section 3.5 beginning on page 17.

3.2.2. Registers

The following gives the complete set of 16AIO registers.

3.2.2.1. GSC Registers

The following tables give the complete set of GSC specific 16AIO registers. For detailed definitions of these

registers refer to the relevant 16AIO User Manual. Please note that the set of registers supported by any given board

may vary according to model and firmware version. For the set of supported registers and detailed definitions of

these registers please refer to the appropriate 16AIO User Manual.

Macro Description

AIO_GSC_AVR Autocal Values Register

AIO_GSC_BCR Board Control Register

AIO_GSC_DIOPR Digital I/O Port Register

AIO_GSC_FRR Firmware Revision Register

AIO_GSC_IBCR Input Buffer Control Register

AIO_GSC_ICR Interrupt Control Register

AIO_GSC_IDBR Input Data Buffer Register

AIO_GSC_OBCR Output Buffer Control Register

AIO_GSC_ODBR Output Data Buffer Register

AIO_GSC_RGAR Rate Generator A Register

AIO_GSC_RGBR Rate Generator B Register

AIO_GSC_SSCR Scan and Sync Control Register

16AIO API Library Reference Manual

12

General Standards Corporation, Phone: (256) 880-8787

3.2.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of the PCI

register identifiers refer to the header file gsc_pci9080.h, which is automatically included via 16aio.h.

3.2.2.3. PLX PCI9080 Feature Set Registers

Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX

register identifiers refer to the header file gsc_pci9080.h, which is automatically included via 16aio.h.

3.3. Data Types

The data types used by the Library are identified and described with the IOCTL macros (section 3.5, page 17).

3.4. Functions

The Library interface includes the following functions. The return values reflect the completion status of the

requested operation. A value of zero indicates success. A negative value indicates that the request could not be

completed successfully. The specific values returned are described in the table below. I/O services return positive

values to indicate the number of bytes successfully transferred.

Return Value Description OS

-1 to -999 This is the value (-errno) (see errno.h). All

<= 1000 This is the value (-(int)(GetLastRtError()+1000)). INtime

3.4.1. aio_close()

This function is the entry point to close a connection to an open 16AIO board.

Prototype

int aio_close(int fd);

Argument Description

fd This is the file descriptor of the device to be closed.

Return Value Description

0 The operation succeeded.

< 0 An error occurred. See error value descriptions above.

Example

#include <stdio.h>

#include "16aio_dsl.h"

int aio_close_dsl(int fd)

{

 int err;

 int ret;

 ret = aio_close(fd);

 if (ret)

16AIO API Library Reference Manual

13

General Standards Corporation, Phone: (256) 880-8787

 printf("ERROR: aio_close() returned %d\n", ret);

 err = ret ? 1 : 0;

 return(err);

}

3.4.2. aio_init()

This function is the entry point to initializing the 16AIO API Library and must be the first call into the Library. This

function may be called more than once, but only the first successful call actually initializes the library. Subsequent

calls perform no operation at all. All other API calls return a failure status when the API Library is not initialized.

Prototype

int aio_init(void);

Return Value Description

0 The operation succeeded.

< 0 An error occurred. See error value descriptions above.

Example

#include <stdio.h>

#include "16aio_dsl.h"

int aio_init_dsl(void)

{

 int err;

 int ret;

 ret = aio_init();

 if (ret)

 printf("ERROR: aio_init() returned %d\n", ret);

 err = ret ? 1 : 0;

 return(err);

}

3.4.3. aio_ioctl()

This function is the entry point to performing setup and control operations on a 16AIO board. This function should

only be called after a successful open of the respective device. The specific operation performed varies according to

the request argument. The request argument also governs the use and interpretation of the arg argument. The

set of supported options for the request argument consists of the IOCTL services supported by the driver (section

3.5, page 17).

Prototype

int aio_ioctl(int fd, int request, void* arg);

Argument Description

fd This is the file descriptor of the device to access.

16AIO API Library Reference Manual

14

General Standards Corporation, Phone: (256) 880-8787

request This specifies the desired operation to be performed.

arg This is a request specific argument. Refer to the IOCTL services for additional

information (section 3.5, page 17).

Return Value Description

0 The operation succeeded.

< 0 An error occurred. See error value descriptions above.

Example

#include <stdio.h>

#include "16aio_dsl.h"

int aio_ioctl_dsl(int fd, int request, void* arg)

{

 int err;

 int ret;

 ret = aio_ioctl(fd, request, arg);

 if (ret)

 printf("ERROR: aio_ioctl() returned %d\n", ret);

 err = ret ? 1 : 0;

 return(err);

}

3.4.4. aio_open()

This function is the entry point to open a connection to a 16AIO board.

Prototype

int aio_open(int index, int share, int* fd);

Argument Description

index This is the zero based index of the 16AIO to access. *

share Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).

fd The device handle is returned here. The pointer cannot be NULL. Values returned are as

follows.

Value Description

>= 0 This is the handle to use to access the device in subsequent calls.

-1 There was an error. The device is not accessible.

* The index value -1 can also be given to acquire driver information (section 3.4.4.2, page 15).

Return Value Description

0 The operation succeeded.

< 0 An error occurred. See error value descriptions above.

16AIO API Library Reference Manual

15

General Standards Corporation, Phone: (256) 880-8787

Example

#include <stdio.h>

#include "16aio_dsl.h"

int aio_open_dsl(int index, int share, int* fd)

{

 int err;

 int ret;

 ret = aio_open(index, share, fd);

 if (ret)

 printf("ERROR: aio_open() returned %d\n", ret);

 err = ret ? 1 : 0;

 return(err);

}

3.4.4.1. Access Modes

Shared Access Mode:

Shared Access Mode allows multiple applications to access the same device simultaneously. In this mode, the first

successful open request returns with the device in an initialized state. Subsequent successful Shared Access Mode

open requests do not affect the state of the device. Once opened in Shared Access Mode, the device access remains

in this mode until all Shared Access Mode accesses release the device with a close request.

