
16AI32SSC1M
16-bit, 32 channel, 1M S/S/Ch A/D Input

XMC-16AI32SSC1M

Linux Device Driver
And API Library

User Manual

Manual Revision: August 15, 2024

Driver Release Version 1.4.111.50.0

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

16AI32SSC1M, Linux Device Driver, User Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2018-2024, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or

software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Although extensive editing and reviews are performed before release, General Standards Corporation assumes no

responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are

made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this

documentation.

General Standards Corporation does not assume any liability arising out of the application or use of

documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or

any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,

software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

16AI32SSC1M, Linux Device Driver, User Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 8

1.1. Purpose.. 8

1.2. Acronyms .. 8

1.3. Definitions .. 8

1.4. Software Overview ... 8
1.4.1. Basic Software Architecture ... 8
1.4.2. API Library ... 9
1.4.3. Device Driver ... 9

1.5. Hardware Overview .. 9

1.6. Reference Material .. 9

1.7. Licensing ... 10

1.8. Cautionary Notes .. 10

2. Installation ... 11

2.1. CPU and Kernel Support... 11
2.1.1. 32-bit Support Under 64-bit Environments .. 12

2.2. The /proc/ File System .. 12

2.3. File List ... 12

2.4. Directory Structure .. 12

2.5. Installation .. 13

2.6. Removal .. 13

2.7. Overall Make Script .. 13

2.8. Environment Variables ... 14
2.8.1. GSC_API_COMP_FLAGS .. 14
2.8.2. GSC_API_LINK_FLAGS .. 14
2.8.3. GSC_LIB_COMP_FLAGS .. 14
2.8.4. GSC_LIB_LINK_FLAGS .. 15
2.8.5. GSC_APP_COMP_FLAGS .. 15
2.8.6. GSC_APP_LINK_FLAGS .. 15

3. Main Interface Files .. 16

3.1. Main Header File .. 16

3.2. Main Library File .. 16
3.2.1. Build ... 16
3.2.2. System Libraries ... 17
3.2.3. Shared Object Script: Build the Main Libraries as Shard Object Files ... 17

4. API Library ... 18

4.1. Files ... 18

4.2. Build ... 18

4.3. Library Use ... 18

16AI32SSC1M, Linux Device Driver, User Manual

4

General Standards Corporation, Phone: (256) 880-8787

4.4. Macros .. 18
4.4.1. IOCTL Services .. 19
4.4.2. Registers ... 19

4.5. Data Types .. 20

4.6. Functions ... 20
4.6.1. ai32ssc1m_close() .. 20
4.6.2. ai32ssc1m_init() ... 21
4.6.3. ai32ssc1m_ioctl() ... 21
4.6.4. ai32ssc1m_open() ... 22
4.6.5. ai32ssc1m_read() .. 23

4.7. IOCTL Services .. 24
4.7.1. AI32SSC1M_IOCTL_ADC_CLK_SRC .. 24
4.7.2. AI32SSC1M_IOCTL_ADC_ENABLE.. 25
4.7.3. AI32SSC1M_IOCTL_AI_BUF_CLEAR ... 25
4.7.4. AI32SSC1M_IOCTL_AI_BUF_LEVEL ... 25
4.7.5. AI32SSC1M_IOCTL_AI_BUF_OVERFLOW .. 25
4.7.6. AI32SSC1M_IOCTL_AI_BUF_THR_LVL .. 26
4.7.7. AI32SSC1M_IOCTL_AI_BUF_THR_STS ... 26
4.7.8. AI32SSC1M_IOCTL_AI_BUF_UNDERFLOW ... 26
4.7.9. AI32SSC1M_IOCTL_AI_MODE .. 27
4.7.10. AI32SSC1M_IOCTL_AI_RANGE .. 27
4.7.11. AI32SSC1M_IOCTL_AUTOCAL ... 28
4.7.12. AI32SSC1M_IOCTL_AUTOCAL_STATUS .. 28
4.7.13. AI32SSC1M_IOCTL_AUX_CLK_MODE ... 28
4.7.14. AI32SSC1M_IOCTL_AUX_IN_POL ... 29
4.7.15. AI32SSC1M_IOCTL_AUX_NOISE ... 29
4.7.16. AI32SSC1M_IOCTL_AUX_OUT_POL ... 29
4.7.17. AI32SSC1M_IOCTL_AUX_SYNC_MODE ... 29
4.7.18. AI32SSC1M_IOCTL_BURST_BUSY .. 30
4.7.19. AI32SSC1M_IOCTL_BURST_SIZE .. 30
4.7.20. AI32SSC1M_IOCTL_BURST_SYNC .. 30
4.7.21. AI32SSC1M_IOCTL_CHAN_ACTIVE .. 31
4.7.22. AI32SSC1M_IOCTL_CHAN_FIRST ... 31
4.7.23. AI32SSC1M_IOCTL_CHAN_LAST .. 31
4.7.24. AI32SSC1M_IOCTL_CHAN_SINGLE .. 32
4.7.25. AI32SSC1M_IOCTL_DATA_FORMAT .. 32
4.7.26. AI32SSC1M_IOCTL_DATA_PACKING ... 32
4.7.27. AI32SSC1M_IOCTL_INITIALIZE ... 33
4.7.28. AI32SSC1M_IOCTL_INPUT_SYNC ... 33
4.7.29. AI32SSC1M_IOCTL_IO_INV .. 33
4.7.30. AI32SSC1M_IOCTL_IRQ0_SEL .. 33
4.7.31. AI32SSC1M_IOCTL_IRQ1_SEL .. 34
4.7.32. AI32SSC1M_IOCTL_QUERY .. 34
4.7.33. AI32SSC1M_IOCTL_RAG_ENABLE.. 35
4.7.34. AI32SSC1M_IOCTL_RAG_NRATE .. 35
4.7.35. AI32SSC1M_IOCTL_RBG_CLK_SRC .. 36
4.7.36. AI32SSC1M_IOCTL_RBG_ENABLE .. 36
4.7.37. AI32SSC1M_IOCTL_RBG_NRATE .. 36
4.7.38. AI32SSC1M_IOCTL_RBG_SYNC_OUTPUT ... 36
4.7.39. AI32SSC1M_IOCTL_REG_MOD .. 37
4.7.40. AI32SSC1M_IOCTL_REG_READ ... 37
4.7.41. AI32SSC1M_IOCTL_REG_WRITE ... 38
4.7.42. AI32SSC1M_IOCTL_RX_IO_ABORT .. 38
4.7.43. AI32SSC1M_IOCTL_RX_IO_MODE .. 39

16AI32SSC1M, Linux Device Driver, User Manual

5

General Standards Corporation, Phone: (256) 880-8787

4.7.44. AI32SSC1M_IOCTL_RX_IO_OVERFLOW .. 39
4.7.45. AI32SSC1M_IOCTL_RX_IO_TIMEOUT .. 39
4.7.46. AI32SSC1M_IOCTL_RX_IO_UNDERFLOW ... 40
4.7.47. AI32SSC1M_IOCTL_SCAN_MARKER .. 40
4.7.48. AI32SSC1M_IOCTL_SCAN_MARKER_GET .. 40
4.7.49. AI32SSC1M_IOCTL_SCAN_MARKER_SET ... 41
4.7.50. AI32SSC1M_IOCTL_WAIT_CANCEL ... 41
4.7.51. AI32SSC1M_IOCTL_WAIT_EVENT .. 42
4.7.52. AI32SSC1M_IOCTL_WAIT_STATUS .. 43

4.8. Low Latency IOCTL Services .. 44
4.8.1. AI32SSC1M_IOCTL_LL_DOH .. 44
4.8.2. AI32SSC1M_IOCTL_LL_HOLD .. 45
4.8.3. AI32SSC1M_IOCTL_LL_READ .. 45
4.8.4. AI32SSC1M_IOCTL_LL_RELEASE ... 45

4.9. Time Tag IOCTL Services .. 46
4.9.1. AI32SSC1M_IOCTL_TT_ADC_CLK_SRC ... 46
4.9.2. AI32SSC1M_IOCTL_TT_ADC_ENABLE ... 46
4.9.3. AI32SSC1M_IOCTL_TT_BURST_SIZE.. 46
4.9.4. AI32SSC1M_IOCTL_TT_CHAN_MASK_GET .. 47
4.9.5. AI32SSC1M_IOCTL_TT_CHAN_MASK_SET ... 47
4.9.6. AI32SSC1M_IOCTL_TT_CONST_REF_GET ... 47
4.9.7. AI32SSC1M_IOCTL_TT_CONST_REF_SET ... 47
4.9.8. AI32SSC1M_IOCTL_TT_COUNTER .. 48
4.9.9. AI32SSC1M_IOCTL_TT_ENABLE ... 48
4.9.10. AI32SSC1M_IOCTL_TT_LOG_MODE ... 49
4.9.11. AI32SSC1M_IOCTL_TT_NRATE ... 49
4.9.12. AI32SSC1M_IOCTL_TT_REF_XX .. 49
4.9.13. AI32SSC1M_IOCTL_TT_REF_CLK_SRC .. 50
4.9.14. AI32SSC1M_IOCTL_TT_RESET ... 50
4.9.15. AI32SSC1M_IOCTL_TT_RESET_EXT ... 50
4.9.16. AI32SSC1M_IOCTL_TT_TAGGING ... 51
4.9.17. AI32SSC1M_IOCTL_TT_THR_XX ... 51
4.9.18. AI32SSC1M_IOCTL_TT_TRIG_MODE .. 52

