16AI32SSCI1M

16-bit, 32 channel, 1M S/S/Ch A/D Input

XMC-16AI132S5SCI1M

Linux Device Driver
And API Library
User Manual

Manual Revision: August 15, 2024
Driver Release Version 1.4.111.50.0

General Standards Corporation
8302A Whitesburg Drive
Huntsville, AL 35802
Phone: (256) 880-8787
Fax: (256) 880-8788
URL.: http://www.generalstandards.com
E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com


http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

16AI132SSC1M, Linux Device Driver, User Manual

Preface

Copyright © 2018-2024, General Standards Corporation
Additional copies of this manual or other literature may be obtained from:

General Standards Corporation
8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or
software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Although extensive editing and reviews are performed before release, General Standards Corporation assumes no
responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are
made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this
documentation.

General Standards Corporation does not assume any liability arising out of the application or use of
documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or
any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or
errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,
software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.
GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

2
General Standards Corporation, Phone: (256) 880-8787


http://www.generalstandards.com/
mailto:sales@generalstandards.com

16AI132SSC1M, Linux Device Driver, User Manual

Table of Contents

IO o oo (U T o] o PSSP 8
Lo PUIPOSE. 1.ttt ettt h bR R R R R R R R R R R Rt bt 8
L2, AACTONYIMS ...ttt bt e e h ke bttt E R AR b e st AR e AR e b e e Rt Rt R Rt bt 8
IR TR B ) 11T 1 o] SO PRSP 8
1.4, SOTEWAIE OVEIVIBW ..ottt sttt ettt e ettt b e be bt e b e st e s beseeeb e e b e e bt e s e e m e e besbeebesbeebeeneenbenbeneeneas 8

1.4.1. BaSIC SOFtWAIe ATCHITECIUIE .. .cuiviiiitiiee ettt bbbttt e st ens 8
B N B o] - T Y2 TP PRRRPOO 9
1.4.3. DEVICE DIV ...ttt bbb bbb bbbt bRkttt b ket b e bttt et et b et et e neab et enes 9
1.5, HArOWAIE OVEIVIEW ... .cveiviieiiitiieetiste ettt sttt sttt et etttk b s bt s e bt et e e bt et e e e bt n b et eb e et et e st b e e enes 9
1.6. RETEIENCE IMALEITAL ... .eeieeeeeiee ettt et bbbt et s b e bt sb e eb e e e et et nre e 9
O I oY 3 Yoo OSSR 10
1.8, CAULTONANY NOTES .....viieiiiitiieieit ettt b et b et b bbbt b e e h e e bt e e bt eb e b e s ekt s b e s e eb e s b e s e ebenb e s e abenbe e enesbe e 10

2. INSTAITALION ...ttt b et e et e bbbt nnenreas 11

N O e W Voo I T 0T BT U] o] o SRS 11
2.1.1. 32-bit Support Under 64-bit ENVIFONMENTS ......ccveiiiiiiiicceeieee ettt 12
2.2. TR IPIOCT FIIE SYSIBIM ....iiiiiiecie ettt et e e st e e s te et e e st e e ab e es e ste e te e beeseeaseesseesreesteeseeenneenes 12
P T T L T OO TOTORSOPR 12
P Y= Tod (o] VA {0 Tox (1 -SSR 12
B2 T T =] 4T oSSR 13
PG TR (=T 0 010 1Y | SRS 13
2.7. OVEFAII IMIBKE SCIIPL. ...ttt bbb bbb bbbt bbb bbbt bbbttt e 13
2.8. ENVIFONMENT VATTADIES ... .oviieieee ettt sttt ettt e te s te s e s e e e e saenteseeeneeneeneeeeneenees 14
2.8.1. GSC_API COMP_ FLAGS .iiiiiiiiiiiietitetetesie ittt b sttt bbb b b st b b a ettt 14
2.8.2. GSC_API LINK FLAGS ..ottt ittt bbb bbb bbbt 14
2.8.3. GSC_LIB COMP_ FLAGS .iiisistitiuerireteieiieierisesesesse ettt se st s et s s st st st st b e e s nennas 14
2.8.4. GSC_LIB LINK FLAGS ..ttt bbb bbb a st 15
2.8.5. GSC_APP COMP_ FLAGS ..iiiiiieitiuerereteteitiereriseseses ettt st se st b bbb s st sttt e et nenennas 15
2.8.6. GSC_APP LINK FLAGS ..ttt ittt bbb bbb st 15

3. Main INTEITACE FlES.......eeieceeeeee ettt e e e 16
TR I Y T T=T: o LT LSS 16
3.2, MAIN LIDFAIY LB ...ttt bbbttt e bbbt e bt e st et e sbeebe b bt e be e e e e nbeneas 16

K 102 I =01 o SRS 16
3.2.2. SYSLEIM LIDIAIIES ...ttt bbbt bbbt bt e Rt e st et e b sbe bt e be e bt e s e e e e e b 17
3.2.3. Shared Object Script: Build the Main Libraries as Shard Object Files..........cccccooeiiiiniiiiiiicccee 17

A APT LIDTATY ot b bbbt b et b e bbb 18
Nt 1SS 18
o = TV 1o RSOSSN 18
T o] VA U -SSP PTURUPU ST 18

3

General Standards Corporation, Phone: (256) 880-8787



4.4, MacCros ......ccoevvvvveeeeenne
4.4.1. IOCTL Services....
4.4.2. Registers................

4.5, Data TYpeS......cccvevvennn

4.6. Functions...........cc.e.....
4.6.1. ai32ssclm_close()
4.6.2. ai32ssclm_init() ...

4.6.3. ai32ssc1m_ioctl()
4.6.4. ai32ssclm_open()

4.6.5. ai32ssclm_read()..
4.7. IOCTL Services..........

16AI132SSC1M, Linux Device Driver, User Manual

4.7.1. A132SSCIM_IOCTL_ADC_CLK_SRC ......ovveooiieeeeeieseeeeeseseeeseesesseseeeseeseseseseesesseesessessse s
4.7.2. A132SSCIM_IOCTL_ADC_ENABLE .......ovoceeioeeeeeeeeeeeeeeseeeeeeeesse s eeseeeses s seesse s
4.7.3. A132SSCIM_IOCTL_AL BUF_CLEAR ........iiiiieeeeeieeeeeeeseseeseeeeeesesseeseeeseeeeseeseeseeseeseeseeseesesssee e
4.7.4. AI32SSCIM_IOCTL_AI BUF_LEVEL coovvooooooeieeeeeeceeeesseeeeeeeee s seesesssee e seesssseee e
4.7.5. AI32SSCIM_IOCTL_AI_BUF_OVERFLOW.......ovvveeooeiseeeeeeeeseeeeseeeeeeeeesesseeseseseeseesseesssseee s
4.7.6. AI32SSCIM_IOCTL_AI BUF_THR_LVL ...ooiioooveceeeesseeeeeeeeeseeeeseeseeeeeesesseeeessseesesesseesssseee s
4.7.7. AI32SSCIM_IOCTL_AI BUF_THR_STS ...ociioooeeeeeeieesseseseeeesessesesseeeeeesesseeeessseesesssseessssees s
4.7.8. AI32SSCIM_IOCTL_AI_BUF_UNDERFLOW............iiiiiemeveeeeereesseeeeeeeeesesseeeesseeeseessseesssseee s
4.7.9. AI32SSCIM_IOCTL_AI_IMODE..........ooovoveeeeoeeeeeeeeeeeeeeesseeeseeeeseeseeeesesee s seesesssee s
4.7.10. AI32SSCIM_IOCTL_ AL RANGE ........oovveeeeeeeeeeeeeeeeeeeeseseesseeseesessee e esee e
4.7.11. A132SSCIM_IOCTL_AUTOCAL ...ovcoooeeeeeeeeseeeeeeeeeeeeeeeseesseees e esse s
4.7.12. A132SSCIM_IOCTL_AUTOCAL_STATUS ..cooeeeeeeeeeeereseeeeeeeseeseseeeseesseeseseesesseeseesesseeseesessse e
4.7.13. A132SSCIM_IOCTL_AUX_CLK_MODE .......ovvveieeieeeeeeseeeseeeeeseseeesseseseeeseesesseeseesesssesessessse e
4.7.14. A132SSCIM_IOCTL_AUX_IN_POL ...ooovoeoeeioeeeeeeeeeeeeeeseseeseee e seeeeees e eesessee e
4.7.15. AI32SSCIM_IOCTL_AUX_NOISE ....ovvvooeeeeeieeeeeeceeesesseseeeeeeeseseeseeseseeee s seessssee e
4.7.16. AI32SSCIM_IOCTL_AUX_OUT POL w...ooooooiooeeeeceeeesseeeeeeeeeeesseeeeseeeeesesseesessseesesesseessssee s
4.7.17. AI32SSCIM_IOCTL_AUX_SYNC_MODE.........oovveceieoeeeeeeeeeeeseeseeeeseeeeeesesseeeeseeeeseeseseesesseee s
4.7.18. AI32SSCIM_IOCTL_BURST BUSY ..ooooooeoooeieeeeeeceeeesseesseeeeesessseeesseeeeesesseeeessseeseseeseesessee s
4.7.19. AI32SSCIM_IOCTL_BURST SIZE w..oovoveoeoeeeeeeeeeeeeeeeeeeeeeeeeeeseseeeeeseseeeeseeseesessse s
4.7.20. AI32SSCIM_IOCTL_BURST _SYNC ..oovoooooiieeeeeeceeeeeseseeeeeeeseeseeeeseeeeeesesseeeesssee s
4.7.21. A132SSCIM_IOCTL_CHAN_ACTIVE ....oocooioeeeeoeeeeeeeese oo eeeeeeeeeeesee e eeeeesee e
4.7.22. A132SSCIM_IOCTL_CHAN_FIRST ..ooooovveeeeoeeeeeeeseeeeeeeseesseeseseesseeeeeeeeeeeseesessee e eeesseee e
4.7.23. A132SSCIM_IOCTL_CHAN_LAST ..oooiovoeoeeseeeeeeeeeeeeeeeeeeeesee e seee e eeseesee e eesee e
4.7.24. A132SSCIM_IOCTL_CHAN_SINGLE .......coiovvoeeeeeeeeee oo eeeeeeeeeeesee e
4.7.25. A132SSCIM_IOCTL_DATA FORMAT .....ooiiieeeeeeeeeeeeeseseeeeeesesseseee e eeeeeeeeseeseeseeseesee e
4.7.26. A132SSCIM_IOCTL_DATA PACKING .......ooovveeeeeeeeeeeeseeeeeeeeeeseeeeeeeeeeeeeeeseeseesee e eeeseeseesessee e
4.7.27. AI32SSCIM_IOCTL_INITIALIZE ..coovooeeoeeeeeeeeeeeeeeee oo sesssee s
4.7.28. AI32SSCIM_IOCTL_INPUT _SYNC woovoveeeoeeieeeeeeceeeesseeeseeeeeseseeeeeseeeeeesesseeseessee e seesessee e
£4.7.29. AI32SSCIM_IOCTL_IO_INV ooooooooieieeeeeeeeeeeseeeeeeeeeeesseeeseeeee e sesee e seesessee e
4.7.30. AI32SSCIM_IOCTL_IRQO_SEL ......oiovoeeeeeeeeieeeeeeeeeeesseeeseeeeeseseeeeeseseeeeseeseesesseee e seesessee s
4.7.31. AI32SSCIM_IOCTL_IRQL SEL .....ooiovoeeeeeeeeieeeeeeceesesseeeseeeesesseeeeseseee e seesesssee s seesessee s
4.7.32. A132SSCIM_IOCTL_QUERY ....ooiovoeoeoieeeeeeieeseeeeeeeeeeseeeesessesseeesessesseeseeseeeseseesessee e sesseeseeeeseee e
4.7.33. A132SSCIM_IOCTL_RAG_ENABLE ........ceioeeeeeeeeeeeeeseeeeeeeeeessesseeseeseeeseseeseeseeseeseeseeseeeesseee e
4.7.34. A132SSCIM_IOCTL_RAG_NRATE .....oovoeeeeeeeeeeeeeeeeeeeesseeeee e sseeeeeeeesseeeeseesee e seeseeseeeeeseee e
4.7.35. A132SSCIM_IOCTL_RBG_CLK_SRC ....oocoiioeeeeeeseeeeeseseeeeeeeessesseesseseeeseeeesesseesessesseeseesessse e
4.7.36. AI132SSCIM_IOCTL_RBG_ENABLE .........coiioeeeeeeeeeeeeeseseeeeeeeeeseeseeseeseeeseseeseeseeseeseeseeseeseesee e
4.7.37. A132SSCIM_IOCTL_RBG_NRATE .....oovoeeeeieeeeeeeeeeeeeeeessesseeeessesseeseeseeeseseesessee e sesseeseeeesssee e
4.7.38. AI32SSCIM_IOCTL_RBG_SYNC_OUTPUT w..ovvveeeeeeeseeeeeeeeseeeeeeeseeeeesesseeeeseeeeseeseseesessee e
4.7.39. AI32SSCIM_IOCTL_REG_MOD ....coovoveoeoeeeieeeeeeeeeeeeseeeseeeee e seseeee e seeeesssee e
4.7.40. AI32SSCIM_IOCTL_REG_READ ......ovvvoeeeeeeieeeeeeeeeeeeseeeeseeeeeseseeeeeseseeeeseeseesesseee e seessssee e
4.7.41. AI32SSCIM_IOCTL_REG_WRITE w..oovoveoeeeeieeeeeeeeoeeesseeeseeeee s seseeeesesseesesssee e seesesseee e
4.7.42. AI32SSCIM_IOCTL_RX_10 ABORT w..oooooeieeeeeeceeeeseseeeseeeeeseseeeeeseeeesesesseeseeseees e seesessee s
4.7.43. AI32SSCIM_IOCTL_RX_10 _IMODE .....voooooooieeeeeeceeeeeseeeeeeeeeseseeeeeseeeeesesseesesseeeeeeeseesessee e