Exclusive Access Mode:

Exclusive Access Mode allows a single application to acquire exclusive access to a device. In this mode, a

successful open request returns with the device in an initialized state. While open in this mode all subsequent open

requests will fail regardless of the access mode requested. Once opened in Exclusive Access Mode, the device

access remains in this mode until released by the application with a close request.

3.4.4.2. Device Index -1

If an open request is made with a device index of -1 the application gains access to the driver rather than to

hardware. In this case, the application gains read access to the driver rather than to any underlying hardware. Read

requests return the information shown below. Each line includes an entry name followed immediately by a colon, a

space character, and the entry value. Below is an example of what is returned, followed by descriptions of each

entry. Neither write nor IOCTL services are supported.

version: 5.2.79.25

32-bit support: yes (native)

boards: 1

models: 16AIO

Entry Description

version This gives the driver version number in the form x.x.x.x. The last number in the

version number is specific to the OS.

16AIO API Library Reference Manual

16

General Standards Corporation, Phone: (256) 880-8787

32-bit support This reports the driver’s support for 32-bit applications. This will be either “yes” or “no”

for 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.

models This gives a comma separated list of the basic model number for each board the driver

detected.

The source for the text provided is as follows.

OS Source

Linux The file “/proc/16aio”.

INtime The Driver Mailbox “16aio”.

3.4.5. aio_read()

This function is the entry point to reading data from an open 16AIO. This function should only be called after a

successful open of the respective device. The function reads up to bytes bytes from the board. The return value is

the number of bytes actually read.

NOTE: For PIO transfers, the driver’s read service dynamically manipulates the input buffer

threshold level to compute the FIFO fill level. The original value is restored before the read

service returns. If the input buffer threshold status has been selected as an interrupt source, then it

is disabled during the manipulation.

NOTE: When performing an open on device index -1, application read requests acquire driver

information (section 3.4.4.2, page 15).

Prototype

int aio_read(int fd, void* buf, size_t bytes);

Argument Description

fd This is the file descriptor of the device to access.

buf The data read will be put here.

bytes This is the desired number of bytes to read. This must be a multiple of four (4) when reading

from a device.

Return Value Description

0 to bytes The operation succeeded. A value less than bytes indicates that the request timed out.

< 0 An error occurred. See error value descriptions above.

Example

#include <stdio.h>

#include "16aio_dsl.h"

int aio_read_dsl(int fd, void* dst, size_t bytes)

{

 int ret;

 ret = aio_read(fd, dst, bytes);

 if (ret < 0)

 printf("ERROR: aio_read() returned %d\n", ret);

16AIO API Library Reference Manual

17

General Standards Corporation, Phone: (256) 880-8787

 return(ret);

}

3.4.6. aio_write()

This function is the entry point to writing data to an open 16AIO. This function should only be called after a

successful open of the respective device. The function writes up to bytes bytes to the board. The return value is the

number of bytes actually written.

NOTE: The driver’s write service may dynamically manipulate the output buffer threshold level.

When this is done the original value will be restored before the write service returns. The output

buffer threshold level will not be manipulated if the output buffer threshold status has been

selected as an interrupt source. In these cases write performance may be reduced.

Prototype

int write(int fd, const void* buf, size_t bytes);

Argument Description

fd This is the file descriptor of the device to access.

buf The data to write is taken from this pointer.

bytes This is the desired number of bytes to write. This must be a multiple of four (4).

Return Value Description

0 to bytes The operation succeeded. A value less than bytes indicates that the request timed out.

< 0 An error occurred. See error value descriptions above.

Example

#include <stdio.h>

#include "16aio_dsl.h"

int aio_write_dsl(int fd, const void* src, size_t bytes)

{

 int ret;

 ret = aio_write(fd, src, bytes);

 if (ret < 0)

 printf("ERROR: aio_write() returned %d\n", ret);

 return(ret);

}

3.5. IOCTL Services

The 16AIO API Library and device driver implement the following IOCTL services. Each service is described along

with the applicable aio_ioctl() function arguments.

3.5.1. AIO_IOCTL_AI_BUF_CLEAR

This service immediately clears the current content from the input buffer. This service does not halt input sampling.

16AIO API Library Reference Manual

18

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description

request AIO_IOCTL_AI_BUF_CLEAR

arg Not used.

3.5.2. AIO_IOCTL_AI_BUF_THR_LVL

This service configures the input buffer threshold level.

Usage

Argument Description

request AIO_IOCTL_AI_BUF_THR_LVL

arg s32*

Valid argument values are from zero to 0x7FFF, and -1. A value of -1 will return the current threshold level

setting.

3.5.3. AIO_IOCTL_AI_BUF_THR_STS

This service retrieves the current input buffer threshold level status, which indicates whether or not there is more

than Input Buffer Threshold Level number of 32-bit data items in the input buffer.

Usage

Argument Description

request AIO_IOCTL_AI_BUF_THR_STS

arg s32*

The current status is reported as one of the following values.

Value Description

AIO_AI_BUF_THR_STS_CLEAR The input buffer contains Threshold Level number of data items, or

fewer.

AIO_AI_BUF_THR_STS_SET The input buffer contains more than Threshold Level number of

data items.

3.5.4. AIO_IOCTL_AI_MODE

This service retrieves the current input buffer threshold level status, which indicates whether or not there is more

than Threshold Level number of 32-bit data items in the input buffer.