5. The Driver.. 53

5.1. Files ... 53

5.2. Build ... 53

5.3. Startup ... 53
5.3.1. Manual Driver Startup Procedures ... 53
5.3.2. Automatic Driver Startup Procedures ... 54

5.4. Verification ... 55

5.5. Version .. 56

5.6. Shutdown .. 56

6. Document Source Code Examples ... 57

6.1. Files ... 57

6.2. Build ... 57

6.3. Library Use ... 57

16AI32SSC1M, Linux Device Driver, User Manual

6

General Standards Corporation, Phone: (256) 880-8787

7. Utilities Source Code... 58

7.1. Files ... 58

7.2. Build ... 58

7.3. Library Use ... 58

8. Operating Information ... 59

8.1. Debugging Aids .. 59
8.1.1. Device Identification .. 59
8.1.2. Detailed Register Dump ... 59

8.2. Analog Input Configuration .. 59

8.3. Data Transfer Modes ... 59
8.3.1. PIO - Programmed I/O ... 60
8.3.2. BMDMA - Block Mode DMA ... 60
8.3.3. DMDMA - Demand Mode DMA ... 60

8.4. Low Latency Data Access... 60

9. Sample Applications ... 61

9.1. fsamp - Sample Rate - …/fsamp/ .. 61

9.2. id - Identify Board - …/id/ .. 61

9.3. regs - Register Access - …/regs/ ... 61

9.4. rxrate - Receive Rate - …/rxrate/ .. 61

9.5. savedata - Save Acquired Data - …/savedata/ .. 61

9.6. stream - Stream Rx Data to Disk - …/stream/ .. 61

9.7. wait - Wait Test - …/wait/ .. 61

Document History ... 62

16AI32SSC1M, Linux Device Driver, User Manual

7

General Standards Corporation, Phone: (256) 880-8787

Table of Figures

Figure 1 Basic architectural representation.. 9

16AI32SSC1M, Linux Device Driver, User Manual

8

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

1.1. Purpose

The purpose of this document is to describe the interface to the 16AI32SSC1M API Library and to the underlying

Linux device driver. The API Library software provides the interface between "Application Software" and the

device driver. The driver software provides the interface between the API Library and the actual 16AI32SSC1M

hardware. The API Library and driver interfaces are based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms Description

ADC Analog-to-Digital Converter

API Application Programming Interface

BMDMA Block Mode DMA

DMA Direct Memory Access

DMDMA Demand Mode DMA

GSC General Standards Corporation

PCI Peripheral Component Interconnect

PCIe PCI Express

PMC PCI Mezzanine Card

PIO Programmed I/O

PMC PCI Mezzanine Card

RAG Rate-A Generator

RBG Rate-B Generator

XMC Express Mezzanine Card

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

… This is a shortcut representation of the 16AI32SSC1M installation directory or any of its

subdirectories.

16AI32SSC1M This is used as a general reference to any device supported by this driver.

API Library This is a library that provides application-level access to 16AI32SSC1M hardware.

Application This is a user mode process, which runs in user space with user mode privileges.

Driver
This is the 16AI32SSC1M device driver, which runs in kernel space with kernel mode

privileges.

Library This is usually a general reference to the API Library.

1.4. Software Overview

1.4.1. Basic Software Architecture

This section describes the general architecture for the basic components that comprise 16AI32SSC1M applications.

The overall architecture is illustrated in Figure 1 below.

16AI32SSC1M, Linux Device Driver, User Manual

9

General Standards Corporation, Phone: (256) 880-8787

16AI32SSC1M

Device Driver

16ai32ssc1m.ko or

16ai32ssc1m.o

16AI32SSC1M

API Library
lib16ai32ssc1m_api.so

ai32ssc1m_init()

ai32ssc1m_open()

ai32ssc1m_close()

ai32ssc1m_ioctl()

ai32ssc1m_read()

/proc/16ai32ssc1m Informational

/dev/16ai32ssc1m.0 Device 0

/dev/16ai32ssc1m.1 Device 1

/dev/16ai32ssc1m.X Device X

...
16AI32SSC1M

Boards

16AI32SSC1M

Application

Hardware Level

Kernel Level

Application Level

Figure 1 Basic architectural representation.

1.4.2. API Library

The primary means of accessing 16AI32SSC1M boards is via the 16AI32SSC1M API Library. This library forms a

layer between the application and the driver. Additional information is given in section 3.2.3 (page 17). With the

library, applications are able to open and close a device and, while open, perform I/O control and read operations.

1.4.3. Device Driver

The device driver is the host software that provides a means of communicating directly with 16AI32SSC1M

hardware. The driver executes under control of the operating system and runs in Kernel Mode as a Kernel Mode

device driver. The driver is implemented as a standard dynamically loadable Linux device driver written in the C

programming language. While applications can access the driver directly without use of the API Library, it is

recommended that all access is made through the library.

1.5. Hardware Overview

The 16AI32SSC1M is a high-performance, 16-bit analog input board that incorporates up to 32 input channels. The

host side connection is PCI based and the form factor is according to the model ordered. The board is capable of

acquiring data at up to 1M samples per second over each channel. Internal clocking permits sampling rates from 1M

samples per second down to less than one sample per second. Onboard storage permits data buffering of up to 256K

samples, for all channels collectively, between the cable interface and the PCI bus. This allows the 16AI32SSC1M

to sustain continuous throughput from the cable interface independent of the PCI bus interface. The 16AI32SSC1M

also permits multiple boards to be synchronized so that all boards sample data in unison. In addition, the board

includes autocalibration capability.

1.6. Reference Material

The following reference material may be of particular benefit in using the 16AI32SSC1M. The specifications

provide the information necessary for an in depth understanding of the specialized features implemented on this

board.

• The applicable 16AI32SSC1M User Manual from General Standards Corporation.

• The PCI9056 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

16AI32SSC1M, Linux Device Driver, User Manual

10

General Standards Corporation, Phone: (256) 880-8787

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE.txt in the root installation directory.

1.8. Cautionary Notes

WARNING: Reading device data should not be performed while using the Low Latency Read

IOCTL service (section 4.8, page 44). Interrupts are disabled while the service is active and would

interfere with BMDMA and DMDMA operations. Refer to section 8.3, page 59 for additional

information.

http://www.plxtech.com/

16AI32SSC1M, Linux Device Driver, User Manual

11

General Standards Corporation, Phone: (256) 880-8787

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 6.x, 5.x, 4.x, 3.x, 2.6, 2.4 and 2.2 running on a PC

system with one or more x86 processors. This release of the driver supports the below listed kernels.

Kernel Distribution

6.2.9 Red Hat Fedora Core 38

6.0.7 Red Hat Fedora Core 37

5.17.5 Red Hat Fedora Core 36

5.14.10 Red Hat Fedora Core 35

5.11.12 Red Hat Fedora Core 34

5.8.15 Red Hat Fedora Core 33

5.6.6 Red Hat Fedora Core 32

5.3.7 Red Hat Fedora Core 31

5.0.9 Red Hat Fedora Core 30

4.18.16 Red Hat Fedora Core 29

4.16.3 Red Hat Fedora Core 28

4.13.9 Red Hat Fedora Core 27

4.11.8 Red Hat Fedora Core 26

4.8.6 Red Hat Fedora Core 25

4.5.5 Red Hat Fedora Core 24

4.2.3 Red Hat Fedora Core 23

4.0.4 Red Hat Fedora Core 22

3.17.4 Red Hat Fedora Core 21

3.11.10 Red Hat Fedora Core 20

3.9.5 Red Hat Fedora Core 19

3.6.10 Red Hat Fedora Core 18

3.3.4 Red Hat Fedora Core 17

3.1.0 Red Hat Fedora Core 16

2.6.38 Red Hat Fedora Core 15

2.6.35 Red Hat Fedora Core 14

2.6.33 Red Hat Fedora Core 13

2.6.31 Red Hat Fedora Core 12

2.6.29 Red Hat Fedora Core 11

2.6.27 Red Hat Fedora Core 10

2.6.25 Red Hat Fedora Core 9

2.6.23 Red Hat Fedora Core 8

2.6.21 Red Hat Fedora Core 7

2.6.18 Red Hat Fedora Core 6

2.6.15 Red Hat Fedora Core 5

2.6.11 Red Hat Fedora Core 4

2.6.9 Red Hat Fedora Core 3

2.4.18 Red Hat 8.0

NOTE: Some older kernel versions are supported (the sources are maintained), but are not tested.

NOTE: While only Red Hat Fedora distributions are listed, numerous other distributions are

supported and have been tested on an as needed basis.

16AI32SSC1M, Linux Device Driver, User Manual

12

General Standards Corporation, Phone: (256) 880-8787

NOTE: The driver will have to be built before being used as it is provided in source form only.

NOTE: The driver has not been tested with a non-versioned kernel.

NOTE: The driver is designed for SMP support, but has not undergone SMP specific testing.

2.1.1. 32-bit Support Under 64-bit Environments

This driver supports 32-bit applications under 64-bit environments. The availability of this feature in the kernel

depends on a 64-bit kernel being configured to support 32-bit application compatibility. Additionally, 2.6 kernels

prior to 2.6.11 implemented 32-bit compatibility in a way that resulted in some drivers not being able to take

advantage of the feature. (In these kernels a driver’s IOCTL command codes must be globally unique. Beginning

with 2.6.11 this requirement has been lifted.) If the driver is not able to provide 32-bit support under a 64-bit kernel,

the “32-bit support” field in the /proc/16ai32ssc1m file will be “no”.

2.2. The /proc/ File System

While the driver is running, the text file /proc/16ai32ssc1m can be read to obtain information about the driver

and the boards it detects. Each file entry includes an entry name followed immediately by a colon, a space character,

and the entry value. Below is an example of what appears in the file, followed by descriptions of each entry.

version: 1.4.111.50

32-bit support: yes

boards: 1

models: 16AI32SSC1M

Entry Description

version This gives the driver version number in the form x.x.x.x.

32-bit support
This reports the driver’s support for 32-bit applications. This will be either “yes” or “no”

for 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.

models

This gives a comma separated list of the basic model number for each board the driver

detected. The model numbers are listed in the same order that the boards are accessed via

the API Library’s open function.