General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

General Standards Corporation, Phone: (256) 880-8787

4.7.44. AI32SSCIM_IOCTL_RX _IO_OVERFLOW . .....cocciiiiiiiieisesieii ettt 39
4.7.45. AI32SSCIM_IOCTL_RX_IO_TIMEOUT ...c.oitiiiiiiitiiteie ettt 39
4.7.46. AI32SSCIM_IOCTL_RX_IO_UNDERFLOW .....cciiiiiiiisieieis e 40
4.7.47. AI32SSCIM_IOCTL_SCAN_MARKER ..ottt 40
4.7.48. AI32SSCIM_IOCTL_SCAN_MARKER _GET ...ceoiiiiiiiiriieisesiees et 40
4.7.49. AlI32SSCIM_IOCTL_SCAN_MARKER _SET ....cceiiiiiiieisiinieisiesieese et s 41
4.7.50. AI32SSCIM_IOCTL_WAIT_CANCEL ...ctiiiiiieieisees e 41
4.7.51. AI32SSCIM_IOCTL_WAIT_EVENT ..ottt st 42
4.7.52. AI32SSCIM_IOCTL_WAIT _STATUS ..ottt sttt 43
4.8. LOW LateNCY IOCTL SEIVICES ....uitiuiitiitiiitirteiei sttt bbbtk b etk b et bbbttt bbb 44
4.8.1. AI32SSCIM _TOCTL_LL DOH ..coiiiiiiiiiiiciiseie sttt bt sttt bt 44
4.8.2. AI32SSCIM _TOCTL_LL HOLD .....ciiiiiiciieeis ettt sttt 45
4.8.3. AI32SSCIM _IOCTL_LL READ ..ottt ettt bttt e 45
4.8.4. AI32SSCIM _IOCTL_LL RELEASE ..ottt sttt 45
4.9. TIME TAQ TOCTL SEIVICES. ..ueiiuietietiesiiesieestee st e sttt st e st e s te e te e e e s eesseesreesteesteeneeaseeassesseesteesteaseeasaesreesreeseeeneeenns 46
4.9.1. AI32SSCIM_IOCTL_TT_ADC_CLK_SRC ....iiiitiiiiiiiiieisesiees ettt st sttt 46
4.9.2. AI32SSCIM_IOCTL_TT_ADC_ENABLE .......c.cotitiiiieieises et 46
4.9.3. AI32SSCIM_IOCTL_TT_BURST _SIZE......cocctiiiiiiiiienieise ettt 46
4.9.4. AlI32SSCIM_IOCTL_TT_CHAN_MASK _GET ...cciiiiiiieisinieisiesieese ettt s 47
4.9.5. AI32SSCIM_IOCTL_TT_CHAN_MASK _SET ...ooctiiiiiiiiisieiieisiesieese ettt 47
4.9.6. AI32SSCIM_IOCTL_TT _CONST _REF_GET ....iiiiieeieeieeeiesesesiessesiesssseessesssss s sessasssnsenns 47
4.9.7. AI32SSCIM_IOCTL_TT _CONST _REF_SET ...ooiiiiieeeeieciesesestee s s essss s enss e 47
4.9.8. AI32SSCIM_IOCTL_TT _COUNTER .....cooiveiieeeeceesesiee e ses s ss s sss s 48
4.9.9. AI32SSCIM_IOCTL_TT ENABLE .....oooiieieeceeeeceeseeeee e ses s es s 48
4.9.10. AI32SSCIM_IOCTL_TT_LOG_MODE .......cooiieieireeeeieieeeesessesiessesiesessiessesssssss s sasssssesenns 49
4.9.11. AI32SSCIM_IOCTL_TT_NRATE ..ottt sttt e e 49
4.9.12. AI32SSCIM_IOCTL_TT_REF XX iiitiiiieieisieieisesieses ettt sbe sttt ss e stensssessessns 49
4.9.13. AI32SSCIM_IOCTL_TT_REF_CLK_SRC ...ciiiiiiiiiiieiiiseiees ettt st 50
4.9.14. AI32SSCIM _IOCTL_TT _RESET ..c.iiiiiiieiiiieisiesee sttt ettt bbbttt ens 50
4.9.15. AI32SSCIM_IOCTL_TT_RESET _EXT ..iiiiiiiiiieieisieieise ettt sttt st 50
4.9.16. AI32SSCIM_IOCTL_TT_TAGGING........cotiiiiiiieieisesiees et sttt st seenene 51
4.9.17. A132SSCIM_IOCTL_TT_THR XX c.oooiieieeeieieeeeeseseee e ses s es s s nnaense e 51
4.9.18. A132SSCIM_IOCTL_TT_TRIG_MODE .......coosioieireeeeeeeeeeeseesesiessesiesesseessessesss s esiesssnenes 52
ST I T3 T g 1Y SRRSO 53
TN I 1= PO U VPP UPO PP 53
ST =1 11 o OSSPSR 53
TR T -1 (1] o PRSP URPIN 53
5.3.1. Manual Driver Startup PrOCEAUIES .......ccveiieie ettt ettt ste et e s e steestaenbe e teesaeaseeanees 53
5.3.2. AUtOmMatiC Driver Startup PrOCEAUIES..........ouiiriiiitirie ittt 54
ORI 4T 4 1 o= o SRS 55
TR TV -1 £ T o TSRS 56
Eo TS T 111 (01 o S 56
6. Document Source Code EXAMPIES.........coiiiiiiiii e 57
TR 1= OSSPV PUR PRSP 57
B.2. BUIIO ..ottt ettt b ettt h e b bR bR b e bR et et et e b et ete et et enenbe st enearenrenes 57
LGTR TR o] -V Y20 £ PSSR 57



16AI132SSC1M, Linux Device Driver, User Manual

7. ULIHTIES SOUICE COUB.....eiuiiiiieite sttt bbbttt ettt sbe b nreas 58
0 11RO 58
7728 = T (o TSSO 58
T.3. LEDIAIY USE ..ttt bbb bbb bR bbb bR bbbt E bbbt b e 58

8. Operating INfOrMAaLION ..........cccieiiie e ee e nas 59
ST B T=T o TU o o T o N o LSS 59

8.1.1. DEVICE IABNTIFICALION .....eviieiiitiieeicte ettt sttt sttt n e e e enes 59
8.1.2. Detailed REGISTEr DUIMP ...c.veiiiiieciieeeieie ettt sttt e et e e s e e besbesbeeseessesee e e testestesseeneeseenseseenrens 59
8.2. ANAlog INPUL CONFIGUIALION .....c.viiiiiiiie sttt sttt et e s ae s ta e s e e st e e e se e besreabeeneeneeeenreneas 59
8.3. Data TraNSTEE IMOUES. ......eeeiiiteieieite ettt ettt bbbttt b et b s bbb et b e bt e bt et e e b et et es e abentenes 59
8.3.1. P1O - ProgramMEd /O ..ottt b et b bbbttt 60
8.3.2. BMDMA - BIOCK MOUE DIMA ...ttt sttt sttt e et stesbesneeneeseenseeeneens 60
8.3.3. DMDMA - Demand MO8 DIMA ..ottt sttt sttt e et sbesbesneeneeeenseneenrens 60
8.4, LOW LAtENCY DALA ACCESS. ......eeureeirirtiitieieeiieste sttt sttt r bbb nr bt s bt b e et e e nn bbbt e s e e e nnenes 60

T T g o] (I A o] o] [oF 1 o] o S OSSR 61
9.1. fsamp - SAMPIE RALE - ... /TSAMP/ ...oviieeieiiiieiee bbbt sb bbbt eenn e 61
S o B T (= ) ) Y =T - U o e e OSSR 61
0.3, 105 - REGISIEN ACCESS = .. ./TEES/ .. evtvereettrteseettntes ekt rt ettt b et b ettt b bbb bbb etk bbbt b e b bttt e 61
0.4, IXrate - RECEIVE RALE - .. ./TXTALE/ ..viiueieiuieiieieie sttt sttt sttt st e et e e be st te e s e e st e eestesbesbeabeeseeneeeeneennas 61
9.5. savedata - Save Acquired Data - .../SAVEAALA/ ..........ccoviiriiiiiirieei s 61
9.6. stream - Stream RX Data t0 DiSK - .../StrEAIM/ .......ccoviieieieie ettt enee e nnes 61
T T AT VL A = A 0 o SRS 61

DOCUMENT HISTOTY ...ttt et sttt r et et e nne b e benbeene e 62

6

General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

Table of Figures

Figure 1 Basic architeCtural repreSENTALION. ........c.civiiieieiesiie et eiee e se s e ettt e te e ra e e e e e aesresbesreenee e eseeseesrennas

7
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

1. Introduction

1.1. Purpose

The purpose of this document is to describe the interface to the 16AI32SSC1M API Library and to the underlying
Linux device driver. The API Library software provides the interface between "Application Software" and the
device driver. The driver software provides the interface between the API Library and the actual 16AI32SSC1M
hardware. The API Library and driver interfaces are based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms | Description

ADC Analog-to-Digital Converter

API Application Programming Interface
BMDMA | Block Mode DMA

DMA Direct Memory Access

DMDMA | Demand Mode DMA

GSC General Standards Corporation

PCI Peripheral Component Interconnect
PCle PCI Express

PMC PCI Mezzanine Card

PIO Programmed 1/0O

PMC PCI Mezzanine Card

RAG Rate-A Generator

RBG Rate-B Generator

XMC Express Mezzanine Card

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

This is a shortcut representation of the 16AI32SSC1M installation directory or any of its
subdirectories.

16AI32SSCIM | This is used as a general reference to any device supported by this driver.

API Library This is a library that provides application-level access to 16A132SSC1M hardware.

Application This is a user mode process, which runs in user space with user mode privileges.

Driver This is the 16AI32SSC1IM device driver, which runs in kernel space with kernel mode
privileges.

Library This is usually a general reference to the API Library.

1.4. Software Overview
1.4.1. Basic Software Architecture

This section describes the general architecture for the basic components that comprise 16AI32SSC1M applications.
The overall architecture is illustrated in Figure 1 below.

8
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

16AI32SSC1M

Application
ai32sscim_init()

¢ ai32ssclm_open()
ai32sscim_close()

. 16AI32SSC1M . . . ai32ssclm_ioctl()
Application Level API Library -«— lib16ai32ssclm_api.so ai32sscim_read()
K | Level 16AI32SSC1M 16ai32ssc1lm.ko or /proc/16ai32ssclm  Informational
ermelLeve Device Driver 16ai32sscim.o /dev/16ai32ssc1lm.0 Device 0
/dev/16ai32ssclm.1l Device 1
¢ /dev/16ai32ssc1lm.X Device X

16AI32SSC1M

Hardware Level Boards

Figure 1 Basic architectural representation.
1.4.2. API Library

The primary means of accessing 16AI32SSC1M boards is via the 16 AI132SSC1M API Library. This library forms a
layer between the application and the driver. Additional information is given in section 3.2.3 (page 17). With the
library, applications are able to open and close a device and, while open, perform 1/O control and read operations.

1.4.3. Device Driver

The device driver is the host software that provides a means of communicating directly with 16A132SSC1M
hardware. The driver executes under control of the operating system and runs in Kernel Mode as a Kernel Mode
device driver. The driver is implemented as a standard dynamically loadable Linux device driver written in the C
programming language. While applications can access the driver directly without use of the API Library, it is
recommended that all access is made through the library.

1.5. Hardware Overview

The 16AI32SSC1M is a high-performance, 16-bit analog input board that incorporates up to 32 input channels. The
host side connection is PCI based and the form factor is according to the model ordered. The board is capable of
acquiring data at up to 1M samples per second over each channel. Internal clocking permits sampling rates from 1M
samples per second down to less than one sample per second. Onboard storage permits data buffering of up to 256K
samples, for all channels collectively, between the cable interface and the PCI bus. This allows the 16A132SSC1M
to sustain continuous throughput from the cable interface independent of the PCI bus interface. The 16A132SSC1M
also permits multiple boards to be synchronized so that all boards sample data in unison. In addition, the board
includes autocalibration capability.

1.6. Reference Material

The following reference material may be of particular benefit in using the 16AI32SSC1M. The specifications
provide the information necessary for an in depth understanding of the specialized features implemented on this
board.

e The applicable 16AI32SSC1M User Manual from General Standards Corporation.

e The PCI9056 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

9
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA
Phone: 1-800-759-3735

WERB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE. txt in the root installation directory.

1.8. Cautionary Notes

WARNING: Reading device data should not be performed while using the Low Latency Read
IOCTL service (section 4.8, page 44). Interrupts are disabled while the service is active and would
interfere with BMDMA and DMDMA operations. Refer to section 8.3, page 59 for additional
information.

10
General Standards Corporation, Phone: (256) 880-8787


http://www.plxtech.com/

16AI132SSC1M, Linux Device Driver, User Manual

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 6.x, 5.x, 4., 3., 2.6, 2.4 and 2.2 running on a PC
system with one or more x86 processors. This release of the driver supports the below listed kernels.

| Kernel | Distribution |

6.2.9 | Red Hat Fedora Core 38
6.0.7 | Red Hat Fedora Core 37

5.17.5 | Red Hat Fedora Core 36
5.14.10 | Red Hat Fedora Core 35
5.11.12 | Red Hat Fedora Core 34
5.8.15 | Red Hat Fedora Core 33
5.6.6 | Red Hat Fedora Core 32
5.3.7 | Red Hat Fedora Core 31
5.0.9 | Red Hat Fedora Core 30

4.18.16 | Red Hat Fedora Core 29
4.16.3 | Red Hat Fedora Core 28
4.13.9 | Red Hat Fedora Core 27
4.11.8 | Red Hat Fedora Core 26
4.8.6 | Red Hat Fedora Core 25
455 | Red Hat Fedora Core 24
4.2.3 | Red Hat Fedora Core 23
4.0.4 | Red Hat Fedora Core 22

3.17.4 | Red Hat Fedora Core 21
3.11.10 | Red Hat Fedora Core 20
3.9.5 | Red Hat Fedora Core 19
3.6.10 | Red Hat Fedora Core 18
3.3.4 | Red Hat Fedora Core 17
3.1.0 | Red Hat Fedora Core 16

2.6.38 | Red Hat Fedora Core 15
2.6.35 | Red Hat Fedora Core 14
2.6.33 | Red Hat Fedora Core 13
2.6.31 | Red Hat Fedora Core 12
2.6.29 | Red Hat Fedora Core 11
2.6.27 | Red Hat Fedora Core 10
2.6.25 | Red Hat Fedora Core 9
2.6.23 | Red Hat Fedora Core 8
2.6.21 | Red Hat Fedora Core 7
2.6.18 | Red Hat Fedora Core 6
2.6.15 | Red Hat Fedora Core 5
2.6.11 | Red Hat Fedora Core 4
2.6.9 | Red Hat Fedora Core 3

| 2.4.18 | Red Hat 8.0 |

NOTE: Some older kernel versions are supported (the sources are maintained), but are not tested.

NOTE: While only Red Hat Fedora distributions are listed, numerous other distributions are
supported and have been tested on an as needed basis.

11
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

NOTE: The driver will have to be built before being used as it is provided in source form only.

NOTE: The driver has not been tested with a non-versioned kernel.

NOTE: The driver is designed for SMP support, but has not undergone SMP specific testing.
2.1.1. 32-bit Support Under 64-bit Environments

This driver supports 32-bit applications under 64-bit environments. The availability of this feature in the kernel
depends on a 64-bit kernel being configured to support 32-bit application compatibility. Additionally, 2.6 kernels
prior to 2.6.11 implemented 32-bit compatibility in a way that resulted in some drivers not being able to take
advantage of the feature. (In these kernels a driver’s IOCTL command codes must be globally unique. Beginning
with 2.6.11 this requirement has been lifted.) If the driver is not able to provide 32-bit support under a 64-bit kernel,
the “32-bit support” field inthe /proc/16ai32ssclm file will be “no”.