Usage

Argument Description

request AIO_IOCTL_AI_MODE

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AIO_AI_MODE_AO_0 This refers to analog output channel 0.

16AIO API Library Reference Manual

19

General Standards Corporation, Phone: (256) 880-8787

AIO_AI_MODE_AO_1 This refers to analog output channel 1.

AIO_AI_MODE_AO_2 This refers to analog output channel 2.

AIO_AI_MODE_AO_3 This refers to analog output channel 3.

AIO_AI_MODE_DIFF This refers to the differential inputs, which limits the number of input

channels to 16.

AIO_AI_MODE_SINGLE This refers to the single ended inputs, which expands the number of input

channels to 32.

AIO_AI_MODE_VREF This refers to the VREF voltage input source.

AIO_AI_MODE_ZERO This refers to the zero voltage input source.

3.5.5. AIO_IOCTL_AI_SCAN_1_CHAN

This service selects the channel to use when the Analog Input Mode is set to the Single Channel option.

Usage

Argument Description

request AIO_IOCTL_AI_SCAN_1_CHAN

arg s32*

Valid argument values are from zero to one less than the number of input channels, and -1. The number of input

channels is 32 for single ended mode and 16 for differential mode. A value of -1 will return the current threshold

level setting.

3.5.6. AIO_IOCTL_AI_SCAN_CLK_SRC

This service configures the source for the analog input sampling clock.

Usage

Argument Description

request AIO_IOCTL_AI_SCAN_CLK_SRC

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AIO_AI_SCAN_CLK_SRC_BCR This refers to the Input Sync bit in the BCR.

AIO_AI_SCAN_CLK_SRC_EXT This refers to the external clock source.

AIO_AI_SCAN_CLK_SRC_RGA This refers to the Rate Generator A.

AIO_AI_SCAN_CLK_SRC_RGB This refers to the Rate Generator B.

3.5.7. AIO_IOCTL_AI_SCAN_SIZE

This service configures the selection for the number of input channels included in a scan.

Usage

Argument Description

request AIO_IOCTL_AI_SCAN_SIZE

arg s32*

Valid argument values are as follows.

16AIO API Library Reference Manual

20

General Standards Corporation, Phone: (256) 880-8787

Value Description

-1 Retrieve the current setting.

AIO_AI_SCAN_SIZE_0_1 This refers to scanning input channels zero through one.

AIO_AI_SCAN_SIZE_0_3 This refers to scanning input channels zero through three.

AIO_AI_SCAN_SIZE_0_7 This refers to scanning input channels zero through seven.

AIO_AI_SCAN_SIZE_0_15 This refers to scanning input channels zero through 15.

AIO_AI_SCAN_SIZE_0_31 This refers to scanning input channels zero through 31. This option

should not be made when using differential mode operation.

AIO_AI_SCAN_SIZE_SINGLE This refers to scanning a single input channel.

3.5.8. AIO_IOCTL_AI_SYNC

This service initiates an input sync operation. The driver returns immediately rather than waiting for the operation to

complete.

Usage

Argument Description

request AIO_IOCTL_AI_SYNC

arg Not used.

3.5.9. AIO_IOCTL_AO_BUF_CLEAR

This service immediately clears the current content from the output buffer.

Usage

Argument Description

request AIO_IOCTL_AO_BUF_CLEAR

arg Not used.

3.5.10. AIO_IOCTL_AO_BUF_THR_LVL

This service configures the output buffer threshold level.

Usage

Argument Description

request AIO_IOCTL_AO_BUF_THR_LVL

arg s32*

Valid argument values are from zero to 0x7FFF, and -1. A value of -1 will return the current threshold level

setting.

3.5.11. AIO_IOCTL_AO_BUF_THR_STS

This service retrieves the current output buffer threshold level status, which indicates whether or not there is more

than output Buffer Threshold Level number of 32-bit data items in the input buffer.

Usage

Argument Description

request AIO_IOCTL_AO_BUF_THR_STS

arg s32*

16AIO API Library Reference Manual

21

General Standards Corporation, Phone: (256) 880-8787

The current status is reported as one of the following values.

Value Description

AIO_AO_BUF_THR_STS_CLEAR The output buffer contains Threshold Level number of data items,

or fewer.

AIO_AO_BUF_THR_STS_SET The output buffer contains more than Threshold Level number of

data items.

3.5.12. AIO_IOCTL_AO_BURST_CLK_SRC

This service configures the source for the analog output bursting clock.

Usage

Argument Description

request AIO_IOCTL_AO_BURST_CLK_SRC

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AIO_AO_BURST_CLK_SRC_BCR This refers to the Output Sync bit in the BCR.

AIO_AO_BURST_CLK_SRC_EXT This refers to the external clock source.

AIO_AO_BURST_CLK_SRC_RGA This refers to the Rate Generator A.

AIO_AO_BURST_CLK_SRC_RGB This refers to the Rate Generator B.

3.5.13. AIO_IOCTL_AO_BURST_ENABLE

This service enables or disables output bursting.

Usage

Argument Description

request AIO_IOCTL_AO_BURST_ENABLE

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AIO_AO_BURST_ENABLE_NO This refers to bursting being disabled.

AIO_AO_BURST_ENABLE_YES This refers to bursting being enabled.

3.5.14. AIO_IOCTL_AO_CLK_SRC

This service configures the source for the analog output sampling clock.

Usage

Argument Description

request AIO_IOCTL_AO_CLK_SRC

arg s32*

16AIO API Library Reference Manual

22

General Standards Corporation, Phone: (256) 880-8787

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AIO_AO_CLK_SRC_DISABLE This disables analog output.

AIO_AO_CLK_SRC_EXT This refers to the external clock source.

AIO_AO_CLK_SRC_RGA This refers to the Rate Generator A.

