
12AI64/16AI64
64 Channel, 12 or 16-Bit Analog Input Board

PMC-12AI64
PMC-16AI64

PMC-16AI64-SS
PCI-16AI64-SS

PCI-16AI64-SSA

LINUX Device Driver

User Manual

Manual Revision: August 30, 2005

General Standards Corporation
8302A Whitesburg Drive

Huntsville, AL 35802
Phone: (256) 880-8787

Fax: (256) 880-8788
URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

12AI64/16AI64 Family LINUX Device Driver User’s Manual

Preface
Copyright ©2003-2005, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation
8302A Whitesburg Dr.
Huntsville, Alabama 35802
Phone: (256) 880-8787
FAX: (256) 880-8788
URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Although extensive editing
and reviews are performed before release to ECO control, General Standards Corporation assumes no
responsibility for any errors that may exist in this document. No commitment is made to update or keep current the
information contained in this document.

General Standards Corporation does not assume any liability arising out of the application or use of any product
or circuit described herein, nor is any license conveyed under any patent rights or any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or
errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this product to improve
reliability, performance, function, or design.

ALL RIGHTS RESERVED.

The Purchaser of this software may use or modify in source form the subject software, but not to re-market or
distribute it to outside agencies or separate internal company divisions. The software, however, may be embedded in
the Purchaser’s distributed software. In the event the Purchaser’s customers require the software source code, then
they would have to purchase their own copy of the software.

General Standards Corporation makes no warranty of any kind with regard to this software, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose and makes this software
available solely on an “as-is” basis. General Standards Corporation reserves the right to make changes in this
software without reservation and without notification to its users.

The information in this document is subject to change without notice. This document may be copied or reproduced
provided it is in support of products from General Standards Corporation. For any other use, no part of this
document may be copied or reproduced in any form or by any means without prior written consent of General
Standards Corporation.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

2
General Standards Corporation, Phone: (256) 880-8787

http://www.generalstandards.com/
mailto:sales@generalstandards.com

12AI64/16AI64 Family LINUX Device Driver User’s Manual

Table of Contents
1. Introduction... 5

1.1. Purpose ..5
1.2. Acronyms...5
1.3. Definitions..5
1.4. Software Overview..5
1.5. Hardware Overviews ..5

1.5.1. PMC-12AI64 ..5
1.5.2. PMC-16AI64 ..5
1.5.3. PMC-16AI64SS, PCI-16AI64SS..6

1.6. Reference Material..6

2. Installation... 7
2.1. CPU and Kernel Support ...7
2.2. The Driver ...7

2.2.1. Installation on Target System...7
2.2.2. Building the driver and test application..7
2.2.3. Manual Startup ...8
2.2.4. Automatic startup ...8
2.2.5. Verification of startup...8
2.2.6. Verification...9
2.2.7. Removal..9
2.2.8. Uninstall ...10

3. Sample Application... 11

4. Driver Interface... 12
4.1. Registers...12

4.1.1. GSC Registers ..12
*SS boards only. ...12
4.1.2. PLX PCI 9080 Registers...12

4.2. Data Types ...12
4.2.1. 16AI64_REGISTER_PARAMS...12

4.3. read() ..13
4.4. write()...14
4.5. ioctl() ..14

4.5.1. IOCTL_DEVICE_NO_COMMAND...15
4.5.2. IOCTL_DEVICE_INIT_BOARD..15
4.5.3. IOCTL_DEVICE_GET_DEVICE_TYPE..15
4.5.4. IOCTL_DEVICE_READ_REGISTER..16
4.5.5. IOCTL_DEVICE_WRITE_REGISTER ..16
4.5.6. IOCTL_DEVICE_ENABLE_DMA...16
4.5.7. IOCTL_DEVICE_GET_DEVICE_ERROR ..17
4.5.8. IOCTL_DEVICE_INPUT_RANGE_CONFIG..17
4.5.9. IOCTL_DEVICE_INPUT_MODE_CONFIG..17
4.5.10. IOCTL_DEVICE_SS_MODE_CONFIG...18

3
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

4.5.11. IOCTL_DEVICE_INPUT_FORMAT_CONFIG...18
4.5.12. IOCTL_DEVICE_START_AUTOCAL ..18
4.5.13. IOCTL_DEVICE_START_SINGLE_SCAN ..19
4.5.14. IOCTL_DEVICE_SET_SCAN_SIZE..19
4.5.15. IOCTL_DEVICE_SET_SCAN_CLOCK...19
4.5.16. IOCTL_DEVICE_DISABLE_PCI_INTERRUPTS...20
4.5.17. IOCTL_DEVICE_SET_B_CLOCK_SOURCE...20
4.5.18. IOCTL_DEVICE_SINGLE_CHAN_SELECT..20
4.5.19. IOCTL_DEVICE_SET_SCAN_RATE_A...20
4.5.20. IOCTL_DEVICE_SET_SCAN_RATE_B ...20
4.5.21. IOCTL_DEVICE_GEN_DISABLE_A..21
4.5.22. IOCTL_DEVICE_GEN_DISABLE_B ..21
4.5.23. IOCTL_DEVICE_GEN_ENABLE_A ...21
4.5.24. IOCTL_DEVICE_GEN_ENABLE_B ...21
4.5.25. IOCTL_DEVICE_SET_BUFFER_THRESHOLD ..21
4.5.26. IOCTL_DEVICE_CLEAR_BUFFER..22
4.5.27. IOCTL_DEVICE_DISABLE_BUFFER_SS..22
4.5.28. IOCTL_DEVICE_ENABLE_BUFFER_SS...22
4.5.29. IOCTL_DEVICE_DISABLE_DMA_ALMOST_SS ...22
4.5.30. IOCTL_DEVICE_ENABLE_DMA_ALMOST_SS ..23
4.5.31. IOCTL_DEVICE_SET_TIMEOUT...23
4.5.32. IOCTL_DEVICE_FILL_BUFFER ..23
4.5.33. IOCTL_DEVICE_DETECT_OVERFLOW ..23
4.5.34. IOCTL_DEVICE_SET_UNIPOLAR_INPUTS_SSA ...24
IOCTL_DEVICE_SET_DIFF_PROCESSING_SSA ..24
4.5.35. IOCTL_DEVICE_READ_BUFFER_UNDERFLOW_SSA..24
4.5.36. IOCTL_DEVICE_READ_BUFFER_OVERFLOW_SSA...24
4.5.37. IOCTL_DEVICE_SET_SCAN_MARKING_SSA..25
4.5.38. IOCTL_DEVICE_SET_DEMAND_MODE_DISABLE...25
4.5.39. IOCTL_DEVICE_SET_THRESHOLD_4X_SSA...25
4.5.40. IOCTL_DEVICE_RESET_BUFFER_UNDERFLOW_SSA ..26
4.5.41. IOCTL_DEVICE_RESET_BUFFER_OVERFLOW_SSA ...26
4.5.42. IOCTL_DEVICE_SET_AUX_0_MODE_SSA ...26
4.5.43. IOCTL_DEVICE_SET_AUX_1_MODE_SSA ...27
4.5.44. IOCTL_DEVICE_SET_AUX_2_MODE_SSA ...27
4.5.45. IOCTL_DEVICE_SET_AUX_3_MODE_SSA ...27
4.5.46. IOCTL_DEVICE_SET_INPUT_INVERT_MODE_SSA..28
4.5.47. IOCTL_DEVICE_SET_OUTPUT_INVERT_SSA ...28
4.5.48. IOCTL_DEVICE_SET_NOISE_SUPPRESSION_SSA..28
4.5.49. IOCTL_DEVICE_SET_HW_BUFFER_SIZE...29