2.3. File List

This release consists of the below listed primary files. The archive content is described in following subsections.

File Description
16ai32ssc1m.linux.tar.gz This archive contains the driver, the API Library and all related files.
16ai32ssc1m_linux_um.pdf This is a PDF version of this user manual, which is included in the archive.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory

structure is created and populated with the respective files.

Directory Description

16ai32ssc1m/
This is the driver root directory. It contains the documentation, the Overall Make Script

(section 2.7, page 13) and the below listed subdirectories.
…/api/ This directory contains the API Library source files (section 3.2.3, page 17).

…/docsrc/
This directory contains the source files for the code samples given in this document (section 6,

page 57).

16AI32SSC1M, Linux Device Driver, User Manual

13

General Standards Corporation, Phone: (256) 880-8787

…/driver/ This directory contains the device driver source files (section 5, page 53).
…/include/ This directory contains the header files for the various libraries.
…/lib/ This directory contains all of the libraries built from the installed sources.

…/samples/
This directory contains the sample application subdirectories and all of their corresponding

source files (section 9, page 61).

…/utils/
This directory contains the source files for the utility libraries used by the sample applications

(section 7, page 58).

2.5. Installation

Perform installation following the below listed steps. This installs the device driver, the API Library and all related

sources and documentation.

1. Create and change to the directory where the files are to be installed, such as /usr/src/linux/drivers/.

(The path name may vary among distributions and kernel versions.)

2. Copy the archive file 16ai32ssc1m.linux.tar.gz into the current directory.

3. Issue the following command to decompress and extract the files from the provided archive. This creates the

directory 16ai32ssc1m in the current directory, and then copies all of the archive’s files into this new

directory.

tar –xzvf 16ai32ssc1m.linux.tar.gz

2.6. Removal

Perform removal following the below listed steps. This removes the device driver, the API Library and all related

sources and documentation.

NOTE: The following steps may require elevated privileges.

1. Shutdown the driver as described in section 5.6 (page 56).

2. Change to the directory where the driver archive was installed, which may have been

/usr/src/linux/drivers/. (The path name may vary among distributions and kernel versions.)

3. Issue the below command to remove the driver archive and all of the installed driver files.

rm -rf 16ai32ssc1m.linux.tar.gz 16ai32ssc1m

4. Issue the below command to remove all of the installed device nodes.

rm -f /dev/16ai32ssc1m.*

5. If the automatic startup procedure was adopted (section 5.3.2, page 54), then edit the system startup script

rc.local and remove the line that invokes the 16AI32SSC1M’s start script. The file rc.local should

be located in the /etc/rc.d/ directory.

2.7. Overall Make Script

An Overall Make Script is included in the root installation directory. Executing this script will perform a make for

all build targets included in the release. The script also loads the driver and copies the API Library to /usr/lib/.

The script is named make_all. Follow the below steps to perform an overall make and to load the driver.

16AI32SSC1M, Linux Device Driver, User Manual

14

General Standards Corporation, Phone: (256) 880-8787

NOTE: The following steps may require elevated privileges.

1. Change to the driver root directory (…/16ai32ssc1m/).

2. Remove existing build targets using the below command. This does not unload the driver.

./make_all clean

3. Issue the following command to make all archive targets and to load the driver.

./make_all

2.8. Environment Variables

Some build environments may require compiler or linker options not present in the provided make files. To

accommodate local environment specific requirements, the provided make files incorporate support for the

following set of GSC specific environment variables.

2.8.1. GSC_API_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the API Library. The compiler used by the API Library make file is “gcc”. The content of this environment variable

is noted in the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in

the table refers to the contents of the environment variable. This environment variable has no effect on compiling

any other distributed source files or linking of any object files.

Undefined

or Empty

== Compiling: init.c

== Compiling: ioctl.c

== Compiling: open.c

Defined and

Not Empty

== Compiling: init.c (added 'xxx')

== Compiling: ioctl.c (added 'xxx')

== Compiling: open.c (added 'xxx')

2.8.2. GSC_API_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the API

Library. The linker used by the API Library make file is “ld”. The content of this environment variable is noted in

the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in the table

refers to the contents of the environment variable. This environment variable has no effect on compiling of any

source files or linking of any other object files.

Undefined

or Empty
==== Linking: ../lib/lib16ai32ssc1m_api.so

Defined and

Not Empty
==== Linking: ../lib/lib16ai32ssc1m_api.so (added 'xxx')

2.8.3. GSC_LIB_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the utility libraries. The compiler used by the utility library make files is “gcc”. The content of this environment

variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The

“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on

compiling any other distributed source files or linking of any object files.

16AI32SSC1M, Linux Device Driver, User Manual

15

General Standards Corporation, Phone: (256) 880-8787

Undefined

or Empty

== Compiling: close.c

== Compiling: init.c

== Compiling: ioctl.c

Defined and

Not Empty

== Compiling: close.c (added 'xxx')

== Compiling: init.c (added 'xxx')

== Compiling: ioctl.c (added 'xxx')

2.8.4. GSC_LIB_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the

utility libraries. The linker used by the utility library make files is “ld”. The content of this environment variable is

noted in the make files’ output to the screen. The table below shows a portion of the screen output. The “xxx” in the

table refers to the contents of the environment variable. This environment variable has no effect on compiling of any

source files or linking of any other object files.

Undefined

or Empty
==== Linking: ../lib/16ai32ssc1m_utils.a

Defined and

Not Empty
==== Linking: ../lib/16ai32ssc1m_utils.a (added 'xxx')

2.8.5. GSC_APP_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the sample applications. The compiler used by the sample application make files is “gcc”. The content of this

environment variable is noted in the make files’ output to the screen. The table below shows a portion of the screen

output. The “xxx” in the table refers to the contents of the environment variable. This environment variable has no

effect on compiling any other distributed source files or linking of any object files.

Undefined

or Empty

== Compiling: main.c

== Compiling: perform.c

Defined and

Not Empty

== Compiling: main.c (added 'xxx')

== Compiling: perform.c (added 'xxx')

2.8.6. GSC_APP_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the

sample applications. The linker used by the sample application make files is “gcc”. The content of this environment

variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The

“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on

compiling of any source files or linking of any other object files.

Undefined

or Empty
==== Linking: id

Defined and

Not Empty
==== Linking: id (added 'xxx')

16AI32SSC1M, Linux Device Driver, User Manual

16

General Standards Corporation, Phone: (256) 880-8787

3. Main Interface Files

This section gives general information on the suggested device interface files to use when developing

16AI32SSC1M based applications.

3.1. Main Header File

Throughout the remainder of this document references are made to various header files included as part of the

16AI32SSC1M driver installation. For ease of use it is suggested that applications include only the single header file

shown below rather than individually including those headers identified separately later in this document. Including

this header file pulls in all other pertinent 16AI32SSC1M specific header files. Therefore, sources may include only

this one 16AI32SSC1M header and make files may reference only this one 16AI32SSC1M include directory.

Description File Location

Header File 16ai32ssc1m_main.h …/include/

3.2. Main Library File

Throughout the remainder of this document references are made to various statically linkable libraries included as

part of the 16AI32SSC1M driver installation. For ease of use it is suggested that applications link only the single

library file shown below rather than individually linking those libraries identified separately later in this document.

Linking this library file pulls in all other static libraries included with the driver. Therefore, make files may

reference only this one 16AI32SSC1M static library and only this one 16AI32SSC1M library directory.

Description File Location

Static Library
16ai32ssc1m_main.a

…/lib/
16ai32ssc1m_multi.a

NOTE: For applications using the 16AI32SSC1M and no other GSC devices, link the

16ai32ssc1m_main.a library. For applications using multiple GSC device types, link the

xxxx_main.a library for one of the devices and the xxxx_multi.a library for the others.

Linking multiple xxxx_main.a libraries may likely produce link errors due to duplicate

symbols being defined. While it may make little or no difference, it is recommended that one

choose the xxxx_main.a library from the driver with the largest number in positions three

(x.x.X.x.x) and/or four (x.x.x.X.x) in the driver release version number.

NOTE: The 16AI32SSC1M API Library is implemented as a shared library and is thus not linked

with the 16AI32SSC1M Main Library. The API Library must be linked with applications by

adding the argument –l16ai32ssc1m_api to the linker command line.

3.2.1. Build

The main library is built via the Overall Make Script (section 2.7, page 13). However, the main library can be built

separately following the below steps.

1. Change to the directory where the main library resides (…/lib/).

2. Remove existing build targets using the below command.

make clean

3. Build the main library by issuing the below command.

make

16AI32SSC1M, Linux Device Driver, User Manual

17

General Standards Corporation, Phone: (256) 880-8787

3.2.2. System Libraries

In addition to linking the static library named above, as well as the API Library shared object file, applications may

need to also link in additional system libraries as noted below.

Library gcc Link Flag

Math -lm

POSIX Thread -lpthread

Real Time -lrt

3.2.3. Shared Object Script: Build the Main Libraries as Shard Object Files

The main libraries built via the Overall Make Script (section 2.7, page 13) are static library files. Some applications

however, require that the Main Libraries be accessed as shared object files. Generating shared object files require

that all of the static libraries be recompiled for this purpose and linked as .so files. This is done using the Shared

Object Script named below. When run, the script invokes the Overall Make Script to clean all existing build targets,

deletes the two shared object files named below, if they exist, defines an environment variable used by all of the

static library make files, invokes the Overall Make Script again to rebuild all existing build targets then invokes

make on the library make file (…/lib/makefile) to link the shared object files. The required manual steps are as

follows.

1. Change to the directory where the main library files reside (…/lib/).

2. Execute the below script.

./static_to_shared.sh

Running the above-named Shared Object Script produces the files given in the table below. These shared object files

fulfill the same purpose as the similarly named static libraries as described in the note under section 3.2 above. Refer

to that note when selecting which shared object file to use.