AIO_AO_CLK_SRC_RGB This refers to the Rate Generator B.

3.5.15. AIO_IOCTL_AO_LOOPING

This service enables or disabled analog output recycling for repetitive pattern generation.

Usage

Argument Description

request AIO_IOCTL_AO_LOOPING

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AIO_AO_LOOPING_DISABLE This disables output data recycling.

AIO_AO_LOOPING_ENABLE This enables output data recycling.

3.5.16. AIO_IOCTL_AO_SYNC

This service initiates an output sync operation. The driver returns immediately rather than waiting for the operation

to complete.

Usage

Argument Description

request AIO_IOCTL_AO_SYNC

arg Not used.

3.5.17. AIO_IOCTL_AO_TIMING

This service configures the relative timing at which analog output is posted to the cable interface.

Usage

Argument Description

request AIO_IOCTL_AO_TIMING

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AIO_AO_TIMING_SEQ This refers to sequential operation.

AIO_AO_TIMING_SIMUL This refers to simultaneous operation.

16AIO API Library Reference Manual

23

General Standards Corporation, Phone: (256) 880-8787

3.5.18. AIO_IOCTL_AUTO_CAL_STS

This service retrieves the results of the most recent auto-calibration cycle.

Usage

Argument Description

request AIO_IOCTL_AUTO_CAL_STS

arg s32*

The current status is reported as one of the following values.

Value Description

AIO_AUTO_CAL_STS_ACTIVE Auto-calibration is still in progress.

AIO_AUTO_CAL_STS_FAIL Auto-calibration failed.

AIO_AUTO_CAL_STS_PASS Auto-calibration passed.

3.5.19. AIO_IOCTL_AUTO_CALIBRATE

This service initiates an auto-calibration cycle. The driver waits for the operation to complete before returning.

NOTE: If the auto-calibration service returns an error status, an error message will be posted to

the system log briefly describing the error condition.

Usage

Argument Description

request AIO_IOCTL_AUTO_CALIBRATE

arg Not used.

3.5.20. AIO_IOCTL_AUX_READ

This service returns the current input level at the cable’s Auxiliary Input.

Usage

Argument Description

request AIO_IOCTL_AUX_READ

arg s32*

Argument values returned are zero or one.

3.5.21. AIO_IOCTL_AUX_WRITE

This service applies a value to the cable’s Auxiliary Output.

Usage

Argument Description

request AIO_IOCTL_AUX_WRITE

arg s32*

Valid argument values are from zero or one, and -1. A value of -1 will return the current output state.

16AIO API Library Reference Manual

24

General Standards Corporation, Phone: (256) 880-8787

3.5.22. AIO_IOCTL_DATA_FORMAT

This service retrieves the results of the most recent auto-calibration cycle.

Usage

Argument Description

request AIO_IOCTL_DATA_FORMAT

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AIO_DATA_FORMAT_2S_COMP This refers to twos compliment encoding.

AIO_DATA_FORMAT_OFF_BIN This refers to offset binary encoding.

3.5.23. AIO_IOCTL_DIO_DIR_OUT

This service configures the direction of the two byte wide digital I/O ports. If a bit is set then the corresponding byte

is configured as an output. If a bit is clear then the byte is an input.

Usage

Argument Description

request AIO_IOCTL_DIO_DIR_OUT

arg s32*

Valid argument values are from zero to 0x3, and -1. A value of -1 will return the current output state. The 0x1 bit

refers to the lower byte and the 0x2 bit refers to the upper byte.

3.5.24. AIO_IOCTL_DIO_READ

This service returns the current digital port value. If a byte is configured as an input then the value returned is the

value being applied externally to the cable interface. If a byte is configured as an output then the value returned is

the value being applied by the board to the cable interface.

Usage

Argument Description

request AIO_IOCTL_DIO_READ

arg s32*

Argument values returned are from zero to 0xFFFF.

3.5.25. AIO_IOCTL_DIO_WRITE

This service updates the ports’ output values applied when the byte-wide ports are configured as outputs. If a byte is

configured as an input then the value is record for subsequent output when the byte is later configured as an output.

If a byte is configured as an output then the value is the recorded and immediately applied by the board to the cable

interface.

16AIO API Library Reference Manual

25

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description

request AIO_IOCTL_DIO_WRITE

arg s32*

Valid argument values are from zero to 0xFFFF, and -1. A value of -1 will return the current port values and is

equivalent to using the AIO_IOCTL_DIO_READ IOCTL service.

3.5.26. AIO_IOCTL_EXT_SYNC_SRC

This service configures the source for the external sync output signal.

Usage

Argument Description

request AIO_IOCTL_EXT_SYNC_SRC

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AIO_AI_EXT_SYNC_SRC_AISC This refers to the analog input scan clock.

AIO_AI_EXT_SYNC_SRC_AOS This refers to the analog output sync clock.

AIO_AI_EXT_SYNC_SRC_EXT This refers to the external sync input signal.

AIO_AI_EXT_SYNC_SRC_DISABLE This disables the external sync output.

3.5.27. AIO_IOCTL_INITIALIZE

This service returns all driver interface settings for the board to the state they were in when the board was first

opened. This includes both hardware based settings and software based settings.

NOTE: If the initialization service returns an error status, an error message will be posted to the

system log briefly describing the error condition.

Usage

Argument Description

request AIO_IOCTL_INITIALIZE

arg Not used.

3.5.28. AIO_IOCTL_IRQ0_SEL

This service configures the interrupting source for interrupt option zero.

Usage

Argument Description

request AIO_IOCTL_IRQ0_SEL

arg s32*

Valid argument values are as follows.

16AIO API Library Reference Manual

26

General Standards Corporation, Phone: (256) 880-8787

Value Description

-1 Retrieve the current setting.