Document History ... 30

4
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

1. Introduction

1.1. Purpose

The purpose of this document is to describe the interface to the 16AI64 LINUX device driver. This software
provides the interface between "Application Software" and the 16AI64 family of boards, including the 12AI64,
16AI64, 16AI64SS and 16AI64SSA. The label 16AI64 will be used generically throughout this document to refer
to any member of the board family.

1.2. Acronyms

The following is a list of commonly occurring acronyms used throughout this document.

Acronyms Description
DMA Direct Memory Access
PIO Programmed I/O
PCI Peripheral Component Interconnect
PMC PCI Mezzanine Card

1.3. Definitions

The following is a list of commonly occurring terms used throughout this document.

Term Definition
Driver Driver means the kernel mode device driver, which runs in the kernel space with kernel mode

privileges.
Application Application means the user mode process, which runs in the user space with user mode privileges.

1.4. Software Overview

The 16AI64 driver software executes under control of the Linux operating system. The device driver allows the user
to open and close one or more 16AI64 boards, then read and write data to the registers on the hardware. Note that
different board models may be used on the same system.

1.5. Hardware Overviews

1.5.1. PMC-12AI64

The high-density PMC-12AI64 board provides cost effective 1,500,000 conversions-per-second 12-bit analog input
capabilities in a single width PMC format. The inputs are configurable either as 64 single-ended channels or as 32
differential channels, and the input range can be software selectable as ±10V, ±5V or ±2.5V. Scan rates can be
controlled from either (a) an internal rate generator, (b) through an external digital input, or (c) by direct software
commands. Multiple PMC-12AI64 boards can be connected together for synchronous scanning. Data buffering is
accomplished through a 64K sample FIFO. Internal auto calibration networks permit calibration to be performed
without removing the board from the system.

1.5.2. PMC-16AI64

The high-density PMC-16AI64 board provides a cost effective 500,000 conversions-per-second 16-bit analog input
capability in a single-width PMC format. The inputs are configurable either as 64 single-ended channels or as 32
differential channels, and the input range can be software selectable as ±10V, ±5V or ±2.5V. Scan rates can be
controlled from either (a) an internal rate generator, (b) through an external digital input, or (c) by direct software
commands. Multiple PMC-16AI64 boards can be connected together for synchronous scanning. A 64K-sample

5
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

FIFO provides maximum buffering of input data. Internal autocalibration networks permit calibration to be
performed without removing the board from the system.

1.5.3. PMC-16AI64SS, PCI-16AI64SS

The 16-Bit PMC-16AI64SS and PCI-16AI64SS (Synchronous Sampling) analog input boards sample and digitizes
64 input channels simultaneously at rates up to 200,000 samples per second for each channel. The resulting 16-bit
sampled data is available to the PCI bus through a 64K-Sample FIFO buffer. Each input channel contains a
dedicated 16-Bit sampling ADC. All operational parameters are software configurable. Inputs can be sampled in
groups of 2, 4, 8, 16, 32 or 64 channels; or any single channel can be sampled continuously. The sample clock can
be generated from an internal rate generator, or by software or external hardware. Input ranges are software-
selectable as ±10V, ±5V or ±2.5V. The inputs can be clocked either continuously or in triggered bursts. An on-
demand auto-calibration feature determines offset and gain correction values for each input channel.

1.6. Reference Material

The following reference material may be of particular benefit in using the 16AI64 and this driver. The specifications
provide the information necessary for an in depth understanding of the specialized features implemented on this
board.

• The applicable AI64 User Manual from General Standards Corporation. Manuals are available in PDF
format at the company website, http://www.generalstandards.com

• The PCI9080 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

PLX Technology Inc.
870 Maude Avenue
Sunnyvale, California 94085 USA
Phone: 1-800-759-3735
WEB: http://www.plxtech.com

6
General Standards Corporation, Phone: (256) 880-8787

http://www.plxtech.com/

12AI64/16AI64 Family LINUX Device Driver User’s Manual

2. Installation

2.1. CPU and Kernel Support

The driver is a Linux kernel-mode module. The driver has only been tested on a PC system with dual Intel x86
processors running RedHat 7.3 with kernel 2.4.18-14SMP, and Fedora Core with kernel 2.6.8-1.521smp. The driver
will have to be rebuilt for the version of the kernel running on the target machine. Support is built into the driver for
version 2.2 of the kernel, but that configuration has not been tested.

2.2. The Driver

This driver and its related files are:

File Description
*.c The driver source files.
plx_regs.h Defines for the PLX chip, used internally by the driver.
README.TXT Revision history and late-breaking news.
internals.h Internal defines for the driver. Not required to include in an application.
gsc16AI64_ioctl.h Defines common to the driver and the application. This is the only header file that

needs to be included in the application.
sysdep.h Compatibility file for 2.2, 2.4 and 2.6 kernels.
gsc_start A script to detect how many 16AI64 boards are installed, and create a node for each

of the boards.
app.mak Makefile for the test application. Invoked as ‘make –f app.mak’
Makefile Makefile for the driver. Invoked as simply ‘make’ or ‘make –f Makefile’
.o,.ko Object files produced by the make process. May not be loadable unless rebuilt for the

version of the kernel running on the target system. The .ko suffix is used for kernel
objects by the 2.6 kernel.