2.2. The /proc/ File System

While the driver is running, the text file /proc/16ai32ssclm can be read to obtain information about the driver
and the boards it detects. Each file entry includes an entry name followed immediately by a colon, a space character,
and the entry value. Below is an example of what appears in the file, followed by descriptions of each entry.

version: 1.4.111.50
32-bit support: yes
boards: 1

models: 16AI32SSC1M

Entry Description

version This gives the driver version number in the form x . x.x . x.

5

This reports the driver’s support for 32-bit applications. This will be either “yes” or “no’

32-bit t . .
++ SUPPOTE | g0 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.
This gives a comma separated list of the basic model number for each board the driver
models detected. The model numbers are listed in the same order that the boards are accessed via

the API Library’s open function.

2.3. File List

This release consists of the below listed primary files. The archive content is described in following subsections.

File Description
16ai32ssclm.linux.tar.gz | This archive contains the driver, the API Library and all related files.
16ai32ssclm linux um.pdf | Thisisa PDF version of this user manual, which is included in the archive.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory
structure is created and populated with the respective files.

Directory Description
16ai32sscim/ This is the driver root directory. It contains the documentation, the Overall Make Script
(section 2.7, page 13) and the below listed subdirectories.
../api/ This directory contains the API Library source files (section 3.2.3, page 17).
This directory contains the source files for the code samples given in this document (section 6,
../docsrc/
page 57).
12

General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

../driver/ This directory contains the device driver source files (section 5, page 53).
../include/ This directory contains the header files for the various libraries.
../1ib/ This directory contains all of the libraries built from the installed sources.
This directory contains the sample application subdirectories and all of their corresponding
../samples/ . .
source files (section 9, page 61).
Jutils/ This directory contains the source files for the utility libraries used by the sample applications

(section 7, page 58).

2.5. Installation

Perform installation following the below listed steps. This installs the device driver, the API Library and all related
sources and documentation.

1. Create and change to the directory where the files are to be installed, such as /usr/src/linux/drivers/.
(The path name may vary among distributions and kernel versions.)

2. Copy the archive file 16ai32ssclm.linux.tar.gz into the current directory.
3. Issue the following command to decompress and extract the files from the provided archive. This creates the
directory 16ai32ssclm in the current directory, and then copies all of the archive’s files into this new

directory.

tar -xzvf 16ai32ssclm.linux.tar.gz

2.6. Removal

Perform removal following the below listed steps. This removes the device driver, the API Library and all related
sources and documentation.

NOTE: The following steps may require elevated privileges.
1. Shutdown the driver as described in section 5.6 (page 56).

2. Change to the directory where the driver archive was installed, which may have been
/usr/src/linux/drivers/. (The path name may vary among distributions and kernel versions.)

3. Issue the below command to remove the driver archive and all of the installed driver files.
rm -rf 16ai32ssclm.linux.tar.gz 16ai32ssclm
4. lIssue the below command to remove all of the installed device nodes.
rm -f /dev/16ai32ssclm.*
5. If the automatic startup procedure was adopted (section 5.3.2, page 54), then edit the system startup script

rc.local and remove the line that invokes the 16AI32SSCIM’s start script. The file rc.local should
be located inthe /etc/rc.d/ directory.

2.7. Overall Make Script

An Overall Make Script is included in the root installation directory. Executing this script will perform a make for
all build targets included in the release. The script also loads the driver and copies the API Library to /usr/1ib/.
The script is named make all. Follow the below steps to perform an overall make and to load the driver.

13
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

NOTE: The following steps may require elevated privileges.
1. Change to the driver root directory (../16ai32ssclm/).
2. Remove existing build targets using the below command. This does not unload the driver.
./make _all clean

3. Issue the following command to make all archive targets and to load the driver.

./make all

2.8. Environment Variables

Some build environments may require compiler or linker options not present in the provided make files. To
accommodate local environment specific requirements, the provided make files incorporate support for the
following set of GSC specific environment variables.

2.8.1. GSC_API_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the API Library. The compiler used by the API Library make file is “gcc”. The content of this environment variable
is noted in the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in
the table refers to the contents of the environment variable. This environment variable has no effect on compiling
any other distributed source files or linking of any object files.

. == Compiling: init.c
:)Jrng(re:mted == Compiling: ioctl.c
Pty == Compiling: open.c
. == Compiling: init.c (added '"xxx')
Bg{'gﬁ atnd == Compiling: ioctl.c (added 'xxx')
PY | == Compiling: open.c (added 'xxx')

2.8.2. GSC_API_LINK FLAGS

This environment variable accommodates adding linker command line options when linking object files for the API
Library. The linker used by the API Library make file is “1d”. The content of this environment variable is noted in
the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in the table
refers to the contents of the environment variable. This environment variable has no effect on compiling of any
source files or linking of any other object files.

Undefined | ____ 1inking: ../lib/libl6ai32ssclm api.so

or Empty _

Definedand | ____ . .. . , , . . : '
Not Empty Linking: ../lib/1libl6ai32ssclm api.so (added '"xxx')

2.8.3. GSC_LIB_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the utility libraries. The compiler used by the utility library make files is “gcc”. The content of this environment
variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The
“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on
compiling any other distributed source files or linking of any object files.

14
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

. == Compiling: close.c
L‘Jrngf:lmted == Compiling: init.c
Pty == Compiling: ioctl.c
== Compiling: close.c added ' !
Definedand | __ p-l l g- C ( Y XX}? )
Not Empt == Compiling: init.c (added 'xxx')
P | Compiling: ioctl.c (added '"xxx'")

2.8.4.GSC_LIB_LINK FLAGS

This environment variable accommodates adding linker command line options when linking object files for the
utility libraries. The linker used by the utility library make files is “1d”. The content of this environment variable is
noted in the make files’ output to the screen. The table below shows a portion of the screen output. The “xxx” in the
table refers to the contents of the environment variable. This environment variable has no effect on compiling of any
source files or linking of any other object files.

Undefined ==== Linking: ../lib/16ai32ssclm utils.a

or Empty —

Definedand | ____ 1:,ying: ../1ib/16ai32ssclm utils.a  (added 'xxx')
Not Empty —

2.8.5.GSC_APP_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the sample applications. The compiler used by the sample application make files is “gcc”. The content of this
environment variable is noted in the make files’ output to the screen. The table below shows a portion of the screen
output. The “xxx” in the table refers to the contents of the environment variable. This environment variable has no
effect on compiling any other distributed source files or linking of any object files.

Undefined == Compiling: main.c

or Empty == Compiling: perform.c

Definedand | == Compiling: main.c (added "xxx')

Not Empty | == Compiling: perform.c (added 'xxx')

2.8.6. GSC_APP_LINK FLAGS

This environment variable accommodates adding linker command line options when linking object files for the
sample applications. The linker used by the sample application make files is “gcc”. The content of this environment
variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The
“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on
compiling of any source files or linking of any other object files.

Undefined L 1 ] o

or Empty = Linking: id

Definedand | ____ . .. . ' :

Not Empty | Linking: id (added 'xxx')
15

General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

3. Main Interface Files

This section gives general information on the suggested device interface files to use when developing
16AI132SSC1M based applications.

3.1. Main Header File

Throughout the remainder of this document references are made to various header files included as part of the
16AI32SSC1M driver installation. For ease of use it is suggested that applications include only the single header file
shown below rather than individually including those headers identified separately later in this document. Including
this header file pulls in all other pertinent 16 AI32SSC1M specific header files. Therefore, sources may include only
this one 16A132SSC1M header and make files may reference only this one 16 AlI32SSC1M include directory.

Description | File Location
Header File | 16ai32ssclm main.h | ../include/

3.2. Main Library File

Throughout the remainder of this document references are made to various statically linkable libraries included as
part of the 16 AI32SSC1M driver installation. For ease of use it is suggested that applications link only the single
library file shown below rather than individually linking those libraries identified separately later in this document.
Linking this library file pulls in all other static libraries included with the driver. Therefore, make files may
reference only this one 16 AI32SSC1M static library and only this one 16A132SSC1M library directory.

Description | File Location
16ai32ssclm main.a
16ai32ssclm multi.a ~/1ib/

Static Library

NOTE: For applications using the 16AI32SSC1M and no other GSC devices, link the
16ai32ssclm main.a library. For applications using multiple GSC device types, link the
xxxx_main.a library for one of the devices and the xxxx multi.a library for the others.
Linking multiple xxxx main.a libraries may likely produce link errors due to duplicate
symbols being defined. While it may make little or no difference, it is recommended that one
choose the xxxx main.a library from the driver with the largest number in positions three
(x.x.X.x.X) and/or four (x.x.x.X.x) in the driver release version number.

NOTE: The 16AI32SSC1M API Library is implemented as a shared library and is thus not linked
with the 16AI32SSC1IM Main Library. The API Library must be linked with applications by
adding the argument ~-116ai32ssclm_ api to the linker command line.

3.2.1. Build

The main library is built via the Overall Make Script (section 2.7, page 13). However, the main library can be built
separately following the below steps.

1. Change to the directory where the main library resides (.../1ib/).
2. Remove existing build targets using the below command.
make clean

3. Build the main library by issuing the below command.

make

16
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

3.2.2. System Libraries

In addition to linking the static library named above, as well as the API Library shared object file, applications may
need to also link in additional system libraries as noted below.

Library gcc Link Flag
Math -1m

POSIX Thread | -1pthread
Real Time -1rt

3.2.3. Shared Object Script: Build the Main Libraries as Shard Object Files

The main libraries built via the Overall Make Script (section 2.7, page 13) are static library files. Some applications
however, require that the Main Libraries be accessed as shared object files. Generating shared object files require
that all of the static libraries be recompiled for this purpose and linked as .so files. This is done using the Shared
Object Script named below. When run, the script invokes the Overall Make Script to clean all existing build targets,
deletes the two shared object files named below, if they exist, defines an environment variable used by all of the
static library make files, invokes the Overall Make Script again to rebuild all existing build targets then invokes
make on the library make file (.../1ib/makefile) to link the shared object files. The required manual steps are as
follows.

1. Change to the directory where the main library files reside (.../1ib/).
2. Execute the below script.
./static_to shared.sh
Running the above-named Shared Object Script produces the files given in the table below. These shared object files

fulfill the same purpose as the similarly named static libraries as described in the note under section 3.2 above. Refer
to that note when selecting which shared object file to use.

Description File Location
libl6ai32ssclm main.so
Shared Object Files | 1ibl6ai32ssclm multi.so | ../1ib/
libl6ai32ssclm all.so ¥

+ This library includes all generated libraries, including the API Library shared object file content.

The shared object files can be linked via two different methods. In the first method, the application linker command
line can explicitly name the file in the same manner as is done were it a static library. This is the method used by the
sample applications, all of which use the 16AI32SSC1M API Library, which itself is a shared object file. This file is
also found in the ../1ib/ subdirectory. In the second method, the .so files are copied to the /usr/lib/
subdirectory and are referenced on the application’s liker command line as given in the table below.

Library gcc Link Flag
libl6ai32ssclm main.so -116ai32ssclm main
1ibl6ai32ssclm multi.so | ~116ai32ssclm multi
libl6ai32ssclm all.sof | -116ai32ssclm all

+ This library includes all generated libraries, including the API Library shared object file content.

17
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

4. API Library

The 16AI132SSC1M API Library is the software interface between user applications and the 16AI132SSC1M device
driver. The interface is accessed by including the header file 16ai32ssclm_api.h.

NOTE: Contact General Standards Corporation if additional library functionality is required.
4.1. Files

The library files are summarized in the table below.

Description | File Location

Source Files | *.c, *.h ... ../api/

Header File | 16ai32ssclm api.h ../include/
WAE

Library File | 1ibl6ai32ssclm api.so /ési%ib/ :

+ The shared object library is automatically copied to /usr/1ib/ when it is built.

4.2. Build

The API Library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the
below steps.

NOTE: The following steps may require elevated privileges.
1. Change to the directory where the library sources are installed (.../api/).
2. Remove existing build targets using the below command.
make clean

3. Compile the source files and build the library by issuing the below command. This step copies the API Library
fileto /usr/1ib/.

make

4.3. Library Use

The library is used at application compile time, at application link time and at application run time. At compile time
include the below listed header file in each source file using a component of the Library interface. Also, edit the
include file search path to locate the header file in the below listed directory. At link time the Library’s shared object
file is linked via the linker command line. This can be done by naming the .so file explicitly or by adding the below
linker command line argument. At run time the library is found in the directory /usr/1ib/. (The shared object
file is automatically copied to /usr/1ib/ when itis built.)

Description File Location Linker Argument
Header File 16ai32ssclm api.h ../include/

. . . . . ./1ib/
Shared Object Library | 1ibl6ai32ssclm_api.so Just/1ib/ | ~116ai32sscim api

4.4. Macros

The API Library and driver interfaces include the following macros, which are defined in 16ai32ssclm.h.

18
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

4.4.1. I0CTL Services

The IOCTL macros are documented in section 4.7 (page 24).

4.4.2. Registers

The following gives the complete set of 16AI32SSC1M registers.

4.4.2.1. GSC Registers

The following table gives the complete set of GSC specific 16AI32SSC1M registers. Please note that the set of
registers supported by any given device may vary according to model and firmware version. For the set of supported
registers and their detailed definitions refer to the appropriate 16A132SSC1M User Manual.

NOTE: Refer to the output of the “id” sample application (.../1d/) for a complete list of the
registers supported by the device being accessed.

Macro

Description

AI32SSCIM GSC ACAR

Active Channel Assignment Register (ACAR)

AI32SSCIM GSC ARWR

Auxiliary R/W Register (ARWR)

AI325SCIM GSC ASIOCR

Auxiliary Sync 1/0 Control Register (ASIOCR)

AI32SSCIM GSC AVR

Autocal Values Register (AVR)

AI32SSCIM GSC BCFGR

Board Configuration Register (BCFGR)

AI32SSCIM GSC BCTLR

Board Control Register (BCTLR)

AI32SSCIM GSC BSTSR

Burst Size Register (BSTSR)

AI32SSCIM GSC BUFSR

Buffer Size Register (BUFSR)

AI32SSCIM GSC IBCR

Input Buffer Control Register (IBCR)

AI32SSCIM GSC ICR

Interrupt Control Register (ICR)

AI32SSCIM GSC IDBR

Input Data Buffer Register (IDBR)

AI32SSCIM GSC LLCR

Low Latency Control Register (LLCR)

AI32SSCIM GSC RAGR

Rate-A Generator Register (RAGR)

AI32SSCIM GSC RBGR

Rate-B Generator Register (RBGR)

AI32SSC1M GSC SMLWR

Scan Marker Lower Word Register (SMLWR)

ATI32SSCIM GSC_ SMUWR

Scan Marker Upper Word Register (SMUWR)

AI32SSCIM GSC SSCR

Scan & Sync Control Register (SSCR)

These registers are specific to the Time Tag feature.