Description File Location

Shared Object Files

lib16ai32ssc1m_main.so

lib16ai32ssc1m_multi.so

lib16ai32ssc1m_all.so †

…/lib/

† This library includes all generated libraries, including the API Library shared object file content.

The shared object files can be linked via two different methods. In the first method, the application linker command

line can explicitly name the file in the same manner as is done were it a static library. This is the method used by the

sample applications, all of which use the 16AI32SSC1M API Library, which itself is a shared object file. This file is

also found in the …/lib/ subdirectory. In the second method, the .so files are copied to the /usr/lib/

subdirectory and are referenced on the application’s liker command line as given in the table below.

Library gcc Link Flag
lib16ai32ssc1m_main.so -l16ai32ssc1m_main

lib16ai32ssc1m_multi.so -l16ai32ssc1m_multi

lib16ai32ssc1m_all.so † -l16ai32ssc1m_all

† This library includes all generated libraries, including the API Library shared object file content.

16AI32SSC1M, Linux Device Driver, User Manual

18

General Standards Corporation, Phone: (256) 880-8787

4. API Library

The 16AI32SSC1M API Library is the software interface between user applications and the 16AI32SSC1M device

driver. The interface is accessed by including the header file 16ai32ssc1m_api.h.

NOTE: Contact General Standards Corporation if additional library functionality is required.

4.1. Files

The library files are summarized in the table below.

Description File Location

Source Files *.c, *.h … …/api/

Header File 16ai32ssc1m_api.h …/include/

Library File lib16ai32ssc1m_api.so
…/lib/

/usr/lib/ †

† The shared object library is automatically copied to /usr/lib/ when it is built.

4.2. Build

The API Library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the

below steps.

NOTE: The following steps may require elevated privileges.

1. Change to the directory where the library sources are installed (…/api/).

2. Remove existing build targets using the below command.

make clean

3. Compile the source files and build the library by issuing the below command. This step copies the API Library

file to /usr/lib/.

make

4.3. Library Use

The library is used at application compile time, at application link time and at application run time. At compile time

include the below listed header file in each source file using a component of the Library interface. Also, edit the

include file search path to locate the header file in the below listed directory. At link time the Library’s shared object

file is linked via the linker command line. This can be done by naming the .so file explicitly or by adding the below

linker command line argument. At run time the library is found in the directory /usr/lib/. (The shared object

file is automatically copied to /usr/lib/ when it is built.)

Description File Location Linker Argument

Header File 16ai32ssc1m_api.h …/include/

Shared Object Library lib16ai32ssc1m_api.so
…/lib/

/usr/lib/ -l16ai32ssc1m_api

4.4. Macros

The API Library and driver interfaces include the following macros, which are defined in 16ai32ssc1m.h.

16AI32SSC1M, Linux Device Driver, User Manual

19

General Standards Corporation, Phone: (256) 880-8787

4.4.1. IOCTL Services

The IOCTL macros are documented in section 4.7 (page 24).

4.4.2. Registers

The following gives the complete set of 16AI32SSC1M registers.

4.4.2.1. GSC Registers

The following table gives the complete set of GSC specific 16AI32SSC1M registers. Please note that the set of

registers supported by any given device may vary according to model and firmware version. For the set of supported

registers and their detailed definitions refer to the appropriate 16AI32SSC1M User Manual.

NOTE: Refer to the output of the “id” sample application (…/id/) for a complete list of the

registers supported by the device being accessed.

Macro Description
AI32SSC1M_GSC_ACAR Active Channel Assignment Register (ACAR)
AI32SSC1M_GSC_ARWR Auxiliary R/W Register (ARWR)
AI32SSC1M_GSC_ASIOCR Auxiliary Sync I/O Control Register (ASIOCR)
AI32SSC1M_GSC_AVR Autocal Values Register (AVR)
AI32SSC1M_GSC_BCFGR Board Configuration Register (BCFGR)
AI32SSC1M_GSC_BCTLR Board Control Register (BCTLR)
AI32SSC1M_GSC_BSTSR Burst Size Register (BSTSR)
AI32SSC1M_GSC_BUFSR Buffer Size Register (BUFSR)
AI32SSC1M_GSC_IBCR Input Buffer Control Register (IBCR)
AI32SSC1M_GSC_ICR Interrupt Control Register (ICR)
AI32SSC1M_GSC_IDBR Input Data Buffer Register (IDBR)
AI32SSC1M_GSC_LLCR Low Latency Control Register (LLCR)
AI32SSC1M_GSC_RAGR Rate-A Generator Register (RAGR)
AI32SSC1M_GSC_RBGR Rate-B Generator Register (RBGR)
AI32SSC1M_GSC_SMLWR Scan Marker Lower Word Register (SMLWR)
AI32SSC1M_GSC_SMUWR Scan Marker Upper Word Register (SMUWR)
AI32SSC1M_GSC_SSCR Scan & Sync Control Register (SSCR)

These registers are specific to the Time Tag feature.

Macro Description
AI32SSC1M_GSC_TTC00TRR

…

AI32SSC1M_GSC_TTC31TRR

Time Tag Channel Threshold/Reference Registers for channels 00 through 31

(TTC00TRR … TTC31TRR)

AI32SSC1M_GSC_TTACMR Time Tag Active Channel Mask Register (TTACMR)
AI32SSC1M_GSC_TTBSR Time Tag Burst Size Register (TTBSR)
AI32SSC1M_GSC_TTCLR Time Tag Counter Lower Register (TTCLR)
AI32SSC1M_GSC_TTCR Time Tag Configuration Register (TTCR)
AI32SSC1M_GSC_TTCRMR Time Tag Constant Reference Mask Register (TTCRMR)
AI32SSC1M_GSC_TTCUR Time Tag Counter Upper Register (TTCUR)
AI32SSC1M_GSC_TTRDR Time Tag Rate Divider Register (TTRDR)

16AI32SSC1M, Linux Device Driver, User Manual

20

General Standards Corporation, Phone: (256) 880-8787

4.4.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of the PCI

register identifiers refer to the driver header file gsc_pci9056.h, which is automatically included via

16ai32ssc1m_api.h.

4.4.2.3. PLX Feature Set Registers

Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX

register identifiers refer to the driver header file gsc_pci9056.h, which is automatically included via

16ai32ssc1m_api.h.

4.5. Data Types

The data types used by the API Library are described with the IOCTL services with which they are used. For

additional information refer to section 4.7 (page 24).

4.6. Functions

The interface includes the following functions. The return values reflect the completion status of the requested

operation. A return value less than zero always reflects an error condition. The table below summarizes the error

status values. For the I/O function, read, non-negative return values reflect the number of bytes transferred between

the application and the interface. A value equal to the requested transfer size indicates complete success. Return

values less than the requested transfer size indicate that the I/O timeout expired. For the other API function calls a

return value of zero indicates success.

Return Value Description
< 0 This is the value “(-errno)” (see errno.h).

4.6.1. ai32ssc1m_close()

This function is the entry point to close a connection made via the API’s open call (section 4.6.4, page 22). The

device is put in an initialized state before this call returns.

Prototype

int ai32ssc1m_close(int fd);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "16ai32ssc1m_dsl.h"

int ai32ssc1m_close_dsl(int fd)

{

 int errs;

16AI32SSC1M, Linux Device Driver, User Manual

21

General Standards Corporation, Phone: (256) 880-8787

 int ret;

 ret = ai32ssc1m_close(fd);

 if (ret)

 printf("ERROR: ai32ssc1m_close() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.2. ai32ssc1m_init()

This function is the entry point to initializing the 16AI32SSC1M API Library and must be the first call into the

Library. This function may be called more than once, but only the first successful call actually initializes the library.

Subsequent calls perform no operation at all. All other API calls return a failure status when the API Library is not

initialized.

Prototype

int ai32ssc1m_init(void);

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "16ai32ssc1m_dsl.h"

int ai32ssc1m_init_dsl(void)

{

 int errs;

 int ret;

 ret = ai32ssc1m_init();

 if (ret)

 printf("ERROR: ai32ssc1m_init() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.3. ai32ssc1m_ioctl()

This function is the entry point to performing setup and control operations on a 16AI32SSC1M. This function

should only be called after a successful open of the respective device. The specific operation performed varies

according to the request argument. The request argument also governs the use and interpretation of the arg

argument. The set of supported options for the request argument consists of the IOCTL services supported by the

driver, which are defined in section 4.7 (page 24).

16AI32SSC1M, Linux Device Driver, User Manual

22

General Standards Corporation, Phone: (256) 880-8787

NOTE: IOCTL operations are not supported for an open on device index -1.

Prototype

int ai32ssc1m_ioctl(int fd, int request, void* arg);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
request This specifies the desired operation to be performed (section 4.7, page 24).

arg This is specific to the IOCTL operation specified by the request argument.

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "16ai32ssc1m_dsl.h"

int ai32ssc1m_ioctl_dsl(int fd, int request, void* arg)

{

 int errs;

 int ret;

 ret = ai32ssc1m_ioctl(fd, request, arg);

 if (ret)

 printf("ERROR: ai32ssc1m_ioctl() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.4. ai32ssc1m_open()

This function is the entry point to open a connection to a 16AI32SSC1M board. Before returning, the initialize

IOCTL service is called to reset all hardware and software settings to their defaults.

Prototype

int ai32ssc1m_open(int device, int share, int* fd);

Argument Description
device This is the zero-based index of the 16AI32SSC1M to access. †

share
Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).

fd

The device handle is returned here. The pointer cannot be NULL. Values returned are as

follows.

Value Description
>= 0 This is the handle to use to access the device in subsequent calls.
-1 There was an error. The device is not accessible.