2.2.1. Installation on Target System

To install the driver:

1. Power down the target computer and install the AI64 hardware card(s).

2. Power up the system.

3. Decompress the distribution tar file in a convenient directory. To decompress the archive, use a
command like:

tar –xzvf gsc_16AI64Driver.tar.gz

2.2.2. Building the driver and test application

To build the driver, change to the directory containing the driver source. Then:

1. Type make clean to remove old object files. Type make to build the driver. The driver should build
without errors or warnings. If there are warnings or errors, ensure that the current kernel source is located
at /usr/src/linux-2.4. The Makefile contains defines that point to the current kernel source, and
modifying Makefile to point to the correct kernel source may allow the driver to build. It is also possible
that a newer compiler with more stringent syntax checking

2. Type make –f app.mak to build the test application.

7
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

2.2.3. Manual Startup

Login as root. Type ./gsc_start to start the driver. The script will display:

Loading module gsc16ai64 ...

This is all that will be displayed if there are no problems with the startup.

2.2.4. Automatic startup

The 16AI64 driver may also be started automatically upon reboot. For auto-start, edit the file
/etc/rc.d/rc.local and add the line /<path>/gsc_start where <path> is the path to where the driver
and startup script are installed. Note that the startup script must be in the same directory as the driver for the startup
script to work.

2.2.5. Verification of startup

There are three ways to verify that the driver has started. The first is to type:

ls /dev/gsc16ai64*

The operating system will list an entry for each board installed, such as:

/dev/gsc16ai640

The number appended to the name (0,1,…) is the index of the card. When multiple devices are present in the
system, this is how the application specifies which device to open.

The second method is to check the /proc file system. The 16AI64 driver creates an entry in the /proc file system to
report the number of boards found and the build date of the driver. Typing:

cat /proc/gsc16ai64

Returns a result similar to:

version: 2.0

built: Aug 26 2003, 11:06:29

If the driver is a debug build, additional statistics are reported in the proc file.

The third method is to check the loaded modules by typing:

lsmod

The gsc16ai64 will be listed as one of the installed modules.

Note that all board varieties are reported as gsc16ai64.

8
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

2.2.6. Verification

The distribution includes a test application and source called testapp. Run this application to verify that
the installation was successful. The board will be opened, reset and the configuration register will be read.
To run the application, type:

./testapp 0

Where 0 is the index for the first (or only) 16AI64 board installed in the system. Testapp will display a
result similar to:

***** Build Jan 21 2004, 11:40:15 *****

about to open

open OK - board type: PMC-12AI64 channels: 64

before init: BCR is 0x4071

board reset OK

after init: BCR is 0x4060

autocalibration...

auto calibration OK

Total Buffer read: 1024

00622592 00622592 00622592 00622592 00622592 00622592 00622592 00622592

00622592 00622592 00622592 00622592 00622592 00622592 00622592 00622592

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

The test program will run through 1024 read cycles then terminate.

2.2.7. Removal

Follow the below steps to remove the driver.

1. Type:

Rmmod gsc16ai64

2. Verify that the driver has been removed by typing:

9
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

lsmod

and verifying that the driver is no longer listed.

2.2.8. Uninstall

First remove the driver as described above. Remove the auto-start entry in /etc/rc.d/rc.local. Delete the
directory containing the driver, startup script and source.

10
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

3. Sample Application
The sample application demonstrates opening the driver, and reading and writing registers using the IOCTL service.
Data may be written to and read from the other registers on the hardware using similar code.

The program loops reading of data and displaying a line of statistics. Typing CTRL-C will terminate the program.
Otherwise, The program runs for 1024 read cycles then exits normally. After reading the data, the program displays
the number of samples read from each channel.

11
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

4. Driver Interface
The 16AI64 driver conforms to the device driver standards required by the LINUX driver model. The device driver
provides a standard driver interface to the GSC 16AI64 family of boards for Linux applications. The interface
includes various macros, data types and functions, all of which are described in the following paragraphs. The
16AI64 specific portion of the driver interface is defined in the header file gsc16AI64_ioctl.h, portions of
which are described in this section. The header defines numerous items in addition to those described here.

NOTE: Contact General Standards Corporation if additional driver functionality is required.

4.1. Registers

The following table gives the complete set of 16AI64 registers. The tables are divided by register categories. All
registers are accessed as 32-bits.

4.1.1. GSC Registers

The following table gives the complete set of GSC specific 16AI64 registers. For detailed definitions of these
registers refer to the 16AI64 User Manual. The macro fields are defined to simplify access to the registers.

Macro Description
BOARD_CTRL_REG Board Control Register (BCR)
INT_CTRL_REG Interrupt Control Register (ICR)
INPUT_DATA_BUFF_REG Input Data Buffer Register (IDR)
INPUT_BUFF_CTRL_REG Input Buffer Control Register (IDC)
RATE_A_GENERATOR_REG Rate Generator “A” Register (RGRA)
RATE_B_GENERATOR_REG Rate Generator “B” Register (RGRB)
BUFFER_SIZE_REG Buffer Size Register
RESERVED_1_REG Reserved
SCAN_SYNCH_CTRL_REG Scan and Synch Control (SSCR)
RESERVED_2_REG Reserved
FIRMWARE_REV_REG Firmware Revision Register (FRR)*
AUTOCAL_VALUES_REG Auto Calibration Results Register (ACRR)*

 *SS boards only.

4.1.2. PLX PCI 9080 Registers

For detailed definitions of these registers refer to the PCI9080 Data Book. There is rarely any need to examine the
PLX registers; they are mentioned here for completeness. The driver handles management of the PLX DMA and
interrupt registers.

4.2. Data Types

This driver interface includes the following data types, which are defined in gsc16AI64_ioctl.h.

4.2.1. 16AI64_REGISTER_PARAMS

This is the data structure used to move data back and forth between the application and the 16AI64 registers.

Definition

typedef struct device_register_params {
 unsigned int DeviceRegister;
 unsigned long ulValue;

12
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

}DEVICE_REGISTER_PARAMS, *PDEVICE_REGISTER_PARAMS;

Field Description
DeviceRegister The register to read or write. This is the 32-bit address, not the 8-bit address

shown in the hardware documentation. The register macros are 32-bit addresses
UlValue The value to be written to the register on write, or the value read from the register

on read.

4.3. read()

The read() function is used to retrieve data from the driver. The application passes down the handle of the driver
instance, a pointer to a buffer and the size of the buffer. The size field portion of the request is passed to the
read() function as a number of bytes, and the number of bytes read is returned by the function.

Depending on how much data is available and what the read mode is, you may receive back less data than requested.
The Linux standards only require that at least one byte be returned for a read to be successful.

How the buffer is filled is dependant on what DMA setting is active:

• No DMA: This is called programmed I/O or PIO. The driver will read data from the data register until
either the buffer is full, or there is no more data in the input buffer, whichever comes first.

• Regular DMA: For a regular DMA transaction, the driver needs to determine how much data to transfer.
The driver is set up to only do a DMA operation when the input buffer contains at least
BUFFER_THRESHOLD samples in the buffer. So if the flags indicate that there is greater than
BUFFER_THRESHOLD samples available, the driver immediately initiates a DMA transfer between the
hardware and a system buffer. The driver sets an interrupt and sleeps until the DMA finished interrupt is
received, then copies the data into the user buffer and returns.