Macro

Description

AI32SSCIM GSC_TTCOOTRR

AI32SSCIM GSC TTC31TRR

Time Tag Channel Threshold/Reference Registers for channels 00 through 31
(TTCOOTRR ... TTC31TRR)

AI325SCIM GSC TTACMR

Time Tag Active Channel Mask Register (TTACMR)

AT32SSCIM GSC TTBSR

Time Tag Burst Size Register (TTBSR)

AT32SSCIM GSC TTCLR

Time Tag Counter Lower Register (TTCLR)

AI32SSCIM GSC TTCR

Time Tag Configuration Register (TTCR)

AI325SCIM GSC TTCRMR

Time Tag Constant Reference Mask Register (TTCRMR)

ATI32SSCIM GSC TTCUR

Time Tag Counter Upper Register (TTCUR)

AI32SSC1M GSC TTRDR

Time Tag Rate Divider Register (TTRDR)

19

General Standards Corporation, Phone: (256) 880-8787




16AI132SSC1M, Linux Device Driver, User Manual

4.4.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of the PCI
register identifiers refer to the driver header file gsc pci9056.h, which is automatically included via
16ai32ssclm api.h

4.4.2.3. PLX Feature Set Registers

Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX
register identifiers refer to the driver header file gsc pci9056.h, which is automatically included via
16ai32ssclm api.h

4.5. Data Types

The data types used by the API Library are described with the IOCTL services with which they are used. For
additional information refer to section 4.7 (page 24).

4.6. Functions

The interface includes the following functions. The return values reflect the completion status of the requested
operation. A return value less than zero always reflects an error condition. The table below summarizes the error
status values. For the I/O function, read, non-negative return values reflect the number of bytes transferred between
the application and the interface. A value equal to the requested transfer size indicates complete success. Return
values less than the requested transfer size indicate that the I/O timeout expired. For the other API function calls a
return value of zero indicates success.

Return Value | Description
<0 This is the value “ (-errno)” (see errno.h).

4.6.1. ai32ssc1lm_close()

This function is the entry point to close a connection made via the API’s open call (section 4.6.4, page 22). The
device is put in an initialized state before this call returns.

Prototype

int ai32ssclm close(int fd);

Argument | Description

fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
Return Value | Description
0 The operation succeeded.
<0 An error occurred. See error value description above.
Example

#include <stdio.h>
#include "16ai32ssclm dsl.h"
int ai32ssclm _close dsl (int £fd)

{

int errs;

20
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

int ret;
ret = ai32ssclm close (fd);

if (ret)
printf ("ERROR: ai32ssclm close() returned %$d\n", ret);

errs = ret 21 : 0;
return (errs) ;

4.6.2. ai32ssc1im_init()

This function is the entry point to initializing the 16AI32SSC1M API Library and must be the first call into the
Library. This function may be called more than once, but only the first successful call actually initializes the library.
Subsequent calls perform no operation at all. All other API calls return a failure status when the API Library is not
initialized.

Prototype

int ai32ssclm _init (void);

Return Value | Description
0 The operation succeeded.
<0 An error occurred. See error value description above.

Example
#include <stdio.h>
#include "16ai32ssclm dsl.h"

int ai3Z2ssclm init dsl(void)
{

int errs;

int ret;

ret = ai32ssclm _init();

if (ret)
printf ("ERROR: ai32ssclm init () returned %d\n", ret);

errs = ret 21 : 0;
return (errs) ;

}
4.6.3. ai32ssclm_ioctl()

This function is the entry point to performing setup and control operations on a 16AI32SSC1M. This function
should only be called after a successful open of the respective device. The specific operation performed varies
according to the request argument. The request argument also governs the use and interpretation of the arg
argument. The set of supported options for the request argument consists of the IOCTL services supported by the
driver, which are defined in section 4.7 (page 24).

21
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

NOTE: IOCTL operations are not supported for an open on device index -1.
Prototype

int ai32ssclm ioctl (int fd, int request, void* arq);

Argument | Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
request | This specifies the desired operation to be performed (section 4.7, page 24).
arg This is specific to the IOCTL operation specified by the request argument.
Return Value | Description
0 The operation succeeded.
<0 An error occurred. See error value description above.
Example

#include <stdio.h>
#include "16ai32ssclm dsl.h"
int ai32ssclm ioctl dsl(int fd, int request, void* arg)
{
int errs;
int ret;

ret = ai3d2ssclm ioctl(fd, request, arg);

if (ret)
printf ("ERROR: ai32ssclm ioctl() returned %d\n", ret);

errs =ret 2 1 : 0O;
return (errs) ;

}

4.6.4. ai32ssc1lm_open()

This function is the entry point to open a connection to a 16AI32SSC1M board. Before returning, the initialize
IOCTL service is called to reset all hardware and software settings to their defaults.

Prototype

int ai32ssclm _open(int device, int share, int* fd);

Argument | Description

device This is the zero-based index of the 16 AI32SSCIM to access. T

Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

h L. . .
share Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).
The device handle is returned here. The pointer cannot be NULL. Values returned are as
follows.
fd

Value | Description
>= 0 | This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

22
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

+ The index value —1 can also be given to acquire driver information (section 2.2, page 12).

Return Value | Description

0 The operation succeeded.

<0 An error occurred. See error value description above.
Example

#include <stdio.h>
#include "16ai32ssclm dsl.h"
int ai32ssclm open dsl(int device, int share, int* £fd)
{
int errs;
int ret;

ret = ai32ssclm open (device, share, £fd);

if (ret)
printf ("ERROR: ai32Zssclm open () returned $d\n", ret);

errs =ret 2 1 : 0;
return (errs) ;

}
4.6.4.1. Access Modes
The value of the share argument determines the device access mode, as follows.
Shared Access Mode:
Shared Access Mode allows multiple applications to access the same device simultaneously. In this mode, the first
successful open request returns with the device in an initialized state. Subsequent successful Shared Access Mode
open requests do not affect the state of the device. Once opened in Shared Access Mode, the device access remains
in this mode until all Shared Access Mode accesses release the device with a close request.
Exclusive Access Mode:
Exclusive Access Mode allows a single application to acquire exclusive access to a device. In this mode, a
successful open request returns with the device in an initialized state. While open in this mode all subsequent open
requests will fail regardless of the access mode requested. Once opened in Exclusive Access Mode, the device
access remains in this mode until released by the application with a close request.
4.6.5. ai32ssc1m_read()

This function is the entry point to reading data from an open connection. The function reads up to bytes bytes.

NOTE: If an open was performed using an index of -1, then read requests will acquire
information from the driver (section 2.2, page 12) rather than data from a device.

NOTE: For additional information refer to the Data Transfer Modes section (section 8.3, page
59).

23
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

Prototype

int ai32ssclm _read(int fd, void* dst, size t bytes);

Argument | Description

fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).

dst The data read is put here.

This is the desired number of bytes to read. When reading from a device, this must be a
multiple of four (4).

bytes

Return Value | Description

The operation succeeded. When reading from a device, a value less than bytes

Otobytes indicates that the 1/0 timeout period lapsed (section 4.7.45, page 39) before the entire
request could be satisfied.
<0 An error occurred. See error value description above.
Example

#include <stdio.h>
#include "16ai32ssclm dsl.h"
int ai32ssclm read dsl(int fd, void* dst, size t bytes, size t* gty)
{ int errs;
int ret;

ret = ai32ssclm read(fd, dst, bytes);

if (ret < 0)
printf ("ERROR: ai32ssclm read() returned %d\n", ret);

if (gty)
gty[0] = (ret < 0) 2?2 0 : (size t) ret;

errs = (ret < 0) 21 : 0;
return (errs) ;
}
4.7. IOCTL Services

The 16AI32SSC1IM API Library and device driver implement the following IOCTL services. Each service is
described along with the applicable ai32ssclm ioctl () function arguments.

4.7.1. AI32SSCIM_IOCTL_ADC_CLK_SRC
This service configures the source for the A/D sample clock.

Usage

Argument | Description
request | AI32SSCIM IOCTL ADC CLK SRC

arg s32%*

24
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI325SCIM _ADC_CLK_SRC_BCR | This refers to the Board Control Register’s Input Sync bit
AI325SCIM ADC_CLK_SRC_EXT | This refers to the external clock input signal.

AI325SCIM ADC_CLK_SRC_RAG | This refers to the Rate-A Generator output.

AI325SCIM ADC_CLK_SRC_RBG | This refers to the Rate-B Generator output.

4.7.2. AI32SSC1M_IOCTL_ADC_ENABLE
This service enables or disables the ADC clocking process.

Usage

Argument | Description
request | AI32SSCIM IOCTL ADC ENABLE
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
AI32SSCIM ADC ENABLE NO | This disables the ADC process.
AI32SSCIM ADC_ENABLE_YES | This enables the ADC process.

4.7.3. AI32SSCIM_IOCTL_AI_BUF_CLEAR

This service immediately clears the current content from the input buffer. It also clears the associated overflow and
underflow status bits. This service does not halt sampling.

Usage

Argument | Description
request | AI32SSCIM IOCTL AI BUF CLEAR

arg Not used.

4.7.4. AI32SSC1M_IOCTL_AI_BUF_LEVEL
This service returns the current number of 32-bit data items in the input buffer.

Usage

Argument | Description
request | AI32SSCIM IOCTL AI BUF LEVEL
arg s32%*

The value returned will be from zero to 256K (262,144).
4.7.5. AI32SSCIM_IOCTL_AI_BUF_OVERFLOW

This service operates on the Input Buffer Overflow status.

25
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

Usage

Argument | Description
request | AI32SSCIM IOCTL AI BUF OVERFLOW
arg s32%*

Valid argument values supplied to the service are as follows.

Value Description

-1 Retrieve the current state.
AI32SSCIM AI BUF OVERFLOW CLEAR | Clear the overflow status.
AI32SSCIM AI BUF OVERFLOW IGNORE | Ignore the current status.

The current state is reported as one of the following values.

Value Description
AI32SSCIM AI BUF_OVERFLOW_NO | The buffer has experienced an overflow condition.
AI32SSCIM_AI_BUF_OVERFLOW_YES | The buffer has not experienced an overflow condition.

4.7.6. AI32SSC1M_IOCTL_AIl_BUF_THR_LVL
This service configures the input buffer threshold level.

Usage

Argument | Description
request | AI32SSCIM IOCTL AI BUF THR LVL
arg s32%*

Valid argument values are from zero to 0x3FFFF, and -1. A value of -1 will return the current threshold level
setting.

4.7.7. AI32SSC1IM_IOCTL_AI_BUF_THR_STS

This service retrieves the current input buffer threshold level status, which indicates whether or not there are more
than Threshold Level number of 32-bit data items in the input buffer.

Usage

Argument | Description
request | AI32SSCIM IOCTL AI BUF THR STS
arg s32%*

The current status is reported as one of the following values.

Value Description

The buffer contains Threshold Level number of data

AI32SSC1M AI BUF THR STS CLEAR | .
- = - - - items, or fewer.

The buffer contains more than Threshold Level number of

AI32SSC1M AI BUF THR STS SET :
- - - - - data items.

4.7.8. AI32SSC1IM_IOCTL_AI_BUF_UNDERFLOW

This service operates on the Input Buffer Underflow status.

26
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

Usage

Argument | Description

request | AI32SSC1M IOCTL AI BUF UNDERFLOW

arg s32%*

Valid argument values supplied to the service are as follows.

Value

Description

-1

Retrieve the current state.

AI32SSCIM AI BUF UNDERFLOW CLEAR Clear the underflow status.

AT32SSCIM AT BUF UNDERFLOW IGNORE | Ignore the current status.

Valid argument values are as follows.

Value

Description

AI32SSCIM_AI_BUF_UNDERFLOW_NO | The buffer has experienced an underflow condition.

AI32SSCIM_AI_BUF_UNDERFLOW_YES | The buffer has not experienced an underflow condition.

4.7.9. AI32SSC1M_IOCTL_AI_MODE

This service configures the board’s Analog Input Mode.

Usage

Argument | Description

request | AI32SSCIM IOCTL AI MODE

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI32SSCIM AI MODE DIFF | Configure the input channels for differential operation.

AI32SSCIM AI MODE_VREF | Connect the input channels to the onboard VREF signal.

AI32SSCIM AI MODE _ZERO | Connect the input channels to the onboard zero voltage signal.

4.7.10. AI32SSC1M_IOCTL_AI_RANGE

This service configures the analog input voltage range.

Usage

Argument | Description

request | AI32SSCIM IOCTL AI RANGE

arg s32*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSCIM AI RANGE 1 25V

Set the input voltage range to +1.25 volts.

AI32SSCIM AI RANGE 2 5V

Set the input voltage range to +2.5 volts.

27

General Standards Corporation, Phone: (256) 880-8787




16AI132SSC1M, Linux Device Driver, User Manual

AI32SSCIM AI_RANGE_5V Set the input voltage range to +5 volts.
AT32SSCIM _AI RANGE_10V Set the input voltage range to +10 volts.

4.7.11. AI32SSC1IM_IOCTL_AUTOCAL

This service initiates an autocalibration cycle. Most configuration setting should be made before running an
autocalibration cycle. The driver waits for the operation to complete before returning.

NOTE: This service overwrites the current interrupt selection in order to detect the
Autocalibration Done interrupt.

NOTE: When an error is encountered, the service writes a brief, descriptive error message to the
system log.

Usage

Argument | Description
request | AI32SSCIM IOCTL AUTOCAL

arg Not used.

4.7.12. AI32SSC1M_IOCTL_AUTOCAL_STATUS
This service retrieves the status of the last autocalibration cycles.

Usage

Argument | Description
request | AI32SSCIM IOCTL AUTOCAL STATUS

arg s32%*

Returned argument values are as follows.

Value Description

AT32SSCIM AUTOCAL STATUS BUSY | The autocalibration is still in progress.
AI32SSCIM AUTOCAL STATUS FAIL | The autocalibration failed.
AI32SSCIM AUTOCAL STATUS PASS | The autocalibration passed.

4.7.13. AI32SSC1IM_IOCTL_AUX_CLK_MODE
This service configures the clock signal on the board’s auxiliary signal connector.

Usage

Argument | Description
request | AI32SSCIM IOCTL AUX CLK MODE
arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
AI32SSCIM AUX CLK MODE DISABLE | This disables the signal.

AT32SSCIM AUX CLK_MODE_INPUT This configures the signal as an input.
AI328SCIM AUX CLK MODE_OUTPUT | This configures the signal as an output.

28
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

4.7.14. AI32SSCIM_IOCTL_AUX_IN_POL

This service configures the polarity of the input signals on the board’s auxiliary signal connector.

Usage

Argument | Description

request | AI32SSC1M IOCTL AUX IN POL

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI32SSCIM AUX IN POL HI 2 LO | Clocking occurs on high-to-low transitions.

AI32SSCIM AUX IN POL _LO_2 HI | Clocking occurs on low-to-high transitions.

4.7.15. AI32SSCIM_IOCTL_AUX_NOISE

This service configures the noise sensitivity setting for signals on the board’s auxiliary signal connector.

Usage

Argument | Description

request | ATI32SSCIM IOCTL AUX NOISE

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI32SSCIM AUX NOISE_HIGH | This refers to high noise sensitivity.

AI32SSCIM AUX NOISE_LOW | This refers to low noise sensitivity.