16AI32SSC1M, Linux Device Driver, User Manual

23

General Standards Corporation, Phone: (256) 880-8787

† The index value -1 can also be given to acquire driver information (section 2.2, page 12).

Return Value Description
0 The operation succeeded.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "16ai32ssc1m_dsl.h"

int ai32ssc1m_open_dsl(int device, int share, int* fd)

{

 int errs;

 int ret;

 ret = ai32ssc1m_open(device, share, fd);

 if (ret)

 printf("ERROR: ai32ssc1m_open() returned %d\n", ret);

 errs = ret ? 1 : 0;

 return(errs);

}

4.6.4.1. Access Modes

The value of the share argument determines the device access mode, as follows.

Shared Access Mode:

Shared Access Mode allows multiple applications to access the same device simultaneously. In this mode, the first

successful open request returns with the device in an initialized state. Subsequent successful Shared Access Mode

open requests do not affect the state of the device. Once opened in Shared Access Mode, the device access remains

in this mode until all Shared Access Mode accesses release the device with a close request.

Exclusive Access Mode:

Exclusive Access Mode allows a single application to acquire exclusive access to a device. In this mode, a

successful open request returns with the device in an initialized state. While open in this mode all subsequent open

requests will fail regardless of the access mode requested. Once opened in Exclusive Access Mode, the device

access remains in this mode until released by the application with a close request.

4.6.5. ai32ssc1m_read()

This function is the entry point to reading data from an open connection. The function reads up to bytes bytes.

NOTE: If an open was performed using an index of -1, then read requests will acquire

information from the driver (section 2.2, page 12) rather than data from a device.

NOTE: For additional information refer to the Data Transfer Modes section (section 8.3, page

59).

16AI32SSC1M, Linux Device Driver, User Manual

24

General Standards Corporation, Phone: (256) 880-8787

Prototype

int ai32ssc1m_read(int fd, void* dst, size_t bytes);

Argument Description
fd This is the file descriptor obtained from the open service (section 4.6.4, page 22).
dst The data read is put here.

bytes
This is the desired number of bytes to read. When reading from a device, this must be a

multiple of four (4).

Return Value Description

0 to bytes

The operation succeeded. When reading from a device, a value less than bytes

indicates that the I/O timeout period lapsed (section 4.7.45, page 39) before the entire

request could be satisfied.
< 0 An error occurred. See error value description above.

Example

#include <stdio.h>

#include "16ai32ssc1m_dsl.h"

int ai32ssc1m_read_dsl(int fd, void* dst, size_t bytes, size_t* qty)

{

 int errs;

 int ret;

 ret = ai32ssc1m_read(fd, dst, bytes);

 if (ret < 0)

 printf("ERROR: ai32ssc1m_read() returned %d\n", ret);

 if (qty)

 qty[0] = (ret < 0) ? 0 : (size_t) ret;

 errs = (ret < 0) ? 1 : 0;

 return(errs);

}

4.7. IOCTL Services

The 16AI32SSC1M API Library and device driver implement the following IOCTL services. Each service is

described along with the applicable ai32ssc1m_ioctl() function arguments.

4.7.1. AI32SSC1M_IOCTL_ADC_CLK_SRC

This service configures the source for the A/D sample clock.

Usage

Argument Description
request AI32SSC1M_IOCTL_ADC_CLK_SRC

arg s32*

16AI32SSC1M, Linux Device Driver, User Manual

25

General Standards Corporation, Phone: (256) 880-8787

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_ADC_CLK_SRC_BCR This refers to the Board Control Register’s Input Sync bit.
AI32SSC1M_ADC_CLK_SRC_EXT This refers to the external clock input signal.
AI32SSC1M_ADC_CLK_SRC_RAG This refers to the Rate-A Generator output.
AI32SSC1M_ADC_CLK_SRC_RBG This refers to the Rate-B Generator output.

4.7.2. AI32SSC1M_IOCTL_ADC_ENABLE

This service enables or disables the ADC clocking process.

Usage

Argument Description
request AI32SSC1M_IOCTL_ADC_ENABLE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_ADC_ENABLE_NO This disables the ADC process.
AI32SSC1M_ADC_ENABLE_YES This enables the ADC process.

4.7.3. AI32SSC1M_IOCTL_AI_BUF_CLEAR

This service immediately clears the current content from the input buffer. It also clears the associated overflow and

underflow status bits. This service does not halt sampling.

Usage

Argument Description
request AI32SSC1M_IOCTL_AI_BUF_CLEAR

arg Not used.

4.7.4. AI32SSC1M_IOCTL_AI_BUF_LEVEL

This service returns the current number of 32-bit data items in the input buffer.

Usage

Argument Description
request AI32SSC1M_IOCTL_AI_BUF_LEVEL

arg s32*

The value returned will be from zero to 256K (262,144).

4.7.5. AI32SSC1M_IOCTL_AI_BUF_OVERFLOW

This service operates on the Input Buffer Overflow status.

16AI32SSC1M, Linux Device Driver, User Manual

26

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_AI_BUF_OVERFLOW

arg s32*

Valid argument values supplied to the service are as follows.

Value Description
-1 Retrieve the current state.
AI32SSC1M_AI_BUF_OVERFLOW_CLEAR Clear the overflow status.
AI32SSC1M_AI_BUF_OVERFLOW_IGNORE Ignore the current status.

The current state is reported as one of the following values.

Value Description
AI32SSC1M_AI_BUF_OVERFLOW_NO The buffer has experienced an overflow condition.
AI32SSC1M_AI_BUF_OVERFLOW_YES The buffer has not experienced an overflow condition.

4.7.6. AI32SSC1M_IOCTL_AI_BUF_THR_LVL

This service configures the input buffer threshold level.

Usage

Argument Description
request AI32SSC1M_IOCTL_AI_BUF_THR_LVL

arg s32*

Valid argument values are from zero to 0x3FFFF, and -1. A value of -1 will return the current threshold level

setting.

4.7.7. AI32SSC1M_IOCTL_AI_BUF_THR_STS

This service retrieves the current input buffer threshold level status, which indicates whether or not there are more

than Threshold Level number of 32-bit data items in the input buffer.

Usage

Argument Description
request AI32SSC1M_IOCTL_AI_BUF_THR_STS

arg s32*

The current status is reported as one of the following values.

Value Description

AI32SSC1M_AI_BUF_THR_STS_CLEAR
The buffer contains Threshold Level number of data

items, or fewer.

AI32SSC1M_AI_BUF_THR_STS_SET
The buffer contains more than Threshold Level number of

data items.

4.7.8. AI32SSC1M_IOCTL_AI_BUF_UNDERFLOW

This service operates on the Input Buffer Underflow status.

16AI32SSC1M, Linux Device Driver, User Manual

27

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_AI_BUF_UNDERFLOW

arg s32*

Valid argument values supplied to the service are as follows.

Value Description
-1 Retrieve the current state.
AI32SSC1M_AI_BUF_UNDERFLOW_CLEAR Clear the underflow status.
AI32SSC1M_AI_BUF_UNDERFLOW_IGNORE Ignore the current status.

Valid argument values are as follows.

Value Description
AI32SSC1M_AI_BUF_UNDERFLOW_NO The buffer has experienced an underflow condition.
AI32SSC1M_AI_BUF_UNDERFLOW_YES The buffer has not experienced an underflow condition.

4.7.9. AI32SSC1M_IOCTL_AI_MODE

This service configures the board’s Analog Input Mode.

Usage

Argument Description
request AI32SSC1M_IOCTL_AI_MODE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_AI_MODE_DIFF Configure the input channels for differential operation.
AI32SSC1M_AI_MODE_VREF Connect the input channels to the onboard VREF signal.
AI32SSC1M_AI_MODE_ZERO Connect the input channels to the onboard zero voltage signal.

4.7.10. AI32SSC1M_IOCTL_AI_RANGE

This service configures the analog input voltage range.

Usage

Argument Description
request AI32SSC1M_IOCTL_AI_RANGE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_AI_RANGE_1_25V Set the input voltage range to ±1.25 volts.
AI32SSC1M_AI_RANGE_2_5V Set the input voltage range to ±2.5 volts.

16AI32SSC1M, Linux Device Driver, User Manual

28

General Standards Corporation, Phone: (256) 880-8787

AI32SSC1M_AI_RANGE_5V Set the input voltage range to ±5 volts.
AI32SSC1M_AI_RANGE_10V Set the input voltage range to ±10 volts.

4.7.11. AI32SSC1M_IOCTL_AUTOCAL

This service initiates an autocalibration cycle. Most configuration setting should be made before running an

autocalibration cycle. The driver waits for the operation to complete before returning.

NOTE: This service overwrites the current interrupt selection in order to detect the

Autocalibration Done interrupt.

NOTE: When an error is encountered, the service writes a brief, descriptive error message to the

system log.

Usage

Argument Description
request AI32SSC1M_IOCTL_AUTOCAL

arg Not used.

4.7.12. AI32SSC1M_IOCTL_AUTOCAL_STATUS

This service retrieves the status of the last autocalibration cycles.

Usage

Argument Description
request AI32SSC1M_IOCTL_AUTOCAL_STATUS

arg s32*

Returned argument values are as follows.

Value Description
AI32SSC1M_AUTOCAL_STATUS_BUSY The autocalibration is still in progress.
AI32SSC1M_AUTOCAL_STATUS_FAIL The autocalibration failed.
AI32SSC1M_AUTOCAL_STATUS_PASS The autocalibration passed.

4.7.13. AI32SSC1M_IOCTL_AUX_CLK_MODE

This service configures the clock signal on the board’s auxiliary signal connector.

Usage

Argument Description
request AI32SSC1M_IOCTL_AUX_CLK_MODE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_AUX_CLK_MODE_DISABLE This disables the signal.
AI32SSC1M_AUX_CLK_MODE_INPUT This configures the signal as an input.
AI32SSC1M_AUX_CLK_MODE_OUTPUT This configures the signal as an output.