If the flags indicate that there is not enough data in the buffer, the driver sets up for an interrupt when the
BUFFER_THRESHOLD is reached and sleeps. When the interrupt is received, the driver then sets up a
DMA transfer as described above.

• Demand mode DMA: The byte count passed in the read()is converted to words and written to the
DMA hardware. The driver sets an interrupt for DMA finished and goes to sleep. The DMA hardware
transfers the requested number of words into the system (intermediate) buffer and generates an interrupt.

The difference between regular and demand mode has to do with when the transaction is started. A
demand mode transaction may be initiated at any buffer data level. The regular DMA transaction is only
started when there is sufficient data.

Note that due to limitations of the Linux operating system, the driver cannot copy directly from the hardware to the
user buffer. Instead, the data must pass through an intermediate DMA-capable buffer. The size of the intermediate
buffer is determined by the #define DMA_ORDER in the gsc16AI64.h file. The driver attempts to allocate
2^DMA_ORDER pages. On larger systems, this number can be increased, reducing the number of operations
required to transfer the data. Demand mode DMA transfers are also limited to the capacity of the intermediate
buffer.

DMA always uses an intermediate system buffer then copies the resulting data into the user buffer. It is not
currently possible with (version 2.4) Linux to DMA directly into a user buffer.

13
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

Example

#include "gsc16AI64_ioctl.h"

int res;
 res = read(fd, buffer, BUFFER_SIZE);
 if (res <= 0){
 printf("read error...res= %d\n",res);
 return (1);
 }

4.4. write()

The 16AI64 does not support a write operation, as the board has neither data storage nor synchronous data
transmission capability. Writing data to the appropriate registers is done using the ioctl function.

4.5. ioctl()

This function is the entry point to performing setup and control operations on a 16AI64 board. This function should
only be called after a successful open of the device. The general form of the ioctl call is:

 int ioctl(int fd, int command);

or

 int ioct(int fd, int command, arg*);

where:

fd File handle for the driver. Returned from the open() function.

command The command to be performed.

arg* (optional) pointer to parameters for the command. Commands that have no parameters (such as
IOCTL_DEVICE_NO_COMMAND) will omit this parameter, and use the first form of the call.

The specific operation performed varies according to the command argument. The command argument also
governs the use and interpretation of any additional arguments. The set of supported ioctl services is defined in a
following section.

The 16AI64 driver implements the following ioctl services. Each service is described along with the applicable
ioctl function arguments.

Usage of all IOCTL calls is similar. Below is an example of a call using IOCTL_DEVICE_READ_REGISTER to
read the contents of the board control register (BCR):

#include "gsc16AI64_ioctl.h"

int ReadTest(int fd)

14
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

{
 device_register_params RegPar;
 DWORD dwTransferSize;

 regdata.ulRegister = BOARD_CTRL_REG;
 regdata.ulValue = 0x0000; // to make sure it changes.
 res = ioctl(fd, (unsigned long)
 IOCTL_DEVICE_READ_REGISTER, ®data);
 if (res < 0) {
 printf("%s: ioctl IOCTL_READ_REGISTER failed\n", argv[0]);
 return (1);
 }

The following sections describe the individual IOCTLs and list the parameters for each.

4.5.1. IOCTL_DEVICE_NO_COMMAND

IOCTL_DEVICE_NO_COMMAND is an empty driver entry point. This ioctl may be given to verify that the driver is
correctly installed and that a 16AI64 device has been successfully opened. If an error status is returned verify that
the driver was opened properly.

Usage

ioctl() Argument Description
Operation IOCTL_DEVICE_NO_COMMAND
arg None

4.5.2. IOCTL_DEVICE_INIT_BOARD

IOCTL_DEVICE_INIT_BOARD Perform an initialization cycle on the board. The driver writes to the BCR to
initiate an initialization cycle, and then waits for an interrupt indicating that the cycle completed before returning
from the call.

Usage

ioctl() Argument Description
Operation IOCTL_DEVICE_INIT_BOARD
arg None

4.5.3. IOCTL_DEVICE_GET_DEVICE_TYPE

IOCTL_DEVICE_GET_DEVICE_TYPE returns an enumeration of the type of AI64 board the driver has opened.
Possible return values are:

gsc12ai64 A GSC 12AI64 board
gsc16ai64 A GSC 16AI64 board
gsc16ai64ss A GSC 16AI64SS board

15
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

Usage

ioctl() Argument Description
Operation IOCTL_DEVICE_GET_DEVICE_TYPE
Arg Unsigned long *pType

4.5.4. IOCTL_DEVICE_READ_REGISTER

IOCTL_DEVICE_READ_REGISTER reads the selected register and returns the value. Refer to
gsc16AI64_ioctl.h for a complete list of the accessible registers. Note that all board functions may be
controlled using IOCTL_DEVICE_READ_REGISTER and IOCTL_DEVICE_WRITE_REGISTER. Other
IOCTLs are provided for ease of use.

Usage

ioctl() Argument Description
Operation IOCTL_DEVICE_READ_REGISTER
Arg DEVICE_REGISTER_PARAMS*

4.5.5. IOCTL_DEVICE_WRITE_REGISTER

IOCTL_DEVICE_WRITE_REGISTER writes the passed value to the selected register. Refer to
gsc16AI64_ioctl.h for a complete list of the accessible registers. Note that all board functions may be
controlled using IOCTL_DEVICE_READ_REGISTER and IOCTL_DEVICE_WRITE_REGISTER. Other
IOCTLs are provided for ease of use.

Usage

ioctl() Argument Description
Operation IOCTL_DEVICE_READ_REGISTER
Arg DEVICE_REGISTER_PARAMS*

4.5.6. IOCTL_DEVICE_ENABLE_DMA

16AI64_IOCTL_ENABLE_DMA enables or disables DMA data transfer from the hardware to the system data
buffer. It also selects which DMA method to use.

Possible arg values are:

DMA_DISABLE (default) Set to use PIO data transfer. The driver will copy data from the
hardware until either the FIFO is empty, or the requested number of samples has
been copied.

DMA_ENABLE Set to enable standard DMA. The driver will DMA data from the hardware when
the quantity of data in the input buffer reaches the value in the threshold register.

DMA_DEMAND_MODE Use demand-mode DMA. The DMA hardware will transfer data from the input
buffer as it becomes available. DMA will terminate when the requested number
of bytes have been transferred*.

* NOTE – Demand mode is only available on the SS models.