4.7.16. AI32SSCIM_IOCTL_AUX_OUT_POL

This service configures the polarity of the output signals on the board’s auxiliary signal connector.

Usage

Argument | Description

request | AI32SSCIM IOCTL AUX OUT POL

arg s32*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSCIM AUX OUT POL HI PULSE

The active state is generated via high going pulses.

AI32SSCIM AUX OUT POL LOW PULSE

The active state is generated via low going pulses.

4.7.17. AI32SSCIM_IOCTL_AUX_SYNC_MODE

This service configures the sync signal on the board’s auxiliary signal connector.

29

General Standards Corporation, Phone: (256) 880-8787




16AI132SSC1M, Linux Device Driver, User Manual

Usage
Argument | Description
request | AI32SSCIM IOCTL AUX SYNC MODE
arg s32%*

Valid argument values are as follows.

Description

Retrieve the current setting.

This disables the signal.

This configures the signal as an input.
This configures the signal as an output.

Value

-1
AI32SSCIM AUX SYNC MODE DISABLE
AI32SSCIM AUX SYNC MODE INPUT
AI32SSCIM AUX SYNC MODE OUTPUT

4.7.18. AI32SSCIM_IOCTL_BURST_BUSY

This service reports on the board’s burst activity.

Usage
Argument | Description
request | AI32SSCIM IOCTL BURST BUSY
arg s32%*

The value returned will be one of the following.

Value
AI32SSC1M BURST BUSY ACTIVE
AI32SSC1M BURST BUSY IDLE

Description
A bursting activity is in progress.
No bursting activity is in progress.

4.7.19. AI32SSCIM_IOCTL_BURST_SIZE

This service configures the size of a single burst (the count is in scans, which is an A/D conversion of all active
channels).

Usage

Argument

Description

request

AI32SSCIM IOCTL BURST SIZE

arg

s32%*

Valid argument values are from zero to 0x80000, or -1 to retrieve the current setting.

4.7.20. AI32SSCIM_IOCTL_BURST_SYNC

This service configures the clocking source for burst operations.

Usage

Argument | Description
request | AI32SSCIM IOCTL BURST SYNC
arg s32%*

Valid argument values are as follows.

30

General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

Value

Description

-1

Retrieve the current setting.

AI328SCIM BURST SYNC BCR

Bursting is driven by the Board Control Register’s Input
Sync bit.

AI32SSCIM BURST SYNC DISABLE

Bursting is disabled.

AI328SCIM BURST SYNC EXT

Bursting is driven by the cable’s Sync Input cable signal.

AI328SCIM BURST SYNC RBG

Bursting is driven by the Rate-B Generator.

4.7.21. AI32SSC1IM_IOCTL_CHAN_ACTIVE

This service configures the selection for the number and range of active channels to scan.

Usage

Argument | Description
request | AI32SSCIM IOCTL CHAN ACTIVE
arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSCIM CHAN ACTIVE 0 1

This refers to channels zero through one.

AI32SSCIM CHAN ACTIVE 0 3

This refers to channels zero through three.

AI328SCIM CHAN ACTIVE 0 7

This refers to channels zero through seven.

AI32SSCIM CHAN ACTIVE 0 15

This refers to channels zero through 15.

AI32SSCIM CHAN ACTIVE 0 31

This refers to channels zero through 31.

AI32SSCIM CHAN ACTIVE RANGE

This refers to a user specified range of channels from a first
selection to a last selection. 1

AI32SSCIM CHAN ACTIVE SINGLE

This refers to a single, user specified channel.

+ The channel selection is specified with
4.7.24, page 32).

the service ATI32SSC1IM_IOCTL CHAN SINGLE (section

I The first channel is specified with the service AI325SC1M IOCTL CHAN FIRST (section 4.7.22,
page 31). The last channel is specified with the service AI32SSCIM IOCTL CHAN LAST (section

4.7.23, page 31).

4.7.22. AI32SSCIM_IOCTL_CHAN_FIRST

This service configures the selection of the first channel to scan when the active channel selection is set to the range
option (AI32SSC1M CHAN ACTIVE RANGE, section 4.7.21, page 31).

Usage

Argument | Description

request

AI32SSCIM IOCTL CHAN FIRST

arg s32*

Valid argument values are from zero to one less than the current last setting, or -1 to retrieve the current selection.

4.7.23. AI32SSCIM_IOCTL_CHAN_LAST

This service configures the selection of the last channel to scan when the active channel selection is set to the range
option (AI32SSC1M CHAN ACTIVE RANGE, section 4.7.21, page 31).

31

General Standards Corporation, Phone: (256) 880-8787




Usage

Valid argument values are from the current first setting to one less than the number of channels on the board, or -1

16AI132SSC1M, Linux Device Driver, User Manual

Argument | Description

request | AI32SSCIM IOCTL CHAN LAST

arg s32%*

to retrieve the current selection.

4.7.24. AI32SSC1IM_IOCTL_CHAN_SINGLE

This service configures the selection of the channel to scan when the active channel selection is set to the single

option (AI32SSC1M CHAN ACTIVE SINGLE, section 4.7.21, page 31).

Usage

Valid argument values are from zero to one less than the number of channels on the board, or -1 to retrieve the

Argument | Description

request | ATI32SSCIM IOCTL CHAN SINGLE

arg s32%*

current selection.

4.7.25. AI32SSC1IM_IOCTL_DATA_FORMAT

This service configures the data encoding format.

Usage

Argument | Description

request | ATI32SSCIM IOCTL DATA FORMAT

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSCIM DATA FORMAT 2S COMP

This refers to the Twos Compliment data format.

AI32SSC1M DATA FORMAT OFF BIN

This refers to the Offset Binary encoding format.

4.7.26. AI32SSCIM_IOCTL_DATA_PACKING

This service configures the data packing feature.

Usage

Argument | Description

request | ATI32SSCIM IOCTL DATA PACKING

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

32

General Standards Corporation, Phone: (256) 880-8787




16AI132SSC1M, Linux Device Driver, User Manual

This option disables data packing so that A/D values in the

AI32SSCIM DATA PACKING DISABLE | . oo
- — - input buffer are 32-bits wide.

This option enables data packing so that A/D values in the
input buffer are 16-bits wide.

AI32SSC1M DATA PACKING ENABLE

4.7.27. AI32SSC1IM_IOCTL_INITIALIZE

This service returns all driver interface settings for the board to the state they were in when the board was first
opened. This includes both hardware-based settings and software-based settings.

NOTE: If the initialization service returns an error status, an error message will be posted to the
system log briefly describing the error condition.

Usage

Argument | Description
request | AI32SSCIM IOCTL INITIALIZE

arg Not used.

4.7.28. AI32SSC1M_IOCTL_INPUT_SYNC

This service initiates an Input Sync operation. The driver will wait for completion, but no more than the read timeout
period. If the read timeout is zero, then the driver will wait up to one second for completion. (Refer to service
AI32SSCIM IOCTL RX IO TIMEOUT, section 4.7.45, page 39.)

Usage

Argument | Description
request | AI32SSCIM IOCTL INPUT SYNC

arg Not used.

4.7.29. AI32SSC1IM_IOCTL_IO_INV
This service configures the inversion of the cable’s clock and sync I/O signals.

Usage

Argument | Description
request | ATI32SSCIM IOCTL IO INV
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
AI32SSCIM IO _INV_HIGH | Active signals are asserted high.
AI32SSCIM IO _INV_LOW | Active signals are asserted low.

4.7.30. AI32SSCIM_IOCTL_IRQO_SEL

This service configures the interrupt source selection for interrupt number zero.

33
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

Usage
Argument | Description
request | AI32SSCIM IOCTL IRQO SEL
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI32SSCIM TIRQO_AUTOCAL_DONE | This refers to the completion of an autocalibration cycle.
AI32SSCIM IRQO_BURST_DONE This refers to the completion of an input burst.
AI32SSCIM IRQO BURST START | This refers to the beginning of an input burst.
AI32SSCIM IRQO_INIT DONE This refers to the completion of an initialization cycle.
AI32SSCIM TRQO_SYNC_ DONE This refers to the completion of a sync operation.
AI32SSCIM TIRQO_SYNC_START This refers to the beginning of a sync operation.

4.7.31. AI32SSCIM_IOCTL_IRQ1_SEL

This service configures the interrupt source selection for interrupt number one.

Usage
Argument | Description
request | AI32SSCIM IOCTL IRQ1 SEL
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI32SSCIM IRQOL IN BUF OVR UNDR This refers to _the occurrence of either an input buffer
- - - - - overflow or an input buffer underflow.

AI32SSCIM IRQL IN BUF THR H2L This refers to the input buffer threshold status being
- - - - - negated.

AI32SSCIM IRQL IN BUF THR L2H This refers to the input buffer threshold status being
- - - - - asserted.

AI32SSCIM IRQ1 NONE This disabled the interrupt.

4.7.32. AI32SSCIM_IOCTL_QUERY

This service queries the driver for various pieces of information about the board and the driver.

Usage
Argument | Description
request | AI32SSCIM IOCTL QUERY
arg s32%*

Valid argument values are as follows.

Value Description
AT32SSCIM QUERY AUTOCAL MS This r_etums_ the maximum duration of the Autocalibration
- - - cycle in milliseconds.

34

General Standards Corporation, Phone: (256) 880-8787




16AI132SSC1M, Linux Device Driver, User Manual

AI328SCIM QUERY CHANNEL MAX

This returns the maximum number of input channels
supported by the board, which may be more that the board’s
current configuration.

AI32SSC1M _QUERY CHANNEL QTY

This returns the actual number of input channels on the
current board. If the value returned is -1, then the driver was
unable to determine the number of channels.

AI32SSCIM QUERY COUNT

This returns the number of query options supported by the
IOCTL service.

AI32SSC1M QUERY DEVICE TYPE

This returns the identifier value for the board’s type. This
should be GSC DEV_TYPE 16AI32SSCIM.

AI32SSC1M QUERY FGEN MAX

This returns the maximum supported FGEN value.

AI32SSC1M QUERY FGEN MIN

This returns the minimum supported FGEN value.

AI32SSCIM QUERY FIFO SIZE

This returns the size of the input buffer in 32-bit A/D values.

AI32SSC1M QUERY FSAMP MAX

This gives the maximum Fsamp value in S/S.

AI32SSC1M QUERY FSAMP MIN

This gives the minimum Fsamp value in S/S.

AI32SSC1M QUERY INIT MS

This returns the duration of a board initialization in

milliseconds.

AI32SSCIM QUERY MASTER CLOCK

This returns the master clock frequency in hertz.

AI32SSC1M QUERY NRATE MAX

This returns the maximum supported NRATE value.

AI32SSC1M QUERY NRATE MIN

This returns the minimum supported NRATE value.

AI32SSCIM QUERY RATE GEN QTY

This returns the number of Rate Generators on the board.

Valid return values are as indicated in the above table and as given in the below table.

Value

Description

AI32SSCIM IOCTL QUERY ERROR

Either there was a processing error or the query option is
unrecognized.

4.7.33. AI32SSCIM_IOCTL_RAG_ENABLE

This service enables or disables the Rate-A Generator.

Usage

Argument | Description
request | AI32SSCIM IOCTL RAG ENABLE
arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSCIM GEN ENABLE NO

This option disables the rate generator.

AI325SCIM GEN ENABLE YES

This option enables the rate generator.

4.7.34. AI32SSCIM_IOCTL_RAG_NRATE

This service configures the NRATE divider value for the Rate-A Generator.

Usage

Argument | Description
request | AI32SSCIM IOCTL RAG NRATE
arg s32%*

35

General Standards Corporation, Phone: (256) 880-8787




16AI132SSC1M, Linux Device Driver, User Manual

Valid argument values are from 64 to OxFFFF.
4.7.35. AI32SSC1IM_IOCTL_RBG_CLK_SRC
This service configures the clock source selection for the Rate-B Generator.

Usage

Argument | Description
request | AI32SSCIM IOCTL RBG CLK SRC
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI32SSCIM RBG_CLK SRC_MASTER | This refers to the board’s master clock.

This refers to the Rate-A Generator output. This option is

AI32SSCIM RBG CLK SRC RAG -
- = = = used for rate generator cascading.

4.7.36. AI32SSC1M_IOCTL_RBG_ENABLE
This service enables or disables the Rate-B Generator.

Usage

Argument | Description
request | AI32SSCIM IOCTL RBG ENABLE
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
AI32SSCIM GEN_ENABLE NO | This option disables the rate generator.
AI32SSCIM GEN_ENABLE_YES | This option enables the rate generator.

4.7.37. AI32SSCIM_IOCTL_RBG_NRATE
This service configures the NRATE divider value for the Rate-B Generator.

Usage

Argument | Description
request | AI32SSCIM IOCTL RBG NRATE
arg s32*

Valid argument values are from 64 to OXxFFFF.
4.7.38. AI32SSC1M_IOCTL_RBG_SYNC_OUTPUT

This service enables or disables the Rate-B Generator SYNC Output option.

36
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

Usage

Argument | Description
request | AI32SSCIM IOCTL RBG SYNC OUTPUT

arg s32%*

Valid argument values are as follows.

Value Description

1 Retrieve the current setting.

AT325SCIM RBG SYNC OUTPUT DISABLE This option disables the Rate-B Generator SYNC
_RBL_ — - Output feature.

AT32SSCIM RBG SYNC OUTPUT ENABLE | 1Ms option enables the Rate-B Generator SYNC
_RBL_ — - Output feature.

4.7.39. AI32SSCIM_IOCTL_REG_MOD

This service performs a read-modify-write of a 16AI32SSC1M register. This includes only the GSC firmware
registers. The PCI and PLX Feature Set Registers are read-only. Refer to 16ai32ssclm.h for the complete list
of GSC firmware registers.

Usage
Argument | Description
request | AI32SSCIM IOCTL REG MOD
arg gsc reg t*

Definition

typedef struct
{
u32 regqg;
u32 value;
u32 mask;
} gsc_reg t;

Fields | Description

reg This is set to the identifier for the register to access.

value | This contains the value for the register bits to modify.

This specifies the set of bits to modify. If a bit here is set, then the respective register bit is

mas modified. If a bit here is zero, then the respective register bit is unmodified.

4.7.40. AI32SSCIM_IOCTL_REG_READ

This service reads the value of a 16AI32SSC1M register. This includes the PCI registers, the PLX Feature Set
Registers and the GSC firmware registers. Refer to 16ai32ssclm.h and gsc_pci9056.h for the complete
list of accessible registers.

Usage
Argument | Description
request | AI32SSCIM IOCTL REG READ
arg gsc reg t*

Definition

37
General Standards Corporation, Phone: (256) 880-8787



typedef
{
u32
u32
u32

16AI132SSC1M, Linux Device Driver, User Manual

struct

reg;
value;
mask;

} gsc_reg t;

Fields | Description

reg This is set to the identifier for the register to access.
value | This is the value read from the specified register.
mask | This is ignored for read request.