16AI32SSC1M, Linux Device Driver, User Manual

29

General Standards Corporation, Phone: (256) 880-8787

4.7.14. AI32SSC1M_IOCTL_AUX_IN_POL

This service configures the polarity of the input signals on the board’s auxiliary signal connector.

Usage

Argument Description
request AI32SSC1M_IOCTL_AUX_IN_POL

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_AUX_IN_POL_HI_2_LO Clocking occurs on high-to-low transitions.
AI32SSC1M_AUX_IN_POL_LO_2_HI Clocking occurs on low-to-high transitions.

4.7.15. AI32SSC1M_IOCTL_AUX_NOISE

This service configures the noise sensitivity setting for signals on the board’s auxiliary signal connector.

Usage

Argument Description
request AI32SSC1M_IOCTL_AUX_NOISE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_AUX_NOISE_HIGH This refers to high noise sensitivity.
AI32SSC1M_AUX_NOISE_LOW This refers to low noise sensitivity.

4.7.16. AI32SSC1M_IOCTL_AUX_OUT_POL

This service configures the polarity of the output signals on the board’s auxiliary signal connector.

Usage

Argument Description
request AI32SSC1M_IOCTL_AUX_OUT_POL

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_AUX_OUT_POL_HI_PULSE The active state is generated via high going pulses.
AI32SSC1M_AUX_OUT_POL_LOW_PULSE The active state is generated via low going pulses.

4.7.17. AI32SSC1M_IOCTL_AUX_SYNC_MODE

This service configures the sync signal on the board’s auxiliary signal connector.

16AI32SSC1M, Linux Device Driver, User Manual

30

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_AUX_SYNC_MODE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_AUX_SYNC_MODE_DISABLE This disables the signal.
AI32SSC1M_AUX_SYNC_MODE_INPUT This configures the signal as an input.
AI32SSC1M_AUX_SYNC_MODE_OUTPUT This configures the signal as an output.

4.7.18. AI32SSC1M_IOCTL_BURST_BUSY

This service reports on the board’s burst activity.

Usage

Argument Description
request AI32SSC1M_IOCTL_BURST_BUSY

arg s32*

The value returned will be one of the following.

Value Description
AI32SSC1M_BURST_BUSY_ACTIVE A bursting activity is in progress.
AI32SSC1M_BURST_BUSY_IDLE No bursting activity is in progress.

4.7.19. AI32SSC1M_IOCTL_BURST_SIZE

This service configures the size of a single burst (the count is in scans, which is an A/D conversion of all active

channels).

Usage

Argument Description
request AI32SSC1M_IOCTL_BURST_SIZE

arg s32*

Valid argument values are from zero to 0x80000, or -1 to retrieve the current setting.

4.7.20. AI32SSC1M_IOCTL_BURST_SYNC

This service configures the clocking source for burst operations.

Usage

Argument Description
request AI32SSC1M_IOCTL_BURST_SYNC

arg s32*

Valid argument values are as follows.

16AI32SSC1M, Linux Device Driver, User Manual

31

General Standards Corporation, Phone: (256) 880-8787

Value Description
-1 Retrieve the current setting.

AI32SSC1M_BURST_SYNC_BCR
Bursting is driven by the Board Control Register’s Input

Sync bit.
AI32SSC1M_BURST_SYNC_DISABLE Bursting is disabled.
AI32SSC1M_BURST_SYNC_EXT Bursting is driven by the cable’s Sync Input cable signal.
AI32SSC1M_BURST_SYNC_RBG Bursting is driven by the Rate-B Generator.

4.7.21. AI32SSC1M_IOCTL_CHAN_ACTIVE

This service configures the selection for the number and range of active channels to scan.

Usage

Argument Description
request AI32SSC1M_IOCTL_CHAN_ACTIVE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_CHAN_ACTIVE_0_1 This refers to channels zero through one.
AI32SSC1M_CHAN_ACTIVE_0_3 This refers to channels zero through three.
AI32SSC1M_CHAN_ACTIVE_0_7 This refers to channels zero through seven.
AI32SSC1M_CHAN_ACTIVE_0_15 This refers to channels zero through 15.
AI32SSC1M_CHAN_ACTIVE_0_31 This refers to channels zero through 31.

AI32SSC1M_CHAN_ACTIVE_RANGE
This refers to a user specified range of channels from a first

selection to a last selection. ‡
AI32SSC1M_CHAN_ACTIVE_SINGLE This refers to a single, user specified channel. †

† The channel selection is specified with the service AI32SSC1M_IOCTL_CHAN_SINGLE (section

4.7.24, page 32).

‡ The first channel is specified with the service AI32SSC1M_IOCTL_CHAN_FIRST (section 4.7.22,

page 31). The last channel is specified with the service AI32SSC1M_IOCTL_CHAN_LAST (section

4.7.23, page 31).

4.7.22. AI32SSC1M_IOCTL_CHAN_FIRST

This service configures the selection of the first channel to scan when the active channel selection is set to the range

option (AI32SSC1M_CHAN_ACTIVE_RANGE, section 4.7.21, page 31).

Usage

Argument Description
request AI32SSC1M_IOCTL_CHAN_FIRST

arg s32*

Valid argument values are from zero to one less than the current last setting, or -1 to retrieve the current selection.

4.7.23. AI32SSC1M_IOCTL_CHAN_LAST

This service configures the selection of the last channel to scan when the active channel selection is set to the range

option (AI32SSC1M_CHAN_ACTIVE_RANGE, section 4.7.21, page 31).

16AI32SSC1M, Linux Device Driver, User Manual

32

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_CHAN_LAST

arg s32*

Valid argument values are from the current first setting to one less than the number of channels on the board, or -1

to retrieve the current selection.

4.7.24. AI32SSC1M_IOCTL_CHAN_SINGLE

This service configures the selection of the channel to scan when the active channel selection is set to the single

option (AI32SSC1M_CHAN_ACTIVE_SINGLE, section 4.7.21, page 31).

Usage

Argument Description
request AI32SSC1M_IOCTL_CHAN_SINGLE

arg s32*

Valid argument values are from zero to one less than the number of channels on the board, or -1 to retrieve the

current selection.

4.7.25. AI32SSC1M_IOCTL_DATA_FORMAT

This service configures the data encoding format.

Usage

Argument Description
request AI32SSC1M_IOCTL_DATA_FORMAT

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_DATA_FORMAT_2S_COMP This refers to the Twos Compliment data format.
AI32SSC1M_DATA_FORMAT_OFF_BIN This refers to the Offset Binary encoding format.

4.7.26. AI32SSC1M_IOCTL_DATA_PACKING

This service configures the data packing feature.

Usage

Argument Description
request AI32SSC1M_IOCTL_DATA_PACKING

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.

16AI32SSC1M, Linux Device Driver, User Manual

33

General Standards Corporation, Phone: (256) 880-8787

AI32SSC1M_DATA_PACKING_DISABLE
This option disables data packing so that A/D values in the

input buffer are 32-bits wide.

AI32SSC1M_DATA_PACKING_ENABLE
This option enables data packing so that A/D values in the

input buffer are 16-bits wide.

4.7.27. AI32SSC1M_IOCTL_INITIALIZE

This service returns all driver interface settings for the board to the state they were in when the board was first

opened. This includes both hardware-based settings and software-based settings.

NOTE: If the initialization service returns an error status, an error message will be posted to the

system log briefly describing the error condition.

Usage

Argument Description
request AI32SSC1M_IOCTL_INITIALIZE

arg Not used.

4.7.28. AI32SSC1M_IOCTL_INPUT_SYNC

This service initiates an Input Sync operation. The driver will wait for completion, but no more than the read timeout

period. If the read timeout is zero, then the driver will wait up to one second for completion. (Refer to service

AI32SSC1M_IOCTL_RX_IO_TIMEOUT, section 4.7.45, page 39.)

Usage

Argument Description
request AI32SSC1M_IOCTL_INPUT_SYNC

arg Not used.

4.7.29. AI32SSC1M_IOCTL_IO_INV

This service configures the inversion of the cable’s clock and sync I/O signals.

Usage

Argument Description
request AI32SSC1M_IOCTL_IO_INV

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_IO_INV_HIGH Active signals are asserted high.
AI32SSC1M_IO_INV_LOW Active signals are asserted low.

4.7.30. AI32SSC1M_IOCTL_IRQ0_SEL

This service configures the interrupt source selection for interrupt number zero.

16AI32SSC1M, Linux Device Driver, User Manual

34

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_IRQ0_SEL

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_IRQ0_AUTOCAL_DONE This refers to the completion of an autocalibration cycle.
AI32SSC1M_IRQ0_BURST_DONE This refers to the completion of an input burst.
AI32SSC1M_IRQ0_BURST_START This refers to the beginning of an input burst.
AI32SSC1M_IRQ0_INIT_DONE This refers to the completion of an initialization cycle.
AI32SSC1M_IRQ0_SYNC_DONE This refers to the completion of a sync operation.
AI32SSC1M_IRQ0_SYNC_START This refers to the beginning of a sync operation.

4.7.31. AI32SSC1M_IOCTL_IRQ1_SEL

This service configures the interrupt source selection for interrupt number one.

Usage

Argument Description
request AI32SSC1M_IOCTL_IRQ1_SEL

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.

AI32SSC1M_IRQ1_IN_BUF_OVR_UNDR
This refers to the occurrence of either an input buffer

overflow or an input buffer underflow.

AI32SSC1M_IRQ1_IN_BUF_THR_H2L
This refers to the input buffer threshold status being

negated.

AI32SSC1M_IRQ1_IN_BUF_THR_L2H
This refers to the input buffer threshold status being

asserted.
AI32SSC1M_IRQ1_NONE This disabled the interrupt.