16
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

 Usage

ioctl() Argument Description
command 16AI64_IOCTL_ENABLE_DMA
arg unsigned long *pDMAMode

4.5.7. IOCTL_DEVICE_GET_DEVICE_ERROR

IOCTL_DEVICE_GET_DEVICE_ERROR returns the most recent error detected by the driver. The result is
returned in the argument whose pointer is passed by the application. Possible return values are:

DEVICE_SUCCESS No error detected.
DEVICE_INVALID_PARAMETER The parameter passed to the ioctl was invalid.
DEVICE_INVALID_BUFFER_SIZE The passed buffer size is greater than the device buffer size.
DEVICE_PIO_TIMEOUT An attempted PIO data read timed out.
DEVICE_DMA_TIMEOUT An attempted DMA data read timed out.
DEVICE_IOCTL_TIMEOUT A general ioctl operation timed out.
DEVICE_OPERATION_CANCELLED A wait state was cancelled by the system.
DEVICE_RESOURCE_ALLOCATION_ERROR The driver was unable to allocate required resources.
DEVICE_INVALID_REQUEST An invalid ioctl was passed to the driver.
DEVICE_AUTOCAL_FAILED A requested auto calibration of the analog section failed.

Usage

ioctl() Argument Description
command IOCTL_DEVICE_GET_DEVICE_ERROR
arg unsigned long *pError

4.5.8. IOCTL_DEVICE_INPUT_RANGE_CONFIG

IOCTL_DEVICE_INPUT_RANGE_CONFIG selects the input range of the analog input channels. Possible arg
values are:

INPUT_RANGE_2_5 2.5 volts full scale
INPUT_RANGE_5 5 volts full scale
INPUT_RANGE_10 10 volts full scale (default)

Usage

ioctl() Argument Description
command IOCTL_DEVICE_INPUT_RANGE_CONFIG
arg unsigned long *pInputRange

4.5.9. IOCTL_DEVICE_INPUT_MODE_CONFIG

IOCTL_DEVICE_INPUT_MODE_CONFIG is used to set the input configuration. For non-Synchronous Sampling
(SS) boards, the default is differential. The SS boards default to “system analog input,” which is single-ended. See
IOCTL_DEVICE_SS_MODE for more options specific to the SS boards.

17
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

Possible arguments are:

INPUT_DIFFERENTIAL Differential input (default for non-SS boards)
INPUT_SINGLE_ENDED Single-ended input
INPUT_ZERO_TEST All inputs internally tied to ground
INPUT_VREF_TEST All inputs internally tied to Vref
INPUT_SYSTEM_ANALOG_SS System analog input (Default for the SS boards)

Usage

ioctl() Argument Description
Command IOCTL_DEVICE_INPUT_MODE_CONFIG
Arg unsigned long *iMode

4.5.10. IOCTL_DEVICE_SS_MODE_CONFIG

IOCTL_DEVICE_SS_MODE_CONFIG sets Synchronous Sampling (SS) differential processing features. The
differential processing features are specific to the SS boards.

Possible values for arg are:

SS_SINGLE_ENDED Processing of input data is limited to gain and offset error processing (default)
SS_PSEUDO_DIFFERENTIAL Channel 00 is the input LO reference for all of the other channels
SS_FULL_DIFFERENTIAL Each odd-numbered channel is the LO reference for each even-numbered HI

channel.

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SS_MODE_CONFIG
arg unsigned long *iMode

4.5.11. IOCTL_DEVICE_INPUT_FORMAT_CONFIG

IOCTL_DEVICE_INPUT_FORMAT_CONFIG selects the output data format. Possible values for arg are:

FORMAT_TWO_COMPLEMENT Format the output data as two’s complement
FORMAT_OFFSET_BINARY Format the output data as offset binary

Usage

ioctl() Argument Description
command IOCTL_DEVICE_INPUT_FORMAT_CONFIG
arg unsigned long *pFormat

4.5.12. IOCTL_DEVICE_START_AUTOCAL

IOCTL_DEVICE_START_AUTOCAL initiates an auto calibration cycle. The driver will wait for the end of cycle
interrupt before returning from the call. There are no arguments for this call.

18
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

Usage

ioctl() Argument Description
command IOCTL_DEVICE_START_AUTOCAL
arg None

4.5.13. IOCTL_DEVICE_START_SINGLE_SCAN

IOCTL_DEVICE_START_SINGLE_SCAN initiates a single scan cycle. There are no arguments for this call.

Usage

ioctl() Argument Description
command IOCTL_DEVICE_START_SINGLE_SCAN
arg None

4.5.14. IOCTL_DEVICE_SET_SCAN_SIZE

IOCTL_DEVICE_SET_SCAN_SIZE selects the number of channels to scan with each pass. Possible values for
arg are:

SCAN_SINGLE_CHAN Single channel only
SCAN_2_CHAN Scan two channels
SCAN_4_CHAN Scan four channels
SCAN_8_CHAN Scan eight channels
SCAN_16_CHAN Scan sixteen channels
SCAN_32_CHAN Scan 32 channels
SCAN_64_CHAN Scan 64 channels

Usage

ioctl() Argument Description
command 16AI64_IOCTL_ENABLE_DMA
arg unsigned long *pScanSize

4.5.15. IOCTL_DEVICE_SET_SCAN_CLOCK

IOCTL_DEVICE_SET_SCAN_CLOCK is used to select the source for the scan clock. Possible values for arg are:

INTERNAL_RATE_A Use internal rate generator “A” for clocking.
INTERNAL_RATE_B Use internal rate generator “B” for clocking.
EXTERNAL_SYNCH Use the external synch input for clocking
BCR_INPUT_SYNCH Clocking on Board Control Register (BCR) Input Synch bit set

Usage

ioctl() Argument Description
Command 16AI64_IOCTL_ENABLE_DMA
Arg unsigned long *pSource

19
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

4.5.16. IOCTL_DEVICE_DISABLE_PCI_INTERRUPTS

IOCTL_DEVICE_DISABLE_PCI_INTERRUPTS disables PCI interrupts from the hardware. Not required for
normal operation, may be used at program termination to ensure that no spurious interrupts are generated.

Usage

ioctl() Argument Description
Command IOCTL_DEVICE_DISABLE_PCI_INTERRUPTS
Arg None

4.5.17. IOCTL_DEVICE_SET_B_CLOCK_SOURCE

IOCTL_DEVICE_SET_B_CLOCK_SOURCE selects the source for the “B” clock. Possible values are:

MASTER_CLOCK The master clock is fed directly into the “B” clock
RATE_A_OUTPUT The output of the “A” clock is fed into the “B” clock

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SET_B_CLOCK_SOURCE
arg unsigned long * pSource

4.5.18. IOCTL_DEVICE_SINGLE_CHAN_SELECT

IOCTL_DEVICE_SINGLE_CHAN_SELECT selects which channel to use for a single-channel scans. Possible
values are 0-63.