AIO_IRQ0_AUTO_CAL_DONE This refers to the completion of an auto-calibration cycle.

AIO_IRQ0_AUX_IN_H2L This refers to a high-to-low transition on the Auxiliary Input.

AIO_IRQ0_AUX_IN_L2H This refers to a low-to-high transition on the Auxiliary Input.

AIO_IRQ0_IDLE_INIT This refers to the completion of an initialization cycle.

3.5.29. AIO_IOCTL_IRQ1_SEL

This service configures the interrupting source for interrupt option one.

Usage

Argument Description

request AIO_IOCTL_IRQ1_SEL

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AIO_IRQ1_AI_BUF_THR_H2L This refers to a high-to-low transition on the Analog Input Buffer

Threshold Status.

AIO_IRQ1_AI_BUF_THR_L2H This refers to a low-to-high transition on the Analog Input Buffer

Threshold Status.

AIO_IRQ1_IDLE This option disables the interrupt.

3.5.30. AIO_IOCTL_IRQ2_SEL

This service configures the interrupting source for interrupt option two.

Usage

Argument Description

request AIO_IOCTL_IRQ2_SEL

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AIO_IRQ2_AO_BUF_THR_H2L This refers to a high-to-low transition on the Analog Output Buffer

Threshold Status.

AIO_IRQ2_AO_BUF_THR_L2H This refers to a low-to-high transition on the Analog Output Buffer

Threshold Status.

AIO_IRQ2_AO_BURST_DONE This refers to the completion of Analog Output burst operation.

AIO_IRQ2_IDLE This option disables the interrupt.

3.5.31. AIO_IOCTL_QUERY

This service is used to query the driver for various pieces of information about the driver and the board. The item

being queried is supplied as the argument value. The argument value is updated with the response.

16AIO API Library Reference Manual

27

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description

request AIO_IOCTL_QUERY

arg s32*

Valid argument values are as follows.

Value Description

AIO_QUERY_AUTO_CAL_MS This is the duration of an auto-calibration cycle in milliseconds.

AIO_QUERY_COUNT This is the number of different query options recognized by the

driver.

AIO_QUERY_DEVICE_TYPE This is the device type and should equal GSC_DEV_TYPE_16AIO

or GSC_DEV_TYPE_12AIO.

AIO_QUERY_FGEN_AI_MAX This is the maximum Analog Input rate generator output in hertz.

AIO_QUERY_FGEN_AI_MIN This is the minimum Analog Input rate generator output in hertz.

AIO_QUERY_FGEN_AO_MAX This is the maximum Analog Output rate generator output in hertz.

AIO_QUERY_FGEN_AO_MIN This is the minimum Analog Output rate generator output in hertz.

AIO_QUERY_FIFO_SIZE_RX This is the capacity of the input FIFO in 32-bit samples.

AIO_QUERY_FIFO_SIZE_TX This is the capacity of the output FIFO in 32-bit samples.

AIO_QUERY_FREF_DEFAULT This is the default master clock frequency in hertz.

AIO_QUERY_FSAMP_AI_MAX This is the maximum Analog Input sample rate in samples per

second.

AIO_QUERY_FSAMP_AI_MIN This is the minimum Analog Input sample rate in samples per

second.

AIO_QUERY_FSAMP_AO_MAX This is the maximum Analog Output sample rate in samples per

second.

AIO_QUERY_FSAMP_AO_MIN This is the minimum Analog Output sample rate in samples per

second.

AIO_QUERY_INIT_MS This is the duration of an initialization cycle in milliseconds.

AIO_QUERY_NRATE_AI_MASK This is the mask of valid Analog Input NRATE rate generator divisor

bits.

AIO_QUERY_NRATE_AI_MAX This is the maximum Analog Input NRATE rate generator divisor.

AIO_QUERY_NRATE_AI_MIN This is the minimum Analog Input NRATE rate generator divisor.

AIO_QUERY_NRATE_AO_MASK This is the mask of valid Analog Output NRATE rate generator

divisor bits.

AIO_QUERY_NRATE_AO_MAX This is the maximum Analog Output NRATE rate generator divisor.

AIO_QUERY_NRATE_AO_MIN This is the minimum Analog Output NRATE rate generator divisor.

AIO_QUERY_RES_BITS This is the number of analog conversion resolution bits.

Valid return values are as indicated in the above table and as given in the below table.

Value Description

AIO_IOCTL_QUERY_ERROR Either there was a processing error or the query option is unrecognized.

3.5.32. AIO_IOCTL_RANGE

This service configures the analog input and output voltage ranges.

Usage

Argument Description

request AIO_IOCTL_RANGE

arg s32*

16AIO API Library Reference Manual

28

General Standards Corporation, Phone: (256) 880-8787

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AIO_RANGE_2_5V This refers to the range of ±2.5 volts.

AIO_RANGE_5V This refers to the range of ±5 volts.

AIO_RANGE_10V This refers to the range of ±10 volts.

3.5.33. AIO_IOCTL_REG_MOD

This service performs a read-modify-write of a 16AIO register. This includes only the GSC firmware registers. The

PCI and PLX Feature Set Registers are read-only. Refer to 16aio.h for the complete list of GSC firmware

registers.

Usage

Argument Description

request AIO_IOCTL_REG_MOD

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description

reg This is set to the identifier for the register to access.

value This contains the value for the register bits to modify.

mask This specifies the set of bits to modify. If a bit here is set, then the respective register bits is

modified. If a bit here is zero, then the respective register bit is unmodified.

3.5.34. AIO_IOCTL_REG_READ

This service reads the value of a 16AIO register. This includes the PCI registers, the PLX Feature Set Registers and

the GSC firmware registers. Refer to 16aio.h and gsc_pci9080.h for the complete list of accessible

registers.