4.7.32. AI32SSC1M_IOCTL_QUERY

This service queries the driver for various pieces of information about the board and the driver.

Usage

Argument Description
request AI32SSC1M_IOCTL_QUERY

arg s32*

Valid argument values are as follows.

Value Description

AI32SSC1M_QUERY_AUTOCAL_MS
This returns the maximum duration of the Autocalibration

cycle in milliseconds.

16AI32SSC1M, Linux Device Driver, User Manual

35

General Standards Corporation, Phone: (256) 880-8787

AI32SSC1M_QUERY_CHANNEL_MAX

This returns the maximum number of input channels

supported by the board, which may be more that the board’s

current configuration.

AI32SSC1M_QUERY_CHANNEL_QTY

This returns the actual number of input channels on the

current board. If the value returned is -1, then the driver was

unable to determine the number of channels.

AI32SSC1M_QUERY_COUNT
This returns the number of query options supported by the

IOCTL service.

AI32SSC1M_QUERY_DEVICE_TYPE
This returns the identifier value for the board’s type. This

should be GSC_DEV_TYPE_16AI32SSC1M.

AI32SSC1M_QUERY_FGEN_MAX This returns the maximum supported FGEN value.
AI32SSC1M_QUERY_FGEN_MIN This returns the minimum supported FGEN value.
AI32SSC1M_QUERY_FIFO_SIZE This returns the size of the input buffer in 32-bit A/D values.
AI32SSC1M_QUERY_FSAMP_MAX This gives the maximum Fsamp value in S/S.
AI32SSC1M_QUERY_FSAMP_MIN This gives the minimum Fsamp value in S/S.

AI32SSC1M_QUERY_INIT_MS
This returns the duration of a board initialization in

milliseconds.
AI32SSC1M_QUERY_MASTER_CLOCK This returns the master clock frequency in hertz.
AI32SSC1M_QUERY_NRATE_MAX This returns the maximum supported NRATE value.
AI32SSC1M_QUERY_NRATE_MIN This returns the minimum supported NRATE value.
AI32SSC1M_QUERY_RATE_GEN_QTY This returns the number of Rate Generators on the board.

Valid return values are as indicated in the above table and as given in the below table.

Value Description

AI32SSC1M_IOCTL_QUERY_ERROR
Either there was a processing error or the query option is

unrecognized.

4.7.33. AI32SSC1M_IOCTL_RAG_ENABLE

This service enables or disables the Rate-A Generator.

Usage

Argument Description
request AI32SSC1M_IOCTL_RAG_ENABLE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_GEN_ENABLE_NO This option disables the rate generator.
AI32SSC1M_GEN_ENABLE_YES This option enables the rate generator.

4.7.34. AI32SSC1M_IOCTL_RAG_NRATE

This service configures the NRATE divider value for the Rate-A Generator.

Usage

Argument Description
request AI32SSC1M_IOCTL_RAG_NRATE

arg s32*

16AI32SSC1M, Linux Device Driver, User Manual

36

General Standards Corporation, Phone: (256) 880-8787

Valid argument values are from 64 to 0xFFFF.

4.7.35. AI32SSC1M_IOCTL_RBG_CLK_SRC

This service configures the clock source selection for the Rate-B Generator.

Usage

Argument Description
request AI32SSC1M_IOCTL_RBG_CLK_SRC

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_RBG_CLK_SRC_MASTER This refers to the board’s master clock.

AI32SSC1M_RBG_CLK_SRC_RAG
This refers to the Rate-A Generator output. This option is

used for rate generator cascading.

4.7.36. AI32SSC1M_IOCTL_RBG_ENABLE

This service enables or disables the Rate-B Generator.

Usage

Argument Description
request AI32SSC1M_IOCTL_RBG_ENABLE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_GEN_ENABLE_NO This option disables the rate generator.
AI32SSC1M_GEN_ENABLE_YES This option enables the rate generator.

4.7.37. AI32SSC1M_IOCTL_RBG_NRATE

This service configures the NRATE divider value for the Rate-B Generator.

Usage

Argument Description
request AI32SSC1M_IOCTL_RBG_NRATE

arg s32*

Valid argument values are from 64 to 0xFFFF.

4.7.38. AI32SSC1M_IOCTL_RBG_SYNC_OUTPUT

This service enables or disables the Rate-B Generator SYNC Output option.

16AI32SSC1M, Linux Device Driver, User Manual

37

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_RBG_SYNC_OUTPUT

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.

AI32SSC1M_RBG_SYNC_OUTPUT_DISABLE
This option disables the Rate-B Generator SYNC

Output feature.

AI32SSC1M_RBG_SYNC_OUTPUT_ENABLE
This option enables the Rate-B Generator SYNC

Output feature.

4.7.39. AI32SSC1M_IOCTL_REG_MOD

This service performs a read-modify-write of a 16AI32SSC1M register. This includes only the GSC firmware

registers. The PCI and PLX Feature Set Registers are read-only. Refer to 16ai32ssc1m.h for the complete list

of GSC firmware registers.

Usage

Argument Description
request AI32SSC1M_IOCTL_REG_MOD

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This contains the value for the register bits to modify.

mask
This specifies the set of bits to modify. If a bit here is set, then the respective register bit is

modified. If a bit here is zero, then the respective register bit is unmodified.

4.7.40. AI32SSC1M_IOCTL_REG_READ

This service reads the value of a 16AI32SSC1M register. This includes the PCI registers, the PLX Feature Set

Registers and the GSC firmware registers. Refer to 16ai32ssc1m.h and gsc_pci9056.h for the complete

list of accessible registers.

Usage

Argument Description
request AI32SSC1M_IOCTL_REG_READ

arg gsc_reg_t*

Definition

16AI32SSC1M, Linux Device Driver, User Manual

38

General Standards Corporation, Phone: (256) 880-8787

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This is the value read from the specified register.
mask This is ignored for read request.

4.7.41. AI32SSC1M_IOCTL_REG_WRITE

This service writes a value to a 16AI32SSC1M register. This includes only the GSC firmware registers. The PCI and

PLX Feature Set Registers are read-only. Refer to 16ai32ssc1m.h for a complete list of the GSC firmware

registers.

Usage

Argument Description
request AI32SSC1M_IOCTL_REG_WRITE

arg gsc_reg_t*

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description
reg This is set to the identifier for the register to access.
value This is the value to write to the specified register.
mask This is ignored for write request.

4.7.42. AI32SSC1M_IOCTL_RX_IO_ABORT

This service aborts an ongoing ai32ssc1m_read() request.

Usage

Argument Description
request AI32SSC1M_IOCTL_RX_IO_ABORT

arg s32*

The results are reported as one of the following values.

Value Description

AI32SSC1M_IO_ABORT_NO
An ai32ssc1m_read() request was not aborted as none were

ongoing.

AI32SSC1M_IO_ABORT_YES An ongoing ai32ssc1m_read() request was aborted.

16AI32SSC1M, Linux Device Driver, User Manual

39

General Standards Corporation, Phone: (256) 880-8787

4.7.43. AI32SSC1M_IOCTL_RX_IO_MODE

This service sets the I/O mode used for data read requests.

Usage

Argument Description
request AI32SSC1M_IOCTL_RX_IO_MODE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
GSC_IO_MODE_BMDMA Use Block Mode DMA.
GSC_IO_MODE_DMDMA Use Demand Mode DMA (transfer data as it becomes possible to do so).
GSC_IO_MODE_PIO Use PIO mode, which is repetitive register access. This is the default.

4.7.44. AI32SSC1M_IOCTL_RX_IO_OVERFLOW

This service configures the read service to check for an input buffer overflow before performing read operations.

Sampled data is lost when there is an overflow.

NOTE: The check for an overflow is performed upon entry to the read service. The read service

does not check for overflows that occur while the read is in progress. For in-progress overflows an

application must perform the check manually or wait for the check performed by a subsequent

read request.

Usage

Argument Description
request AI32SSC1M_IOCTL_RX_IO_OVERFLOW

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_IO_OVERFLOW_CHECK Perform the check. This is the default.
AI32SSC1M_IO_OVERFLOW_IGNORE Do not perform the check.

4.7.45. AI32SSC1M_IOCTL_RX_IO_TIMEOUT

This service sets the timeout limit for read requests. The value is expressed in seconds.

Usage

Argument Description
request AI32SSC1M_IOCTL_RX_IO_TIMEOUT

arg s32*

Valid argument values are in the range from zero to 3600, -1, and AI32SSC1M_IO_TIMEOUT_INFINITE. A

value of zero tells the driver not to sleep in order to wait for more data, and should only be used with PIO mode

16AI32SSC1M, Linux Device Driver, User Manual

40

General Standards Corporation, Phone: (256) 880-8787

reads. A value of -1 is used to retrieve the current setting. If the option AI32SSC1M_IO_TIMEOUT_INFINITE

is used, then the driver will wait indefinitely rather than timing out. The default is 10 seconds.

4.7.46. AI32SSC1M_IOCTL_RX_IO_UNDERFLOW

This service configures the read service to check for an input buffer underflow before performing the read operation.

Sampled data is lost when there is an underflow.

NOTE: The check for an underflow is performed upon entry to the read service. The read service

does not check for underflows that occur while the read is in progress. For in-progress underflows

an application must perform the check manually or wait for the check performed by a subsequent

read request.

Usage

Argument Description
request AI32SSC1M_IOCTL_RX_IO_UNDERFLOW

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_IO_UNDERFLOW_CHECK Perform the check. This is the default.
AI32SSC1M_IO_UNDERFLOW_IGNORE Do not perform the check.

4.7.47. AI32SSC1M_IOCTL_SCAN_MARKER

This service configures the insertion of Scan Markers into the input buffer data stream. Refer to the board user

manual for additional information.