4.7.41. AI32SSCIM_IOCTL_REG_WRITE

This service writes a value to a 16 AI32SSC1M register. This includes only the GSC firmware registers. The PCI and
PLX Feature Set Registers are read-only. Refer to 16ai32ssclm.h for a complete list of the GSC firmware

registers.

Usage

Argument | Description

request | AI32SSCIM IOCTL REG WRITE

arg

gsc reg t*

Definition

typedef
{
u32
u32
u32

struct

reg;
value;
mask;

} gsc_reg t;

Fields | Description

reg This is set to the identifier for the register to access.
value | This is the value to write to the specified register.
mask | This is ignored for write request.

4.7.42. AI32SSCIM_IOCTL_RX_IO_ABORT

This service aborts an ongoing ai32ssclm_read () request.

Usage

Argument | Description

request | AI32SSCIM IOCTL RX IO ABORT

arg

sS32%*

The results are reported as one of the following values.

Value Description

AT325SCIM IO ABORT NO An 5}132ssc1m_read() request was not aborted as none were
- - - ongoing.

AT32SSCIM_TIO ABORT_YES | Anongoing ai32ssclm read () request was aborted.

38
General Standards Corporation, Phone: (256) 880-8787




16AI132SSC1M, Linux Device Driver, User Manual

4.7.43. AI32SSC1M_IOCTL_RX_IO_MODE
This service sets the 1/0 mode used for data read requests.

Usage

Argument | Description
request | ATI32SSCIM IOCTL RX IO MODE
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

GSC_IO_MODE_BMDMA | Use Block Mode DMA.

GSC_IO_MODE_DMDMA | Use Demand Mode DMA (transfer data as it becomes possible to do so).
GSC_IO_MODE_PIO Use PIO mode, which is repetitive register access. This is the default.

4.7.44. AI32SSCIM_IOCTL_RX_IO_OVERFLOW

This service configures the read service to check for an input buffer overflow before performing read operations.
Sampled data is lost when there is an overflow.

NOTE: The check for an overflow is performed upon entry to the read service. The read service
does not check for overflows that occur while the read is in progress. For in-progress overflows an
application must perform the check manually or wait for the check performed by a subsequent
read request.

Usage

Argument | Description
request | AI32SSCIM IOCTL RX IO OVERFLOW
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
AI32SSCIM_IO_OVERFLOW_CHECK | Perform the check. This is the default.
AI32SSCIM IO OVERFLOW IGNORE | Do not perform the check.

4.7.45. AI32SSC1M_IOCTL_RX_I0_TIMEOUT
This service sets the timeout limit for read requests. The value is expressed in seconds.

Usage

Argument | Description
request | AI32SSCIM IOCTL RX IO TIMEOUT
arg s32%*

Valid argument values are in the range from zero to 3600, -1, and AI32SSC1M IO TIMEOUT INFINITE. A
value of zero tells the driver not to sleep in order to wait for more data, and should only be used with PIO mode

39
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

reads. A value of -1 is used to retrieve the current setting. If the option AI325SC1IM IO TIMEOUT INFINITE
is used, then the driver will wait indefinitely rather than timing out. The default is 10 seconds.

4.7.46. AI32SSC1IM_IOCTL_RX_I0_UNDERFLOW

This service configures the read service to check for an input buffer underflow before performing the read operation.
Sampled data is lost when there is an underflow.

NOTE: The check for an underflow is performed upon entry to the read service. The read service
does not check for underflows that occur while the read is in progress. For in-progress underflows
an application must perform the check manually or wait for the check performed by a subsequent
read request.

Usage

Argument | Description
request | AI32SSCIM IOCTL RX IO UNDERFLOW

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
AI32SSCIM IO UNDERFLOW_CHECK | Perform the check. This is the default.
AI32SSCIM IO UNDERFLOW IGNORE | Do not perform the check.

4.7.47. AI32SSCIM_IOCTL_SCAN_MARKER

This service configures the insertion of Scan Markers into the input buffer data stream. Refer to the board user
manual for additional information.

Usage

Argument | Description
request | AI32SSCIM IOCTL SCAN MARKER

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI32SSCIM SCAN_MARKER DISABLE | Scan Markers are not inserted into the data stream.
AI32SSCIM SCAN_MARKER ENABLE | Scan Markers are inserted into the data stream.

4.7.48. AI32SSC1IM_IOCTL_SCAN_MARKER_GET

This service retrieves the Scan Marker value that is inserted into the data stream, when enabled. Refer to the board
user manual for additional information.

Usage

Argument | Description
request | AI32SSCIM IOCTL SCAN MARKER GET

arg u32*

40
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

Argument values returned are from zero to OxFFFFFFEF.
4.7.49. AI32SSC1M_IOCTL_SCAN_MARKER_SET

This service configures the Scan Marker value that is inserted into the data stream. Refer to the board user manual
for additional information.

Usage

Argument | Description
request | AI32SSCIM IOCTL SCAN MARKER VAL
arg u32*

Valid argument values are from zero to OxFFFFFFFF.

4.7.50. AI32SSC1IM_IOCTL_WAIT_CANCEL

This service resumes all threads blocked via AI32SSCIM IOCTL WAIT EVENT IOCTL service requests (section
4.7.51, page 42), according to the provided criteria. When a blocked thread is waiting for any event specified in the

structure, then the thread is resumed.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver
initiated waits are unaffected by application cancel requests.

Usage
Argument | Description
request | ATI32SSCIM IOCTL WAIT CANCEL
arg gsc wait t*

Definition

typedef struct
{

u32 flags;
u32 main;
u32 gsc;
u32 alt;
u32 io;

u32 timeout ms;
u32 count;
} gsc_wait t;

Fields Description

flags This is unused by wait cancel operations.

This specifies the set of GSC_WAIT MAIN * events whose wait requests are to be

main .
cancelled. Refer to section 4.7.51.2 on page 43.

This specifies the set of AT32SSC1IM WAIT GSC_* events whose wait requests are to

g=c be cancelled. Refer to section 4.7.51.3 on page 43.

alt This is unused by the 16A132SSC1M driver and should be zero.

This specifies the set of AT32SSC1IM _WAIT IO_* events whose wait requests are to

e be cancelled. Refer to section 4.7.51.4 on page 43.

timeout ms | Thisis unused by wait cancel operations.

count Upon return this indicates the number of waits that were cancelled.

41
General Standards Corporation, Phone: (256) 880-8787



4.7.51. AI32SSC1IM_IOC

16AI132SSC1M, Linux Device Driver, User Manual

TL_WAIT_EVENT

This service blocks a thread until any one of a specified set of events occurs, or until a timeout lapses, whichever
occurs first. The set of possible events to wait for are specified in the structure’s main, gsc, alt and io fields. All

field values must be valid

and at least one event must be specified. If the thread is resumed because one of the

referenced events has occurred, then the bit for the respective event is the only event bit that will be set. All other

event bits and fields will be

zero. (Multiple event bits will be set only if the events occur simultaneously.)

NOTE: The service waits only for the first of the specified events, not for all specified events.

NOTE: A wait timeout is reported via the gsc_wait t structure’s flags field having the
GSC_WAIT FLAG TIMEOUT flag set, rather than via an ETIMEDOUT error.

Usage
Argument | Description
request | AI32SSCIM IOCTL WAIT EVENT
arg gsc wait t*

Definition

typedef struct

{

u32 flags;
u32 main;
u32 gsc;
u32 alt;
u32 io;

u32 timeout ms;
u32 count;

} gsc wait t;

Fields Description

flags This must initially be_ zero. Upon return this indicates the reason that the thread was
resumed. Refer to section 4.7.51.1on page 42.

main This specifies any number of GSC_WAIT MAIN * events that the thread is to wait for.
Refer to section 4.7.51.2 on page 43.

gsc This specifies any number of AI32SSC1M WAIT GSC_* events that the thread is to
wait for. Refer to section 4.7.51.3 on page 43.

alt This is unused by the 16AI32SSC1M driver and must be zero.

. This specifies any number of AT32SSC1M WAIT IO * events that the thread is to

10 . i — i G
wait for. Refer to section 4.7.51.4 on page 43.
This specified the maximum amount of time, in milliseconds, that the thread is to wait

timeout_ms | for any of the referenced events. A value of zero means do not timeout at all. If non-
zero, then upon return the value will be the approximate amount of time actually waited.

count This is unused by wait event operations and must be zero.

4.751.1. gsc_wait t.flags Options

Upon return from a wait request the wait structure’s flags field will indicate the reason that the thread was
resumed. Only one of the below options will be set.

Fields

Description

GSC_WAIT FLAG CANCEL | The wait request was cancelled.

42
General Standards Corporation, Phone: (256) 880-8787




16AI132SSC1M, Linux Device Driver, User Manual

GSC_WAIT_ FLAG_DONE One of the referenced events occurred.
GSC_WAIT_ FLAG_TIMEOUT | The timeout period lapsed before a referenced event occurred.

4.7.51.2. gsc_wait t.main Options

The wait structure’s main field may specify any of the below primary interrupt options. These interrupt options are
supported by the 16 AI32SSC1M and other General Standards products.

Fields Description

GSC WAIT MAIN DMAO This refers to the DMA Done interrupt on DMA engine number zero.
GSC WAIT MAIN DMAL This refers to the DMA Done interrupt on DMA engine number one.
GSC WAIT MAIN GSC This refers to any of the Interrupt Control/Status Register interrupts.

This generally refers to an interrupt generated by another device sharing the

WAIT MAIN OTHER Y
GSC_WAIT MAIN_O same interrupt as the 16A132SSC1M.

GSC WAIT MAIN PCI This refers to any interrupt generated by the 16AI32SSC1M.

GSC_WAIT MAIN SPURIOUS | This refers to board interrupts which should never be generated.

GSC_WAIT MAIN UNKNOWN | This refers to board interrupts whose source could not be identified.

4.7.51.3. gsc_wait t.gsc Options

The wait structure’s gsc field may specify any combination of the below interrupt options. These are the interrupt
options referenced in the Interrupt Control Register. Applications are responsible for selecting the desired interrupt
options. Refer to AI32SSCIM IOCTL IRQO SEL (section 4.7.30, page 33) and
AI32SSCIM IOCTL IRQ1 SEL (section 4.7.31, page 34).

Value Description

AT32SSCIM WAIT GSC_AUTOCAL DONE This refers to the completion of an autocalibration cycle.
AI32SSCIM WAIT GSC BURST DONE This refers to the completion of an input burst.
AT32SSCIM WAIT GSC BURST START This refers to the beginning of an input burst.

This refers to the occurrence of either an input buffer

AI32SSCIM WAIT GSC IN BUF OVR UNDR .
- - - - = = overflow or an input buffer underflow.

AI32SSCIM WAIT GSC_IN BUF_THR H2L | This refers to the input buffer threshold status being negated.

AI32SSCIM WAIT GSC_IN BUF THR L2H | This refers to the input buffer threshold status being asserted.

AI32SSCIM WAIT GSC INIT DONE This refers to the completion of an initialization cycle.
AI32SSCIM WAIT GSC SYNC DONE This refers to the completion of a sync operation.
AI32SSCIM WAIT GSC SYNC START This refers to the beginning of a sync operation.

4.751.4. gsc_wait_ t.io Options

The wait structure’s io field may specify any of the below event options. These events are generated in response to
application board data read requests.

Fields Description

ATI32SSCIM WAIT_ TIO_RX ABORT This refers to read requests which have been aborted.

AT32SSCIM WAIT IO _RX DONE This refers to read requests which have been satisfied.

AT32SSCIM WAIT IO _RX ERROR This refers to read requests which end due to an error.
ATI32SSCIM WAIT IO_RX TIMEOUT | This refers to read requests which end due to the timeout period lapse.

4.7.52. AI32SSCIM_IOCTL_WAIT_STATUS

This service counts all threads blocked via the AI325SC1M IOCTL WAIT EVENT IOCTL service (section
4.7.51, page 42), according to the provided criteria. A match is made when a waiting thread’s wait criteria matches
any of the criteria specified in the structure passed to this service.

43
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

NOTE: The driver itself makes use of the wait services for various internal operations. Driver
initiated waits are ignored by application status requests.

Usage
Argument | Description
request | AT32SSCIM IOCTL WAIT STATUS
arg gsc wait t*

Definition

typedef struct
{

u32 flags;
u32 main;
u32 gsc;
u32 alt;
u32 io;

u32 timeout ms;
u32 count;
} gsc_wait t;

Fields Description

flags This is unused by wait status operations.

This specifies the set of GSC_WAIT MAIN * events whose wait requests are to be

main .
counted. Refer to section 4.7.51.2 on page 43.

This specifies the set of ATI32SSC1M WAIT GSC_* events whose wait requests are to

ge=c be counted. Refer to section 4.7.51.3 on page 43.

alt This is unused by the 16A132SSC1M driver and should be zero.

This specifies the set of AT32SSC1IM WAIT IO * events whose wait requests are to

O be counted. Refer to section 4.7.51.4 on page 43.

timeout ms | Thisis unused by wait status operations.

count Upon return this indicates the number of waits that met any of the specified criteria.

4.8. Low Latency IOCTL Services
The 16AI32SSC1M driver implements the following Low Latency specific IOCTL services. (For the common
services refer to section 4.7 on page 24.) Each service is described along with the applicable
ai32ssclm ioctl () function arguments.
WARNING: Reading device data should not be performed while using the Low Latency Read
IOCTL service. Interrupts are disabled while the service is active and would interfere with
BMDMA and DMDMA operations.
4.8.1. AI32SSCIM_IOCTL_LL_DOH

This service report if the device is in a Low Latency Data on Hold state. Refer to the board user manual for
additional information.

Usage

Argument | Description
request | AI32SSCIM IOCTL LL DOH
arg s32%*

44
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

Valid argument values are as follows.

Value Description
AI325SCIM LL _DOH _NO | The board is notin a Low Latency Data on Hold state.
AI32S5SCIM LL_DOH_YES | The board isin a Low Latency Data on Hold state.

4.8.2. AI32SSC1IM_IOCTL_LL_HOLD

This service configures the hold register index for the Low Latency data retrieval operation. Refer to the board user
manual for additional information.

Usage

Argument | Description
request | AI32SSCIM IOCTL LL HOLD
arg s32%*

Valid argument values are from zero to one less than the number of board channels.
4.8.3. AI32SSC1M_IOCTL_LL_READ

This service retrieves the Low Latency registers according to the board’s current configuration and the mask field
in the referenced structure. The currently configured hold channel register is always read first. If the hold and
release channels are the same, then no additional action takes place. Otherwise, the channel data is read according to
the description given below for the ma sk field, followed by reading the release channel register.

WARNING: Reading device data should not be performed while using the Low Latency Read
IOCTL service. Interrupts are disabled while the service is active and would interfere with
BMDMA and DMDMA operations.

Usage
Argument | Description
request | AI32SSCIM IOCTL LL READ
arg ai32ssclm 11 data t*
Definition

typedef struct
{
u32 mask;
u32 datal[32];
} ai32ssclm 11 data t;

Fields | Description

This specifies the set of Low Latency registers to read. If a bit is set, then the corresponding Low
mask | Latency register is retrieved. If a bit is clear, then the corresponding register is ignored. The bits
for the hold and release channels are ignored.

data | This retrieved data is recorded here.