Usage

Argument Description

request AIO_IOCTL_REG_READ

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

16AIO API Library Reference Manual

29

General Standards Corporation, Phone: (256) 880-8787

Fields Description

reg This is set to the identifier for the register to access.

value This is the value read from the specified register.

mask This is ignored for read request.

3.5.35. AIO_IOCTL_REG_WRITE

This service writes a value to a 16AIO register. This includes only the GSC firmware registers. The PCI and PLX

Feature Set Registers are read-only. Refer to 16aio.h for a complete list of the GSC firmware registers.

Usage

Argument Description

request AIO_IOCTL_REG_WRITE

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description

reg This is set to the identifier for the register to access.

value This is the value to write to the specified register.

mask This is ignored for write request.

3.5.36. AIO_IOCTL_RGA_ENABLE

This service enables or disables the Rate Generator A.

Usage

Argument Description

request AIO_IOCTL_RGA_ENABLE

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AIO_GEN_ENABLE_NO This disables the rate generator.

AIO_GEN_ENABLE_YES This enables the rate generator.

3.5.37. AIO_IOCTL_RGA_NRATE

This service configures Rate Generator A NRATE divider value.

16AIO API Library Reference Manual

30

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description

request AIO_IOCTL_RGA_NRATE

arg s32*

Valid argument values are from two to 0xFFFF, and -1. For non-cascaded operation, the minimum valid value is

80. A value of -1 will return the current divider setting.

3.5.38. AIO_IOCTL_RGB_CLK_SRC

This service configures the clock source for the Rate Generator B.

Usage

Argument Description

request AIO_IOCTL_RGB_CLK_SRC

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AIO_RGB_CLK_SRC_MASTER This refers to the master clock.

AIO_RGB_CLK_SRC_RGA This refers to the Rate Generator A.

3.5.39. AIO_IOCTL_RGB_ENABLE

This service enables or disables the Rate Generator B.

Usage

Argument Description

request AIO_IOCTL_RGB_ENABLE

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AIO_GEN_ENABLE_NO This disables the rate generator.

AIO_GEN_ENABLE_YES This enables the rate generator.

3.5.40. AIO_IOCTL_RGB_NRATE

This service configures Rate Generator B NRATE divider value.

Usage

Argument Description

request AIO_IOCTL_RGB_NRATE

arg s32*

16AIO API Library Reference Manual

31

General Standards Corporation, Phone: (256) 880-8787

Valid argument values are from two to 0xFFFF, and -1. For non-cascaded operation, the minimum valid value is

80. A value of -1 will return the current divider setting.

3.5.41. AIO_IOCTL_RX_IO_ABORT

This service aborts an ongoing read request.

Usage

Argument Description

request AIO_IOCTL_RX_IO_ABORT

arg s32*

The results are reported as one of the following values.

Value Description

AIO_IO_ABORT_NO A read request was not aborted as none were ongoing.

AIO_IO_ABORT_YES A read request was aborted.

3.5.42. AIO_IOCTL_RX_IO_MODE

This service sets the I/O mode used for data read requests.

Usage

Argument Description

request AIO_IOCTL_RX_IO_MODE

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

GSC_IO_MODE_DMA Use non-Demand Mode DMA.

GSC_IO_MODE_PIO Use PIO mode, which is repetitive register access. This is the default.

3.5.43. AIO_IOCTL_RX_IO_TIMEOUT

This service sets the timeout limit for read requests. The value is expressed in seconds.

Usage

Argument Description

request AIO_IOCTL_RX_IO_TIMEOUT

arg s32*

Valid argument values are in the range from zero to 3600, -1, and AIO_IO_TIMEOUT_INFINITE. A value of

zero tells the driver not to sleep in order to wait for more data, and should only be used with PIO mode reads. A

value of -1 is used to retrieve the current setting. If the option AIO_IO_TIMEOUT_INFINITE is used, then the

driver will wait indefinitely rather than timing out. The default is 10 seconds.

3.5.44. AIO_IOCTL_TX_IO_ABORT

This service aborts an ongoing write request.

16AIO API Library Reference Manual

32

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description

request AIO_IOCTL_TX_IO_ABORT

arg s32*

The results are reported as one of the following values.

Value Description

AIO_IO_ABORT_NO A write request was not aborted as none were ongoing.

AIO_IO_ABORT_YES A write request was aborted.

3.5.45. AIO_IOCTL_TX_IO_MODE

This service sets the I/O mode used for data write requests.

Usage

Argument Description

request AIO_IOCTL_TX_IO_MODE

arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

GSC_IO_MODE_DMA Use non-Demand Mode DMA.

GSC_IO_MODE_PIO Use PIO mode, which is repetitive register access. This is the default.

3.5.46. AIO_IOCTL_TX_IO_TIMEOUT

This service sets the timeout limit for write requests. The value is expressed in seconds.

Usage

Argument Description

request AIO_IOCTL_TX_IO_TIMEOUT

arg s32*

Valid argument values are in the range from zero to 3600, -1, and AIO_IO_TIMEOUT_INFINITE. A value of

zero tells the driver not to sleep in order to wait for more space, and should only be used with PIO mode reads. A

value of -1 is used to retrieve the current setting. If the option AIO_IO_TIMEOUT_INFINITE is used, then the

driver will wait indefinitely rather than timing out. The default is 10 seconds.

3.5.47. AIO_IOCTL_WAIT_CANCEL

This service resumes all threads blocked via AIO_IOCTL_WAIT_EVENT IOCTL calls (section 3.5.48, page 33),

according to the provided criteria. When a blocked thread is waiting for any event specified in the structure, then the

thread is resumed.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver

initiated waits are unaffected by application cancel requests.