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SINGLE_CHAN_SELECT
arg unsigned long * channel

4.5.19. IOCTL_DEVICE_SET_SCAN_RATE_A

IOCTL_DEVICE_SET_SCAN_RATE_A sets the scan rate divisor for scan clock “A.” Possible values are 0-
0xFFFF.
Usage

ioctl() Argument Description
Command IOCTL_DEVICE_SET_SCAN_RATE_A
Arg unsigned long *pSetting

4.5.20. IOCTL_DEVICE_SET_SCAN_RATE_B

IOCTL_DEVICE_SET_SCAN_RATE_B sets the scan rate divisor for scan clock “B.” Possible values are 0-
0xFFFF.

20
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

Usage

ioctl() Argument Description
Command IOCTL_DEVICE_SET_SCAN_RATE_B
Arg unsigned long *pSetting

4.5.21. IOCTL_DEVICE_GEN_DISABLE_A

IOCTL_DEVICE_GEN_DISABLE_A disables rate generator “A.”

Usage

ioctl() Argument Description
Command IOCTL_DEVICE_GEN_DISABLE_A
Arg None

4.5.22. IOCTL_DEVICE_GEN_DISABLE_B

IOCTL_DEVICE_GEN_DISABLE_B disables rate generator “B.”
Usage

ioctl() Argument Description
Command IOCTL_DEVICE_GEN_DISABLE_B
Arg None

4.5.23. IOCTL_DEVICE_GEN_ENABLE_A

IOCTL_DEVICE_GEN_ENABLE_A enables rate generator “A.”

Usage

ioctl() Argument Description
Command IOCTL_DEVICE_GEN_ENABLE_A
Arg None

4.5.24. IOCTL_DEVICE_GEN_ENABLE_B

IOCTL_DEVICE_GEN_ENABLE_B enables rate generator “B.”
Usage

ioctl() Argument Description
Command IOCTL_DEVICE_GEN_ENABLE_B
Arg None

4.5.25. IOCTL_DEVICE_SET_BUFFER_THRESHOLD

IOCTL_DEVICE_SET_BUFFER_THRESHOLD writes the passed value to the buffer threshold register. The
buffer threshold is used to generate interrupts telling the device driver when there is a known quantity of data in the
input buffer. Range = 0-0xFFFF

21
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

Usage

ioctl() Argument Description
Command IOCTL_DEVICE_SET_BUFFER_THRESHOLD
Arg unsigned long *pThreshold

4.5.26. IOCTL_DEVICE_CLEAR_BUFFER

IOCTL_DEVICE_CLEAR_BUFFER clears all data from the input buffer.

Usage

ioctl() Argument Description
command IOCTL_DEVICE_CLEAR_BUFFER
arg None

4.5.27. IOCTL_DEVICE_DISABLE_BUFFER_SS

IOCTL_DEVICE_DISABLE_BUFFER_SS disables the input buffer. This command is only valid for the SS
boards.

Usage

ioctl() Argument Description
Command IOCTL_DEVICE_DISABLE_BUFFER
Arg None

4.5.28. IOCTL_DEVICE_ENABLE_BUFFER_SS

IOCTL_DEVICE_ENABLE_BUFFER_SS enables the input buffer. This is the default state. This command is
only valid for the SS boards.

Usage

ioctl() Argument Description
Command IOCTL_DEVICE_DISABLE_BUFFER
Arg None

4.5.29. IOCTL_DEVICE_DISABLE_DMA_ALMOST_SS

IOCTL_DEVICE_DISABLE_DMA_ALMOST_SS sets the demand-mode DMA to terminate when the buffer
becomes empty. This is the default state. This command is only valid for the SS boards.

Usage

ioctl() Argument Description
Command IOCTL_DEVICE_DISABLE_DMA_ALMOST_SS
Arg None

22
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

4.5.30. IOCTL_DEVICE_ENABLE_DMA_ALMOST_SS

IOCTL_DEVICE_ENABLE_DMA_ALMOST_SS sets the demand-mode DMA to terminate when the buffer
becomes empty. This is the default state. This command is only valid for the SS boards.

Usage

ioctl() Argument Description
command IOCTL_DEVICE_ENABLE_DMA_ALMOST_SS
arg None

4.5.31. IOCTL_DEVICE_SET_TIMEOUT

IOCTL_DEVICE_SET_TIMEOUT sets the timeout (in seconds) for board operations. The default is five seconds.

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SET_TIMEOUT
arg unsigned long *pTimeout

4.5.32. IOCTL_DEVICE_FILL_BUFFER

IOCTL_DEVICE_FILL_BUFFER instructs the driver to completely fill the user buffer before returning when set
to TRUE. Normally, By Linux convention, a read() operation is only required to return one or more data samples.
When this value is set to FALSE, the driver will only return at most the capacity of the intermediate buffer. Default
is FALSE.

Note that due to limitations of the Linux operating system, the driver cannot copy directly from the hardware to the
user buffer. Instead, the data must pass through an intermediate DMA-capable buffer. The size of the intermediate
buffer is determined by the #define DMA_ORDER in the gsc16AI64.h file. The driver attempts to allocate
2^DMA_ORDER pages. On larger systems, this number can be increased, reducing the number of operations
required to transfer the data.

Usage

ioctl() Argument Description
Command IOCTL_DEVICE_SET_TIMEOUT
Arg unsigned long *pSetting

4.5.33. IOCTL_DEVICE_DETECT_OVERFLOW

IOCTL_DEVICE_DETECT_OVERFLOW is used to instruct the driver to fail a read() operation if the input buffer
becomes full. Because there is no direct way to detect buffer overflow (prior to the SSA board), if the buffer
becomes full (0xfffe samples) the driver assumes data has been lost. The driver will then clear out the hardware
buffer and fail the read.

Usage

ioctl() Argument Description
Command IOCTL_DEVICE_DETECT_OVERFLOW
Arg unsigned long *pSetting

23
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

4.5.34. IOCTL_DEVICE_SET_UNIPOLAR_INPUTS_SSA

IOCTL_DEVICE_SET_UNIPOLAR_INPUTS_SSA is used to select either bipolar or unipolar inputs.

Possible values are:

 BIPOLAR_INPUTS
 UNIPOLAR_INPUTS

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SET_UNIPOLAR_INPUTS_SSA
arg unsigned long *pSetting

IOCTL_DEVICE_SET_DIFF_PROCESSING_SSA

IOCTL_DEVICE_SET_DIFF_PROCESSING_SSA is used to set the mode used for differential processing.