4.8.4. AI32SSCIM_IOCTL_LL_RELEASE

This service configures the release register index for the Low Latency data retrieval operation. Refer to the board
user manual for additional information.

45
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

Usage

Argument | Description

request | AI32SSC1M IOCTL LL RELEASE

arg s32%*

Valid argument values are from zero to one less than the number of board channels.

4.9. Time Tag IOCTL Services

The 16AI132SSC1M driver implements the following Time Tag specific IOCTL services. (For the common services
refer to section 4.7 on page 24.) Each service is described along with the applicable ai32ssclm ioctl ()

function arguments.

4.9.1. AI32SSC1M_IOCTL_TT_ADC_CLK_SRC

This service configures the source for the Time Tag A/D sample clock.

Usage

Argument | Description

request | ATI32SSCIM IOCTL TT ADC CLK SRC

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSCIM TT ADC CLK_SRC_EXT REF

This refers to the external Reference Clock Input
signal.

AI32SSCIM TT ADC CLK SRC EXT SAMP

This refers to the external Sample Clock Input signal.

AI32SSCIM TT ADC CLK SRC RAG

This refers to the Rate-A Generator output.

4.9.2. AI32SSC1IM_IOCTL_TT_ADC_ENABLE

This service enables or disables the Time Tag ADC clocking process.

Usage

Argument | Description

request | AI32SSCIM IOCTL TT ADC ENABLE

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AT32SSCIM TT ADC ENABLE NO | This disables the ADC process.

AI32SSC1M TT ADC ENABLE YES | This enables the ADC process.

4.9.3. AI32SSC1IM_IOCTL_TT_BURST_SIZE

This service configures the size of a single burst when the Time Tag feature is enabled. The count is in scans, which

is an A/D conversion of all active channels.

46

General Standards Corporation, Phone: (256) 880-8787




16AI132SSC1M, Linux Device Driver, User Manual

Usage

Argument | Description
request | AI32SSCIM IOCTL TT BURST SIZE
arg s32%*

Valid argument values are from zero to OxFFFF, or -1 to retrieve the current setting.
4.9.4. AI32SSC1IM_IOCTL_TT_CHAN_MASK_GET
This service retrieves the current Time Tag active channel mask.

Usage

Argument | Description
request | AI32SSCIM IOCTL TT CHAN MASK GET
arg u32*

Argument values returned are in the range of zero to OxFFFFFFFF. The value is defined to be a bitmap of the
channels to scan.

4.9.5. AI32SSC1IM_IOCTL_TT_CHAN_MASK_SET
This service updates the Time Tag active channel mask.

Usage

Argument | Description
request | AI32SSCIM IOCTL TT CHAN MASK SET
arg u32*

Valid argument values are in the range of zero to OxFFFFFFF, according to the number of installed channels. The
value is defined to be a bitmap of the channels to scan. The least significant bit refers to channel zero. The most
significant bit refers to channel 31. If a bit is set, then the channel is scanned. If a bit is clear, then the channel is not
scanned. An error is produced if attempting to enable a channel not present on the board.

4.9.6. AI32SSC1M_IOCTL_TT_CONST_REF_GET

This service retrieves the current Constant/Reference selection mask. If a bit is set, then the channel’s reference
value remains unchanged when triggered. The channel’s reference value is otherwise updated.

Usage

Argument | Description
request | AI32SSCIM IOCTL TT CONST REF GET
arg u32*

Argument values returned are in the range of zero to OxFFFFFFFF.
4.9.7. AI32SSCIM_IOCTL_TT_CONST_REF_SET

This service updates the current Constant/Reference selection mask. If a bit is set, then the channel’s reference value
remains unchanged when triggered. The channel’s reference value is otherwise updated.

47
General Standards Corporation, Phone: (256) 880-8787



Usage

Valid argument values are in the range of zero to OxFFFFFFFF, according to the number of channels on the board.

16AI132SSC1M, Linux Device Driver, User Manual

Argument | Description
request | AI32SSCIM IOCTL TT CONST REF SET
arg u32*

4.9.8. AI32SSC1M_IOCTL_TT_COUNTER

This service retrieves the current value of the 48-bit, 1us Time Tag Counter.

Usage
Argument | Description
request | AI32SSCIM IOCTL TT COUNTER
arg ai32ssclm tt counter t*
Definition

NOTE: This service may take up to about 20us to complete. This is because of the driver’s effort
to reduce the likelihood of a rollover occurring during the time interval between reading the lower
32-bits and the upper 16-bits, which are read sequentially. Reading of the lower 32-bits occurs

from about 8us to about 16us after the driver service begins execution.

typedef struct

{

u32 lower;
ul6 upper;
ul6 reserved;
} ai32ssclm 11 data t;

Fields Description

lower This field holds the lower 32-bits of the 48-bit counter value.
upper This field holds the upper 16-bits of the 48-bit counter value.
Reserved | This field is reserved for future is set to zero.

4.9.9. AI32SSCIM_IOCTL_TT_ENABLE

This service enables or disables the Time Tag feature.

Usage

Argument | Description
request | AI32SSCIM IOCTL TT ENABLE
arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSCIM TT ENABLE_NO | This disables the Time Tag feature.

AI32SSCIM TT ENABLE_YES | This enables the Time Tag feature.

48
General Standards Corporation, Phone: (256) 880-8787




16AI132SSC1M, Linux Device Driver, User Manual

4.9.10. AI32SSC1IM_IOCTL_TT_LOG_MODE
This service controls which channels log data to the input buffer.

Usage

Argument | Description
request | AT32SSCIM IOCTL TT LOG MODE
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
AI32SSCIM TT LOG_MODE_ALL | All channels log data to the input buffer.
AI32SSCIM TT LOG_MODE_TRIG | Only triggered channels log data to the input buffer.

4.9.11. AI32SSC1IM_IOCTL_TT_NRATE
This service configures the NRATE divider value for the Time Tag Rate Divider.

Usage

Argument | Description
request | ATI32SSCIM IOCTL TT NRATE
arg s32%*

Valid argument values are from 2 to OxFFFFF.
4.9.12. AI32SSCIM_IOCTL_TT_REF_XX

This refers to the below listed services, which configure the reference value for the respective channel. Refer to the
board user manual for additional information.

Service Description
AI32SSCIM IOCTL TT REF 00 | Channel 0
AI32SSCIM IOCTL TT REF 01 | Channel 1
AI32SSCIM IOCTL TT REF 02 | Channel 2
AI32SSCIM IOCTL TT REF 03 | Channel 3
AI32SSCIM IOCTL TT REF 04 | Channel 4
AI32SSCIM IOCTL TT REF 05 | Channel 5
AI32SSCIM IOCTL TT REF 06 | Channel 6
AI32SSCIM IOCTL TT REF 07 | Channel 7
AI32SSCIM IOCTL TT REF 08 | Channel 8
AI32SSCIM IOCTL TT REF 09 | Channel 9
AI32SSCIM IOCTL TT REF 10 | Channel 10
AI32SSCIM IOCTL TT REF 11 | Channel 11
AI32SSCIM IOCTL TT REF 12 | Channel 12
AI32SSCIM IOCTL TT REF 13 | Channel 13
AI32SSCIM IOCTL TT REF 14 | Channel 14
AI32SSCIM IOCTL TT REF 15 | Channel 15
AI32SSCIM IOCTL TT REF 16 | Channel 16
AI32SSCIM IOCTL TT REF 17 | Channel 17
AI32SSCIM IOCTL TT REF 18 | Channel 18

49
General Standards Corporation, Phone: (256) 880-8787



Usage

16AI132SSC1M, Linux Device Driver, User Manual

AI32SSCIM IOCTL TT REF 19

Channel 19

AI32SSCIM IOCTL TT REF 20

Channel 20

AI32SSCIM IOCTL TT REF 21

Channel 21

AI32SSCIM IOCTL TT REF 22

Channel 22

AI32SSCIM IOCTL TT REF 23

Channel 23

AI32SSCIM IOCTL TT REF 24

Channel 24

AI32SSCIM IOCTL TT REF 25

Channel 25

AI32SSCIM IOCTL TT REF 26

Channel 26

AI32SSCIM IOCTL TT REF 27

Channel 27

AI32SSCIM IOCTL TT REF 28

Channel 28

AI32SSCIM IOCTL TT REF 29

Channel 29

AI32SSCIM IOCTL TT REF 30

Channel 30

AI32SSCIM IOCTL TT REF 11

Channel 31

Argument | Description

request | ATI32SSCIM IOCTL TT REF XX

arg s32%*

Valid argument values are in the range of zero to OxFFFF, or -1 to retrieve the current setting.

4.9.13. AI32SSCIM_IOCTL_TT_REF_CLK_SRC

This service configures the source of the Time Tag reference clock.

Usage

Argument | Description

request | AI32SSC1M IOCTL TT REF CLK SRC

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

AI32SSCIM TT_ REF_CLK_SRC_EXT | This refers to the external Reference Clock Input signal.

AI32SSCIM TT REF CLK SRC_INT | This refers to the internal rate generator.

4.9.14. AI32SSCIM_IOCTL_TT_RESET

This service resets the Time Tag counter to zero.

Usage

4.9.15. AI32SSC1IM_

Argument | Description

request | AI32SSCIM IOCTL TT RESET

arg Not used.

IOCTL_TT_RESET_EXT

This service enables or disables the Clock Reset Input cable signal.

50

General Standards Corporation, Phone: (256) 880-8787




16AI132SSC1M, Linux Device Driver, User Manual

Usage

Argument | Description
request | AI32SSCIM IOCTL TT RESET EXT
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI32SSCIM TT RESET_EXT DISABLE | The cable signal cannot reset the Time Tag counter.
AI32SSCIM_TT_ RESET EXT ENABLE | The cable signal can reset the Time Tag counter.

4.9.16. AI32SSC1IM_IOCTL_TT_TAGGING
This service enables or disables insertion of the Time Tag header in the Input Buffer data stream.

Usage

Argument | Description
request | AI32SSCIM IOCTL TT TAGGING
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI32SSCIM TT_TAGGING_DISABLE | The header is not inserted into the data stream.
AI328SCIM TT TAGGING ENABLE | The header is inserted into the data stream.

4.9.17. AI32SSCIM_IOCTL_TT_THR_XX

This refers to the below listed services, which configure the threshold value for the respective channel. Refer to the
board user manual for additional information.

Service Description
AI32SSCIM IOCTL TT THR 00 | Channel O
AI32SSCIM IOCTL TT THR 01 | Channel 1
AI32SSCIM IOCTL TT THR 02 | Channel 2
AI32SSCIM IOCTL TT THR 03 | Channel 3
AI32SSCIM IOCTL TT THR 04 | Channel 4
AI32SSCIM IOCTL TT THR 05 | Channel 5
AI32SSCIM IOCTL TT THR 06 | Channel 6
AI32SSCIM IOCTL TT THR 07 | Channel 7
AI32SSCIM IOCTL TT THR 08 | Channel 8
AI32SSCIM IOCTL TT THR 09 | Channel 9
AI32SSCIM IOCTL TT THR 10 | Channel 10
AI325SCIM IOCTL TT THR 11 | Channel 11
AI325SCIM IOCTL TT THR 12 | Channel 12
AI325SCIM IOCTL TT THR 13 | Channel 13
AI32SSCIM IOCTL TT THR 14 | Channel 14
AI325SCIM IOCTL TT THR 15 | Channel 15
AI325SCIM IOCTL TT THR 16 | Channel 16
AI325SCIM IOCTL TT THR 17 | Channel 17

51
General Standards Corporation, Phone: (256) 880-8787



Usage

16AI132SSC1M, Linux Device Driver, User Manual

AI32SSCIM IOCTL TT THR 18

Channel 18

AI32SSCIM IOCTL TT THR 19

Channel 19

AI32SSCIM IOCTL TT THR 20

Channel 20

AI32SSCIM IOCTL TT THR 21

Channel 21

AI32SSCIM IOCTL TT THR 22

Channel 22

AI32SSCIM IOCTL TT THR 23

Channel 23

AI32SSCIM IOCTL TT THR 24

Channel 24

AI32SSCIM IOCTL TT THR 25

Channel 25

AI32SSCIM IOCTL TT THR 26

Channel 26

AI32SSCIM IOCTL TT THR 27

Channel 27

AI32SSCIM IOCTL TT THR 28

Channel 28

AI32SSCIM IOCTL TT THR 29

Channel 29

AI32SSCIM IOCTL TT THR 30

Channel 30

AI32SSCIM IOCTL TT THR 11

Channel 31

Argument | Description

request | AT32SSCIM IOCTL TT THR XX

arg s32%*

Valid argument values are in the range of zero to OxFFFF, or -1 to retrieve the current setting.

4.9.18. AI32SSCIM_IOCTL_TT_TRIG_MODE

This service configures the Time Tag triggering mode.

Usage

Argument | Description

request | AI32SSC1M IOCTL TT TRIG MODE

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

AI32SSCIM TT TRIG _MODE_CONTIN This refers to the Free-Running mode.
AI32SSCIM_TT_TRIG_MODE_REF_ TRIG | This refers to the Referenced-Triggered mode.

52

General Standards Corporation, Phone: (256) 880-8787




16AI132SSC1M, Linux Device Driver, User Manual

5. The Driver

NOTE: Contact General Standards Corporation if additional driver functionality is required.
5.1. Files

The device driver files are summarized in the table below.

Description | Files Location
Source Files | *.c, *.h ...

Header File | 16ai32ssclm.h
16ai32ssclm.ko ¥
16ai32ssclm.o i
+ This is for kernel versions 2.6 and later.
1 This is for kernel versions 2.4 are earlier.

../driver/
Driver File

5.2. Build

NOTE: Building the driver requires installation of the kernel headers and possibly other packages.

The device driver is built via the Overall Make Script (section 2.7, page 13), but can be built separately following
the below steps.

1. Change to the directory where the driver and its sources are installed (.../driver/).
2. Remove existing build targets by issuing the below command.
make clean
3. Build the driver by issuing the below command.
make
NOTE: Due to the differences between the many Linux distributions some build errors may

occur. These errors may include system header location differences, which should be easily
corrected.

5.3. Startup

NOTE: The driver will have to be built before being used as it is provided in source form only.
The startup script used in this procedure is designed to load the device driver and create fresh device nodes. This is
accomplished by unloading the current driver, if loaded, and then loading the accompanying driver executable. In
addition, the script deletes and recreates the device nodes. This is done to ensure that the device nodes in use have
the same major number as assigned dynamically to the driver by the kernel, and so that the number of device nodes
corresponds to the number of boards identified by the driver.
5.3.1. Manual Driver Startup Procedures

Start the driver manually by following the below listed steps.

NOTE: The following steps may require elevated privileges.

53
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

1. Change to the directory where the driver sources are installed (.../driver/).

2. Install the driver module and create the device nodes by executing the below command. If any errors are
encountered then an appropriate error message will be displayed.