16AIO API Library Reference Manual

33

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description

request AIO_IOCTL_WAIT_CANCEL

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description

flags This is unused by wait cancel operations.

main This specifies the set of GSC_WAIT_MAIN_* events whose wait requests are to be

cancelled. Refer to section 3.5.48.2 on page 34.

gsc This specifies the set of AIO_WAIT_GSC_* events whose wait requests are to be

cancelled. Refer to section 3.5.48.3 on page 34.

alt This is unused by the 16AIO driver and should be zero.

io This specifies the set of GSC_WAIT_IO_* events whose wait requests are to be

cancelled. Refer to section 3.5.48.4 on page 35.

timeout_ms This is unused by wait cancel operations.

count Upon return this indicates the number of waits that were cancelled.

3.5.48. AIO_IOCTL_WAIT_EVENT

This service blocks a thread until any one of a specified set of events occurs, or until a timeout lapses, whichever

occurs first. The set of possible events to wait for are specified in the structure’s main, gsc, alt and io fields. All

field values must be valid and at least one event must be specified. If the thread is resumed because one of the

referenced events has occurred, then the bit for the respective event is the only event bit that will be set. All other

event bits and fields will be zero. (Multiple event bits will be set only if the events occur simultaneously.)

NOTE: A wait timeout is reported via the gsc_wait_t structure’s flags field having the

GSC_WAIT_FLAG_TIMEOUT flag set, rather than via an ETIMEDOUT error.

Usage

Argument Description

request AIO_IOCTL_WAIT_EVENT

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

16AIO API Library Reference Manual

34

General Standards Corporation, Phone: (256) 880-8787

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description

flags This must initially be zero. Upon return this indicates the reason that the thread was

resumed. Refer to section 3.5.48.1on page 34.

main This specifies any number of GSC_WAIT_MAIN_* events that the thread is to wait for.

Refer to section 3.5.48.2 on page 34.

gsc This specifies any number of AIO_WAIT_GSC_* events that the thread is to wait for.

Refer to section 3.5.48.3 on page 34.

alt This is unused by the 16AIO driver and must be zero.

io This specifies any number of GSC_WAIT_IO_* events that the thread is to wait for.

Refer to section 3.5.48.4 on page 35.

timeout_ms This specified the maximum amount of time, in milliseconds, that the thread is to wait

for any of the referenced events. A value of zero means do not timeout at all. If non-

zero, then upon return the value will be the approximate amount of time actually waited.

count This is unused by wait event operations and must be zero.

3.5.48.1. gsc_wait_t.flags Options

Upon return from a wait request the wait structure’s flags field will indicate the reason that the thread was

resumed. Only one of the below option will be set.

Fields Description

GSC_WAIT_FLAG_CANCEL The wait request was cancelled.

GSC_WAIT_FLAG_DONE One of the referenced events occurred.

GSC_WAIT_FLAG_TIMEOUT The timeout period lapsed before a referenced event occurred.

3.5.48.2. gsc_wait_t.main Options

The wait structure’s main field may specify any of the below primary interrupt options. These interrupt options are

supported by the 16AIO and other General Standards products.

Fields Description

GSC_WAIT_MAIN_DMA0 This refers to the DMA Done interrupt on DMA engine number zero.

GSC_WAIT_MAIN_DMA1 This refers to the DMA Done interrupt on DMA engine number one.

GSC_WAIT_MAIN_GSC This refers to any of the Interrupt Control/Status Register interrupts.

GSC_WAIT_MAIN_OTHER This generally refers to an interrupt generated by another device sharing the

same interrupt as the 16AIO.

GSC_WAIT_MAIN_PCI This refers to any interrupt generated by the 16AIO.

GSC_WAIT_MAIN_SPURIOUS This refers to board interrupts which should never be generated.

GSC_WAIT_MAIN_UNKNOWN This refers to board interrupts whose source could not be identified.

3.5.48.3. gsc_wait_t.gsc Options

The wait structure’s gsc field may specify any combination of the below interrupt options. These are the interrupt

options referenced in the Interrupt Control Register. Applications are responsible for selecting the desired interrupt

options. Refer to AIO_IOCTL_IRQ0_SEL (section 3.5.28, page 25), AIO_IOCTL_IRQ1_SEL (section 3.5.29,

page 26) and AIO_IOCTL_IRQ2_SEL (section 3.5.30, page 26).

16AIO API Library Reference Manual

35

General Standards Corporation, Phone: (256) 880-8787

Value Description

AIO_WAIT_GSC_AI_BUF_THR_H2L This refers to a high-to-low transition on the Analog Input Buffer

Threshold Status.

AIO_WAIT_GSC_AI_BUF_THR_L2H This refers to a low-to-high transition on the Analog Input Buffer

Threshold Status.

AIO_WAIT_GSC_AO_BUF_THR_H2L This refers to a high-to-low transition on the Analog Output Buffer

Threshold Status.

AIO_WAIT_GSC_AO_BUF_THR_L2H This refers to a low-to-high transition on the Analog Output Buffer

Threshold Status.

AIO_WAIT_GSC_AO_BURST_DONE This refers to the completion of Analog Output burst operation.

AIO_WAIT_GSC_AUTO_CAL_DONE This refers to the completion of an auto-calibration cycle.

AIO_WAIT_GSC_AUX_IN_H2L This refers to a high-to-low transition on the Auxiliary Input.

AIO_WAIT_GSC_AUX_IN_L2H This refers to a low-to-high transition on the Auxiliary Input.

AIO_WAIT_GSC_IDLE_INIT This refers to the completion of an initialization cycle.