Possible values are:

 SINGLE_ENDED_PROC
 PSEUDO_DIFFERETIAL_PROC
 FULL_DIFFERENTIAL_PROC

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SET_DIFF_PROCESSING_SSA
arg unsigned long *pSetting

4.5.35. IOCTL_DEVICE_READ_BUFFER_UNDERFLOW_SSA

IOCTL_DEVICE_READ_BUFFER_UNDERFLOW_SSA is used to read the status of the buffer underflow bit in the
BCR register. Returns non-zero to indicate a buffer underflow. The state of the bit is not reset by this IOCTL. Use
IOCTL_DEVICE_RESET_BUFFER_UNDERFLOW_SSA to reset the bit.

Usage

ioctl() Argument Description
command IOCTL_DEVICE_READ_BUFFER_UNDERFLOW_SSA
arg unsigned long *pState

4.5.36. IOCTL_DEVICE_READ_BUFFER_OVERFLOW_SSA

IOCTL_DEVICE_READ_BUFFER_OVERFLOW_SSA is used to read the status of the buffer overflow bit in the
BCR register. Returns non-zero to indicate a buffer overflow. The state of the bit is not reset by this IOCTL. Use
IOCTL_DEVICE_RESET_BUFFER_OVERFLOW_SSA to reset the bit.

24
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

Usage

ioctl() Argument Description
command IOCTL_DEVICE_READ_BUFFER_OVERFLOW_SSA
arg unsigned long *pState

4.5.37. IOCTL_DEVICE_SET_SCAN_MARKING_SSA

IOCTL_DEVICE_SET_SCAN_MARKING_SSA is used to enable or disable scan marking and data packing. See
the hardware manual for details about what scan marking and data packing are and how they are used.

Possible values are:
 TRUE – Enable scan marking and data packing.
 FALSE – Disable scan marking and data packing.

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SET_SCAN_MARKING_SSA
arg unsigned long *pSetting

4.5.38. IOCTL_DEVICE_SET_DEMAND_MODE_DISABLE

IOCTL_DEVICE_SET_DEMAND_MODE_DISABLE_SSA is used to disable Demand Mode DMA transfers.

Possible values are:
 TRUE – Disable Demand Mode DMA.
 FALSE – Allow Demand Mode DMA to be selected.

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SET_DEMAND_MODE_DISABLE_SSA
arg unsigned long *pSetting

4.5.39. IOCTL_DEVICE_SET_THRESHOLD_4X_SSA

IOCTL_DEVICE_SET_THRESHOLD_4X_SSA is used to enable or disable the 4x multiplier for the buffer
threshold register. This feature is useful when the desired threshold value is larger than the range allowed by the
buffer threshold register.

Possible values are:
 TRUE – Enable the 4x threshold level.
 FALSE – Disable the 4x threshold level.

25
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SET_THRESHOLD_4X_SSA
arg unsigned long *pSetting

4.5.40. IOCTL_DEVICE_RESET_BUFFER_UNDERFLOW_SSA

IOCTL_DEVICE_RESET_BUFFER_UNDERFLOW_SSA is used to reset the underflow bit in the BCR register.
There are no arguments passed to this IOCTL.

Usage

ioctl() Argument Description
command IOCTL_DEVICE_RESET_BUFFER_UNDERFLOW_SSA
arg None

4.5.41. IOCTL_DEVICE_RESET_BUFFER_OVERFLOW_SSA

IOCTL_DEVICE_RESET_BUFFER_OVERFLOW_SSA is used to reset the overflow bit in the BCR register.
There are no arguments passed to this IOCTL.

Usage

ioctl() Argument Description
command IOCTL_DEVICE_RESET_BUFFER_OVERFLOW_SSA
arg None

4.5.42. IOCTL_DEVICE_SET_AUX_0_MODE_SSA

IOCTL_DEVICE_SET_AUX_0_MODE_SSA is used to set the mode of the channel 0 auxiliary I/O port.

Possible values are:
 AUX_INACTIVE
 AUX_ACTIVE_IN
 AUX_ACTIVE_OUT

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SET_AUX_0_MODE_SSA
arg unsigned long *pSetting

26
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

4.5.43. IOCTL_DEVICE_SET_AUX_1_MODE_SSA

IOCTL_DEVICE_SET_AUX_1_MODE_SSA is used to set the mode of the channel 1 auxiliary I/O port.

Possible values are:
 AUX_INACTIVE
 AUX_ACTIVE_IN
 AUX_ACTIVE_OUT

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SET_AUX_1_MODE_SSA
arg unsigned long *pSetting

4.5.44. IOCTL_DEVICE_SET_AUX_2_MODE_SSA

IOCTL_DEVICE_SET_AUX_2_MODE_SSA is used to set the mode of the channel 2 auxiliary I/O port.

Possible values are:
 AUX_INACTIVE
 AUX_ACTIVE_IN
 AUX_ACTIVE_OUT

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SET_AUX_2_MODE_SSA
arg unsigned long *pSetting

4.5.45. IOCTL_DEVICE_SET_AUX_3_MODE_SSA

IOCTL_DEVICE_SET_AUX_3_MODE_SSA is used to set the mode of the channel 3 auxiliary I/O port.

Possible values are:
 AUX_INACTIVE
 AUX_ACTIVE_IN
 AUX_ACTIVE_OUT

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SET_AUX_3_MODE_SSA
arg unsigned long *pSetting

27
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

4.5.46. IOCTL_DEVICE_SET_INPUT_INVERT_MODE_SSA

IOCTL_DEVICE_SET_INPUT_INVERT_MODE_SSA is used to determine if the input transition is triggered on
the rising edge or falling edge of the event.

Possible values are:
 TRUE – Inputs are detected on the high-to-low transition.
 FALSE – Inputs are detected on low-to-high transition.

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SET_INPUT_INVERT_MODE_SSA
arg unsigned long *pSetting

4.5.47. IOCTL_DEVICE_SET_OUTPUT_INVERT_SSA

IOCTL_DEVICE_SET_OUTPUT_INVERT_MODE_SSA is used to select inverted or non-inverted output pulses.

Possible values are:
 TRUE – Active outputs produce high output pulse.
 FALSE – Active outputs produce low output pulse.

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SET_OUTPUT_INVERT_MODE_SSA
arg unsigned long *pSetting

4.5.48. IOCTL_DEVICE_SET_NOISE_SUPPRESSION_SSA

IOCTL_DEVICE_SET_NOISE_SUPPRESSION_SSA is used to enable or disable input and output noise
suppression. See the hardware manual for a description of noise suppression.

Possible values are:
 TRUE – Enable noise suppression.
 FALSE – Disable noise suppression.