./start

NOTE: This script must be executed each time the host is booted.

NOTE: The 16AI32SSC1M device node major number is assigned dynamically by the kernel. The
minor numbers and the device node suffix numbers are index numbers beginning with zero, and

increase by one for each additional board installed.

3. Verify that the device driver module has been loaded by issuing the below command and examining the output.
The module name 16ai32ssc1m should be included in the output.

lsmod

4. Verify that the device nodes have been created by issuing the below command and examining the output. The
output should include one node for each installed board.

1ls -1 /dev/16ai32ssclm.*

5.3.2. Automatic Driver Startup Procedures

Start the driver automatically with each system reboot by following the below listed steps.

1. Locate and edit the system startup script rc.local, which should be in the /etc/rc.d/ directory. Modify
the file by adding the below line so that it is executed with every reboot. The example is based on the driver
being installed in /usr/src/linux/drivers/, though it may have been installed elsewhere.

/usr/src/linux/drivers/l6ai32ssclm/driver/start

NOTE: For systemd installations the file rc.local may be located under the /etc/
directory rather than under /etc/rc.d/.

2. Load the driver and create the required device nodes by rebooting the system.

3. Verify that the driver is loaded and that the device nodes have been created. Do this by following the
verification steps given in the manual startup procedures.

5.3.2.1. File rc.local Not Present

Some distributions may not install a default version of rc.local. Some may not even create the directory
/etc/rc.d/. If the directory is not present, then it may be created. The directory must be created with the owner
and group set to root. The directory permissions must be set to rwxr-xr-x. If the file /etc/rc.d/rc.local
is not present, then it too may be created. The file must also be created with the owner and group set to root.
Additionally, the file permissions must also be set to rwxr-xr-x. After the directory and file are created as
described, reboot to verify boot time loading of the driver. Here is an example of a default version of rc.local.

#!/bin/bash

# Add your local content here.

54
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

5.3.2.2. Default rc.local File Permissions

The rc.local script may fail to run at boot time because some distributions install a default version of the file
without execute permissions. Without execute permissions, boot time invocation of the script fails, which inhibits
boot time loading of the driver. If this is the case, then change the file permissions to rwxr-xr-x. After the file
permissions are adjusted as described, reboot to verify boot time loading of the driver.

5.3.2.3. systemd Installations

With the advent of the systemd startup implementation, rc.local may be accessed via a systemd startup
service. The service name may be rc-local, rc-local.service or something similar. This service may or
may not be enabled by default. If the service is disabled, then the script will not execute, which prevents boot time
loading of the driver. The service can be enabled with the below command line. After the service is enabled, reboot
to verify boot time loading of the driver.

systemctl enable rc-local

NOTE: For systemd installations the file rc.local may be located under the /etc/
directory rather than under /etc/rc.d/.

5.3.2.4. systemd and rc.local Timing

If the above steps have been performed but the driver still does not start then examine the dmesg output for driver
messages. If the output shows that the driver starts and immediately stops, then the problem may be timing. That is,
since systemd doesn’t serialize startup initialization as done in the past, driver loading may fail if required services
have not completed their own initialization. If this is the problem, then it may be corrected simply by inserting a
delay in rc. local prior to it calling the driver’s start script (i.e., sleep for one or more seconds).

5.3.2.5. SElinux Implications
If not disabled, then SElinux may prevent boot time loading of the driver. If this is the case, then it can be verified
and corrected using SElinux related tools and utilities. First, install the necessary software using the below
command. (As necessary, replace the yum command line with that which is available for your distribution.)

yum install setroubleshoot setools
Next, run the below command to determine if SElinux is preventing the driver from loading at boot time.

sealert —-a /var/log/audit/audit.log
If SElinux is preventing the driver from loading, then the output from the above command should include a
reference to the driver’s start script, the insmod command that loads the driver or the name of the driver
executable. If so, then the output should also indicate the commands necessary to resolve the issue. The following is
an example of the instructions given when the culprit is insmod, which is the start script command that loads the

driver. After running these commands reboot the system to verify boot time loading of the driver.

ausearch -c 'insmod' --raw | audit2allow -M my-insmod
semodule -X 300 -i my-insmod.pp

5.4. Verification

Follow the below steps to verify that the driver has been properly installed and started.

55
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

1. Verify that the file /proc/16ai32ssclm is present. If the file is present then the driver is loaded and
running. Verify the file’s presence by viewing its content with the below command.

cat /proc/l6ai32ssclm
5.5. Version
The driver version number can be obtained in a variety of ways. It is reported by the driver both when the driver is
loaded and when it is unloaded (depending on kernel configuration options, this may be visible only in places such

as /var/log/messages). It is reported in the text file /proc/16ai32ssclm while the driver is loaded and
running. The version number is also given in the file release. txt in the root install directory.

5.6. Shutdown
Shutdown the driver following the below listed steps.
NOTE: The following steps may require elevated privileges.
1. If the driver is currently loaded then issue the below command to unload the driver.
rmmod 16ai32ssclm

2. Verify that the driver module has been unloaded by issuing the below command. The module name
16ai32ssclmshould not be in the listed output.

lsmod

56
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

6. Document Source Code Examples
The source code examples included in this document are built into a statically linkable library usable with console

applications. The purpose of these files is to verify that the documentation samples compile and to provide a library
of working sample code to assist in a user’s learning curve and application development effort.

6.1. Files

The library files are summarized in the table below.

Description | Files Location
Source Files | *.c,*.h ... ../docsrc/
Header File | 16ai32ssclm dsl.h | ../include/
Library File | 16ai32ssclm dsl.a | ../1lib/

6.2. Build

The library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the
below steps.

1. Change to the directory where the documentation sources are installed (.../docsrc/).
2. Remove existing build targets by issuing the below command.

make clean
3. Compile the sample files and build the library by issuing the below command.

make

4. Rebuild the Main Library (section 3.2.1, page 16).

6.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above
listed header file in each source file using a component of the library interface. At link time include the above listed
static library file with the objects being linked with the application.

57
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

7. Utilities Source Code

The API Library installation includes a body of utility source code designed to aid in the understanding and use of
the interface calls and IOCTL services. Utility sources are also included for device independent and common,
general-purpose services. Most of the utilities are implemented as visual wrappers around the corresponding services
to facilitate structured console output for the sample applications. The utility sources are compiled and linked into
static libraries to simplify their use. An additional purpose of these utility services is to provide a library of working
sample code to assist in a user’s learning curve and application development effort.

For each API function there is a corresponding utility source file with a corresponding utility service. As an
example, for the API function ai32ssclm open () there is the utility file open. c containing the utility function
ai32ssclm open util (). The naming pattern is as follows: API function ai32ssclm_xxxx (), utility file
name xxxx.c, utility function ai32ssclm xxxx util (). Additionally, for each IOCTL code there is a
corresponding utility source file with a corresponding utility service. As an example, for IOCTL code
AI32SSCIM IOCTL QUERY there is the utility file util query.c containing the utility function
ai32ssclm query (). The naming pattern is as follows: IOCTL code AI32SSCIM IOCTL XXXX, utility file
name util xxxx.c, utility function ai32ssclm xxxx ()

7.1. Files

The utility files are summarized in the table below.

Description | Files Location
Source Files | *.c, *.h ... ./utils/
Header File | 16ai32ssclm utils.h | ../include/
16ai32ssclm utils.a
gsc_utils.a

os _utils.a

plx utils.a

Library Files ../1ib/

7.2. Build

The libraries are built via the Overall Make Script (section 2.7, page 13), but can be built separately following the
below steps.

1. Change to the directory where the utility sources are installed (.../utils/).
2. Remove existing build targets by issuing the below command.
make clean
3. Compile the sample files and build the library by issuing the below command.
make

4. Rebuild the Main Library (section 3.2.1, page 16).

7.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above
listed header file in each source file using a component of the library interface. At link time include the above listed
static library file with the objects being linked with the application.

58
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

8. Operating Information

This section explains some basic operational procedures for using the 16AI132SSC1M. This is in no way intended to
be a comprehensive guide. This is simply to address a very few issues relating to their use.

8.1. Debugging Aids

The driver package includes the following items useful for development and/or debugging aids.

8.1.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id
example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as
follows.

Description | File | Location
Application | id | ../id/

8.1.2. Detailed Register Dump

Among the utility services provided is a function to generate a detailed listing of device registers to the console.
When used, the function is typically used to verify device configuration. In these cases, the function should be called
after complete device configuration and before the first 1/0 call. When intended for sending to GSC tech support,
please set the detail arguments to 1. The function arguments are as follows. The utility location is given in the
subsequent table.

Argument | Description
fd This is the file descriptor used to access the device.
detail If non-zero the register dump will include details of each register field.

Description | File/Name Location
Function ai32ssclm reg list () | Source File
Source File | util reg.c ./utils/

Header File | 16ai32ssclm utils.h | ../include/
Library File | 16ai32ssclm utils.a |../lib/

8.2. Analog Input Configuration

The basic steps for Analog Input configuration are illustrated in the utility function noted below. The table also gives
the location of the source file, the header file and the corresponding library containing the executable code. The
referenced files are included via the Main Header and Main Library.

Item Name/File Location
Function ai32ssclm config ai() | Source File
Source File | util config ai.c ../utils/
Header File | 16ai32ssclm utils.h ../include/
Library File | 16ai32ssclm utils.a ../1ib/

8.3. Data Transfer Modes
All device 1/0O requests move data through intermediate driver buffers on its way between the device and application

memory. The data is processed in chunks no larger than the size of this intermediate buffer. The process used to

59
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

perform this transfer is according to the I/0 mode selection. Movement of data between the application buffers and
the intermediate driver buffers is performed by the kernel.

8.3.1. PIO - Programmed 1/O

In this mode data is transferred using repetitive register accesses. This is most applicable for low throughput
requirements or for small transfer requests. The driver continues the operation until either the 1/0 request is fulfilled
or the 1/O timeout expires, whichever occurs first. This is generally the least efficient mode, but for very small
transfers it is more efficient than DMA.

8.3.2. BMDMA - Block Mode DMA

For Block Mode DMA the driver initiates DMA transfers only after a sufficient volume of data has been received
into the input buffer. In this mode the volume is sufficient when the input buffer content satisfies the request or
when it meets or exceeds the threshold value. After that amount of data is in the input buffer the driver initiates a
DMA then sleeps until the DMA Done interrupt is received. Using this DMA mode, a user request typically consists
of numerous individual DMA transfers.

8.3.3. DMDMA - Demand Mode DMA

This DMA mode is similar to the block mode, except that the transfer is initiated immediately. Here however, the
actual movement of data occurs as the data becomes available in the buffer instead of after it has been accumulated.
Using this DMA mode, a user request typically consists of a single individual DMA transfer.

8.4. Low Latency Data Access

The Low Latency registers provide a mechanism for reading the most recent A/D data without having to wade
through all of the A/D data streaming from the board’s input buffer. The software interface provided by the API
Library includes an IOCTL service for reading the Low Latency registers. The actual service functionality is
implemented inside the device driver. This implementation includes overhead that is there to guarantee correct
functionality regardless of how an application may be interacting with the board. For the best performance however,
the driver disables interrupts while the registers are being read. This introduces the possibility of negative
interactions between the Low Latency registers read service and any other service that makes use of interrupts. This
primarily refers to the read API service and the wait IOCTL services.

An application may be able to significantly reduce the overhead and eliminate the negative interactions. This can be
achieved by designing the application so reading the Low Latency registers is done with exclusive access to the
device and by reading the Low Latency registers with a mechanism that bypasses the driver. One such mechanism
maps the board’s BAR2 region into application space (via /dev/mem) so the Low Latency registers can be read
directly via a u32* data type. (In tests at GSC this reduced the overhead from about 5.5 us to about 150 ns.

WARNING: Reading device data should not be performed while using the Low Latency Read
IOCTL service (section 4.8.3, page 45). Interrupts are disabled while the service is active and
would interfere with BMDMA and DMDMA operations.

60
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

9. Sample Applications

The driver archive includes a variety of sample and test applications located under the samples subdirectory.
While they are provided without support and without any external documentation, any problems reported will be
addressed as time permits. The applications are command line based and produce text output for display on a
console. All of the applications are built via the Overall Make Script (section 2.7, page 13), but each may be built
individually by changing to its respective directory and issuing the commands “make clean” and “make”. The

initial output from each application includes information on its supported command line arguments. The following
gives a brief overview of each application.

9.1. fsamp - Sample Rate - .../fsamp/
This application reports the device configuration required to produce a user specified sample rate.
9.2.id - Identify Board - .../id/

This application reports detailed board identification information. This can be used with tech support to help identify
as much technical information about the board as possible from software.

9.3.regs - Register Access - .../regs/

This application provides menu based interactive access to the board’s registers, and reports other pertinent
information to the console.

9.4. rxrate - Receive Rate - ...Irxrate/

This application configures the board for its highest ADC sample rate then reads the input as fast as possible. The
purpose is to measure the peak sustainable input rate for the host, per the provided command line arguments.

9.5. savedata - Save Acquired Data - .../savedata/

This application configures the board for a modest sample rate, reads a megabyte of data, then saves the data to a
hex file.

9.6. stream - Stream Rx Data to Disk - .../stream/
This application uses multiple threads with an intermediate buffer manager to stream data from the device to a

binary data file. Numerous options are available for measuring performance of device reads, disk writes and buffer
handling. Refer to the application file readme . txt for example information.

9.7. wait - Wait Test - .../wait/

This application performs complete testing to verify the operation of the Wait Event options. This is similar to the
irq application, but encompasses more interactions with the board.

61
General Standards Corporation, Phone: (256) 880-8787



16AI132SSC1M, Linux Device Driver, User Manual

Document History

Revision

Description

August 15, 2024

Updated to release version 1.4.111.50.0. Updated the kernel support table. Numerous minor
editorial updates. Renamed all Auto Cal content to Autocal. Renamed all Auto Cal Status
content to Autocal Status. Added a section describing the conversion of the static libraries
to shared libraries (section 3.2.3, page 17).

October 4, 2023

Updated to release version 1.3.105.47.0. Updated the information for the open and close
calls. Updated the kernel support table. Minor editorial changes. Updated the description of
the Input Buffer Clear service. Updated the description of the Autocalibration service.

July 19, 2022

Updated to release version 1.3.100.42.0. Expanded automatic startup information. Added
the stream sample application. Updated the kernel support table. Added section on
environment variables.

January 7, 2021

Updated to release version 1.2.92.35.0. Updated the kernel support table. Numerous minor
editorial changes. Some document reorganization. Added a licensing subsection. Added a
WAIT _EVENT note. Expanded automatic startup information.

May 1, 2019

Updated to release version 1.1.85.27.0. Updated the inside cover page. Updated the CPU
and kernel support section. Minor editorial changes. Updated Block Mode DMA macro and
associated information. Document reorganization.

February 20, 2018

Initial release, version 1.0.73.20.0.

62
General Standards Corporation, Phone: (256) 880-8787