3.5.48.4. gsc_wait_t.io Options

The wait structure’s io field may specify any of the below event options. These events are generated in response to

application board data read requests.

Fields Description

GSC_WAIT_IO_RX_ABORT This refers to read requests which have been aborted.

GSC_WAIT_IO_RX_DONE This refers to read requests which have been satisfied.

GSC_WAIT_IO_RX_ERROR This refers to read requests which end due to an error.

GSC_WAIT_IO_RX_TIMEOUT This refers to read requests which end due to the timeout period lapse.

GSC_WAIT_IO_TX_ABORT This refers to write requests which have been aborted.

GSC_WAIT_IO_TX_DONE This refers to write requests which have been satisfied.

GSC_WAIT_IO_TX_ERROR This refers to write requests which end due to an error.

GSC_WAIT_IO_TX_TIMEOUT This refers to write requests which end due to the timeout period lapse.

3.5.49. AIO_IOCTL_WAIT_STATUS

This service count all threads blocked via the AIO_IOCTL_WAIT_EVENT IOCTL service (section 3.5.48, page

33), according to the provided criteria. A match is made when a waiting thread’s wait criteria matches any of the

criteria specified in the structure passed to this service.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver

initiated waits are ignored by application status requests.

Usage

Argument Description

request AIO_IOCTL_WAIT_STATUS

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

16AIO API Library Reference Manual

36

General Standards Corporation, Phone: (256) 880-8787

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description

flags This is unused by wait status operations.

main This specifies the set of GSC_WAIT_MAIN_* events whose wait requests are to be

counted. Refer to section 3.5.48.2 on page 34.

gsc This specifies the set of AIO_WAIT_GSC_* events whose wait requests are to be

counted. Refer to section 3.5.48.3 on page 34.

alt This is unused by the 16AIO driver and should be zero.

io This specifies the set of GSC_WAIT_IO_* events whose wait requests are to be

counted. Refer to section 3.5.48.4 on page 35.

timeout_ms This is unused by wait status operations.

count Upon return this indicates the number of waits that met any of the specified criteria.

16AIO API Library Reference Manual

37

General Standards Corporation, Phone: (256) 880-8787

4. Operating Information

This section explains some basic operational procedures for using the 16AIO. This is in no way intended to be a

comprehensive guide. This is simply to address a very few issues relating to their use.

4.1. Basic Analog Input Configuration

The basic steps for Analog Input configuration are illustrated in the utility function noted below. The table also gives

the location of the source file, the header file and the corresponding library containing the executable code.

Description File/Name Location OS

Function aio_config_ai() Source File ALL

Source File util_config_ai.c …/utils/ ALL

Header File 16aio_utils.h …/include/ ALL

Library File 16aio_utils.a …/lib/ Linux

16aio_utils.lib …\lib\… * INtime

* Debug and release versions of the library are included under corresponding subdirectories.

4.2. Basic Analog Output Configuration

The basic steps for Analog Output configuration are illustrated in the utility function noted below. The table also

gives the location of the source file, the header file and the corresponding library containing the executable code.

Description File/Name Location OS

Function aio_config_ao() Source File ALL

Source File util_config_ao.c …/utils/ ALL

Header File 16aio_utils.h …/include/ ALL

Library File 16aio_utils.a …/lib/ Linux

16aio_utils.lib …\lib\… * INtime

* Debug and release versions of the library are included under corresponding subdirectories.

4.3. I/O Modes

All I/O requests move data between the board’s FIFO buffers, intermediate driver buffers, and application memory

buffers. The data is processed in chunks no larger than the size of the FIFOs. The process used to move the data

between the FIFOs and the intermediate buffers is according to the I/O mode selection.

4.3.1. PIO - Programmed I/O

This method transfers data through repetitive register accesses. While this method is not very efficient it is the most

reliable method and the only method that should be used with an I/O timeout value of zero.

4.3.2. DMA - Block Mode DMA

For Block Mode DMA the driver initiates DMA transfers only after a sufficient volume of data or space has become

available to accommodate the transfer. For read requests the volume is sufficient only when the fill level exceeds the

threshold level. When the threshold level is insufficient the driver waits for 1ms before rechecking the fill level. For

write requests the volume is sufficient when the fill level is below the threshold. When the threshold level is

insufficient the driver waits for 1ms before rechecking the fill level. Once the fill level is sufficient the driver

initiates a DMA transfer then sleeps until the DMA Done interrupt is received. Using this DMA mode a user request

typically consists of numerous smaller individual DMA transfers.

16AIO API Library Reference Manual

38

General Standards Corporation, Phone: (256) 880-8787

4.4. Debugging Aids

The driver package includes the following items useful development and or debugging aids.

4.4.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id

example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as

follows.

Description File Location OS

Application id …/id/ Linux

id.rta …\id\… * INtime

* Debug and release versions of the application are included under corresponding subdirectories.

4.4.2. Detailed Register Dump

Among the utility services provided is a function to generate a detailed listing of the board’s registers to the console.

When used, the function is typically used to verify the board’s configuration. In these cases, the function should be

called just prior to the first read or write operation. When intended for sending to GSC tech support, please set the

detail argument to 1. The function arguments are as follows. The utility location is given in the subsequent table.

Argument Description

fd This is the file descriptor used to access the device.

detail If non-zero the GSC register dump will include details of each register field.

Description File/Name Location OS

Function aio_reg_list() Source File ALL

Source File util_reg.c …/utils/ ALL

Header File 16aio_utils.h …/include/ ALL

Library File 16aio_utils.a …/lib/ Linux

16aio_utils.lib …\lib\… * INtime

* Debug and release versions of the library are included under corresponding subdirectories.

16AIO API Library Reference Manual

39

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

July 8, 2018 Initial release, version 5.2.77.x.0.