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SET_NOISE_SUPPRESSION_SSA
arg unsigned long *pSetting

28
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

4.5.49. IOCTL_DEVICE_SET_HW_BUFFER_SIZE

IOCTL_DEVICE_SET_HW_BUFFER_SIZE is used to tell the driver the size of the hardware FIFO buffer. The
buffer size is used by the driver to detect possible data overflow. It does not impact the effective size of the
hardware buffer. The default is 64K.

Possible values are:
 0-MAX_BUFFER_SIZE (512 K)

Usage

ioctl() Argument Description
command IOCTL_DEVICE_SET_HW_BUFFER_SIZE
arg unsigned long *pSetting

29
General Standards Corporation, Phone: (256) 880-8787

12AI64/16AI64 Family LINUX Device Driver User’s Manual

Document History

Revision Description
October 2, 2003 Initial release.
November 25, 2003 Corrected the product description for the 12AI64.
December 12, 2003 Added IOCTL_DEVICE_SET_TIMEOUT

Added two missing SS only registers.
Corrected the description of the test program output.

January 21, 2004 Added IOCTL_DEVICE_FILL_BUFFER, IOCTL_DEVICE_DETECT_OVERFLOW
and updated the description of the test program.

September 13, 2004 Added referenced to support for kernel 2.6.
May 2, 2005 Added new IOCTLs to support the SSA board. Fixed some typos.
August 30, 2005 Added IOCTL to set hardware buffer size. Added fixes for DMA and interrupt handling

on the 2.6 kernel.

30
General Standards Corporation, Phone: (256) 880-8787

	12AI64/16AI64
	64 Channel, 12 or 16-Bit Analog Input Board
	PMC-12AI64
	PMC-16AI64
	PMC-16AI64-SS
	PCI-16AI64-SS
	PCI-16AI64-SSA
	LINUX Device Driver
	User Manual

	Introduction
	Purpose
	Acronyms
	Definitions
	Software Overview
	Hardware Overviews
	PMC-12AI64
	PMC-16AI64
	PMC-16AI64SS, PCI-16AI64SS

	Reference Material

	Installation
	CPU and Kernel Support
	The Driver
	Installation on Target System
	Building the driver and test application
	Manual Startup
	Automatic startup
	Verification of startup
	Verification
	Removal
	Uninstall

	Sample Application
	Driver Interface
	Registers
	GSC Registers
	*SS boards only.
	PLX PCI 9080 Registers

	Data Types
	16AI64_REGISTER_PARAMS
	Definition

	read()
	Example

	write()
	ioctl()
	IOCTL_DEVICE_NO_COMMAND
	Usage

	IOCTL_DEVICE_INIT_BOARD
	Usage

	IOCTL_DEVICE_GET_DEVICE_TYPE
	Usage

	IOCTL_DEVICE_READ_REGISTER
	Usage

	IOCTL_DEVICE_WRITE_REGISTER
	Usage

	IOCTL_DEVICE_ENABLE_DMA
	Usage

	IOCTL_DEVICE_GET_DEVICE_ERROR
	Usage

	IOCTL_DEVICE_INPUT_RANGE_CONFIG
	Usage

	IOCTL_DEVICE_INPUT_MODE_CONFIG
	Usage

	IOCTL_DEVICE_SS_MODE_CONFIG
	Usage

	IOCTL_DEVICE_INPUT_FORMAT_CONFIG
	Usage

	IOCTL_DEVICE_START_AUTOCAL
	Usage

	IOCTL_DEVICE_START_SINGLE_SCAN
	Usage

	IOCTL_DEVICE_SET_SCAN_SIZE
	Usage

	IOCTL_DEVICE_SET_SCAN_CLOCK
	Usage

	IOCTL_DEVICE_DISABLE_PCI_INTERRUPTS
	Usage

	IOCTL_DEVICE_SET_B_CLOCK_SOURCE
	Usage

	IOCTL_DEVICE_SINGLE_CHAN_SELECT
	Usage

	IOCTL_DEVICE_SET_SCAN_RATE_A
	Usage

	IOCTL_DEVICE_SET_SCAN_RATE_B
	Usage

	IOCTL_DEVICE_GEN_DISABLE_A
	Usage

	IOCTL_DEVICE_GEN_DISABLE_B
	Usage

	IOCTL_DEVICE_GEN_ENABLE_A
	Usage

	IOCTL_DEVICE_GEN_ENABLE_B
	Usage

	IOCTL_DEVICE_SET_BUFFER_THRESHOLD
	Usage

	IOCTL_DEVICE_CLEAR_BUFFER
	Usage

	IOCTL_DEVICE_DISABLE_BUFFER_SS
	Usage

	IOCTL_DEVICE_ENABLE_BUFFER_SS
	Usage

	IOCTL_DEVICE_DISABLE_DMA_ALMOST_SS
	Usage

	IOCTL_DEVICE_ENABLE_DMA_ALMOST_SS
	Usage

	IOCTL_DEVICE_SET_TIMEOUT
	Usage

	IOCTL_DEVICE_FILL_BUFFER
	Usage

	IOCTL_DEVICE_DETECT_OVERFLOW
	Usage

	IOCTL_DEVICE_SET_UNIPOLAR_INPUTS_SSA
	Usage

	IOCTL_DEVICE_SET_DIFF_PROCESSING_SSA
	Usage

	IOCTL_DEVICE_READ_BUFFER_UNDERFLOW_SSA
	Usage

	IOCTL_DEVICE_READ_BUFFER_OVERFLOW_SSA
	Usage

	IOCTL_DEVICE_SET_SCAN_MARKING_SSA
	Usage

	IOCTL_DEVICE_SET_DEMAND_MODE_DISABLE
	Usage

	IOCTL_DEVICE_SET_THRESHOLD_4X_SSA
	Usage

	IOCTL_DEVICE_RESET_BUFFER_UNDERFLOW_SSA
	Usage

	IOCTL_DEVICE_RESET_BUFFER_OVERFLOW_SSA
	Usage

	IOCTL_DEVICE_SET_AUX_0_MODE_SSA
	Usage

	IOCTL_DEVICE_SET_AUX_1_MODE_SSA
	Usage

	IOCTL_DEVICE_SET_AUX_2_MODE_SSA
	Usage

	IOCTL_DEVICE_SET_AUX_3_MODE_SSA
	Usage

	IOCTL_DEVICE_SET_INPUT_INVERT_MODE_SSA
	Usage

	IOCTL_DEVICE_SET_OUTPUT_INVERT_SSA
	Usage

	IOCTL_DEVICE_SET_NOISE_SUPPRESSION_SSA
	Usage

	IOCTL_DEVICE_SET_HW_BUFFER_SIZE
	Usage

	Document History