Usage

Argument Description
request AI32SSC1M_IOCTL_SCAN_MARKER

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_SCAN_MARKER_DISABLE Scan Markers are not inserted into the data stream.
AI32SSC1M_SCAN_MARKER_ENABLE Scan Markers are inserted into the data stream.

4.7.48. AI32SSC1M_IOCTL_SCAN_MARKER_GET

This service retrieves the Scan Marker value that is inserted into the data stream, when enabled. Refer to the board

user manual for additional information.

Usage

Argument Description
request AI32SSC1M_IOCTL_SCAN_MARKER_GET

arg u32*

16AI32SSC1M, Linux Device Driver, User Manual

41

General Standards Corporation, Phone: (256) 880-8787

Argument values returned are from zero to 0xFFFFFFFF.

4.7.49. AI32SSC1M_IOCTL_SCAN_MARKER_SET

This service configures the Scan Marker value that is inserted into the data stream. Refer to the board user manual

for additional information.

Usage

Argument Description
request AI32SSC1M_IOCTL_SCAN_MARKER_VAL

arg u32*

Valid argument values are from zero to 0xFFFFFFFF.

4.7.50. AI32SSC1M_IOCTL_WAIT_CANCEL

This service resumes all threads blocked via AI32SSC1M_IOCTL_WAIT_EVENT IOCTL service requests (section

4.7.51, page 42), according to the provided criteria. When a blocked thread is waiting for any event specified in the

structure, then the thread is resumed.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver

initiated waits are unaffected by application cancel requests.

Usage

Argument Description
request AI32SSC1M_IOCTL_WAIT_CANCEL

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description
flags This is unused by wait cancel operations.

main
This specifies the set of GSC_WAIT_MAIN_* events whose wait requests are to be

cancelled. Refer to section 4.7.51.2 on page 43.

gsc
This specifies the set of AI32SSC1M_WAIT_GSC_* events whose wait requests are to

be cancelled. Refer to section 4.7.51.3 on page 43.
alt This is unused by the 16AI32SSC1M driver and should be zero.

io
This specifies the set of AI32SSC1M_WAIT_IO_* events whose wait requests are to

be cancelled. Refer to section 4.7.51.4 on page 43.
timeout_ms This is unused by wait cancel operations.
count Upon return this indicates the number of waits that were cancelled.

16AI32SSC1M, Linux Device Driver, User Manual

42

General Standards Corporation, Phone: (256) 880-8787

4.7.51. AI32SSC1M_IOCTL_WAIT_EVENT

This service blocks a thread until any one of a specified set of events occurs, or until a timeout lapses, whichever

occurs first. The set of possible events to wait for are specified in the structure’s main, gsc, alt and io fields. All

field values must be valid and at least one event must be specified. If the thread is resumed because one of the

referenced events has occurred, then the bit for the respective event is the only event bit that will be set. All other

event bits and fields will be zero. (Multiple event bits will be set only if the events occur simultaneously.)

NOTE: The service waits only for the first of the specified events, not for all specified events.

NOTE: A wait timeout is reported via the gsc_wait_t structure’s flags field having the

GSC_WAIT_FLAG_TIMEOUT flag set, rather than via an ETIMEDOUT error.

Usage

Argument Description
request AI32SSC1M_IOCTL_WAIT_EVENT

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description

flags
This must initially be zero. Upon return this indicates the reason that the thread was

resumed. Refer to section 4.7.51.1on page 42.

main
This specifies any number of GSC_WAIT_MAIN_* events that the thread is to wait for.

Refer to section 4.7.51.2 on page 43.

gsc
This specifies any number of AI32SSC1M_WAIT_GSC_* events that the thread is to

wait for. Refer to section 4.7.51.3 on page 43.
alt This is unused by the 16AI32SSC1M driver and must be zero.

io
This specifies any number of AI32SSC1M_WAIT_IO_* events that the thread is to

wait for. Refer to section 4.7.51.4 on page 43.

timeout_ms

This specified the maximum amount of time, in milliseconds, that the thread is to wait

for any of the referenced events. A value of zero means do not timeout at all. If non-

zero, then upon return the value will be the approximate amount of time actually waited.
count This is unused by wait event operations and must be zero.

4.7.51.1. gsc_wait_t.flags Options

Upon return from a wait request the wait structure’s flags field will indicate the reason that the thread was

resumed. Only one of the below options will be set.

Fields Description
GSC_WAIT_FLAG_CANCEL The wait request was cancelled.

16AI32SSC1M, Linux Device Driver, User Manual

43

General Standards Corporation, Phone: (256) 880-8787

GSC_WAIT_FLAG_DONE One of the referenced events occurred.
GSC_WAIT_FLAG_TIMEOUT The timeout period lapsed before a referenced event occurred.

4.7.51.2. gsc_wait_t.main Options

The wait structure’s main field may specify any of the below primary interrupt options. These interrupt options are

supported by the 16AI32SSC1M and other General Standards products.

Fields Description
GSC_WAIT_MAIN_DMA0 This refers to the DMA Done interrupt on DMA engine number zero.
GSC_WAIT_MAIN_DMA1 This refers to the DMA Done interrupt on DMA engine number one.
GSC_WAIT_MAIN_GSC This refers to any of the Interrupt Control/Status Register interrupts.

GSC_WAIT_MAIN_OTHER
This generally refers to an interrupt generated by another device sharing the

same interrupt as the 16AI32SSC1M.
GSC_WAIT_MAIN_PCI This refers to any interrupt generated by the 16AI32SSC1M.
GSC_WAIT_MAIN_SPURIOUS This refers to board interrupts which should never be generated.
GSC_WAIT_MAIN_UNKNOWN This refers to board interrupts whose source could not be identified.

4.7.51.3. gsc_wait_t.gsc Options

The wait structure’s gsc field may specify any combination of the below interrupt options. These are the interrupt

options referenced in the Interrupt Control Register. Applications are responsible for selecting the desired interrupt

options. Refer to AI32SSC1M_IOCTL_IRQ0_SEL (section 4.7.30, page 33) and

AI32SSC1M_IOCTL_IRQ1_SEL (section 4.7.31, page 34).

Value Description
AI32SSC1M_WAIT_GSC_AUTOCAL_DONE This refers to the completion of an autocalibration cycle.
AI32SSC1M_WAIT_GSC_BURST_DONE This refers to the completion of an input burst.
AI32SSC1M_WAIT_GSC_BURST_START This refers to the beginning of an input burst.

AI32SSC1M_WAIT_GSC_IN_BUF_OVR_UNDR
This refers to the occurrence of either an input buffer

overflow or an input buffer underflow.
AI32SSC1M_WAIT_GSC_IN_BUF_THR_H2L This refers to the input buffer threshold status being negated.
AI32SSC1M_WAIT_GSC_IN_BUF_THR_L2H This refers to the input buffer threshold status being asserted.
AI32SSC1M_WAIT_GSC_INIT_DONE This refers to the completion of an initialization cycle.
AI32SSC1M_WAIT_GSC_SYNC_DONE This refers to the completion of a sync operation.
AI32SSC1M_WAIT_GSC_SYNC_START This refers to the beginning of a sync operation.

4.7.51.4. gsc_wait_t.io Options

The wait structure’s io field may specify any of the below event options. These events are generated in response to

application board data read requests.

Fields Description
AI32SSC1M_WAIT_IO_RX_ABORT This refers to read requests which have been aborted.
AI32SSC1M_WAIT_IO_RX_DONE This refers to read requests which have been satisfied.
AI32SSC1M_WAIT_IO_RX_ERROR This refers to read requests which end due to an error.
AI32SSC1M_WAIT_IO_RX_TIMEOUT This refers to read requests which end due to the timeout period lapse.

4.7.52. AI32SSC1M_IOCTL_WAIT_STATUS

This service counts all threads blocked via the AI32SSC1M_IOCTL_WAIT_EVENT IOCTL service (section

4.7.51, page 42), according to the provided criteria. A match is made when a waiting thread’s wait criteria matches

any of the criteria specified in the structure passed to this service.

16AI32SSC1M, Linux Device Driver, User Manual

44

General Standards Corporation, Phone: (256) 880-8787

NOTE: The driver itself makes use of the wait services for various internal operations. Driver

initiated waits are ignored by application status requests.

Usage

Argument Description
request AI32SSC1M_IOCTL_WAIT_STATUS

arg gsc_wait_t*

Definition

typedef struct

{

 u32 flags;

 u32 main;

 u32 gsc;

 u32 alt;

 u32 io;

 u32 timeout_ms;

 u32 count;

} gsc_wait_t;

Fields Description
flags This is unused by wait status operations.

main
This specifies the set of GSC_WAIT_MAIN_* events whose wait requests are to be

counted. Refer to section 4.7.51.2 on page 43.

gsc
This specifies the set of AI32SSC1M_WAIT_GSC_* events whose wait requests are to

be counted. Refer to section 4.7.51.3 on page 43.
alt This is unused by the 16AI32SSC1M driver and should be zero.

io
This specifies the set of AI32SSC1M_WAIT_IO_* events whose wait requests are to

be counted. Refer to section 4.7.51.4 on page 43.
timeout_ms This is unused by wait status operations.
count Upon return this indicates the number of waits that met any of the specified criteria.

4.8. Low Latency IOCTL Services

The 16AI32SSC1M driver implements the following Low Latency specific IOCTL services. (For the common

services refer to section 4.7 on page 24.) Each service is described along with the applicable

ai32ssc1m_ioctl() function arguments.

WARNING: Reading device data should not be performed while using the Low Latency Read

IOCTL service. Interrupts are disabled while the service is active and would interfere with

BMDMA and DMDMA operations.

4.8.1. AI32SSC1M_IOCTL_LL_DOH

This service report if the device is in a Low Latency Data on Hold state. Refer to the board user manual for

additional information.

Usage

Argument Description
request AI32SSC1M_IOCTL_LL_DOH

arg s32*

16AI32SSC1M, Linux Device Driver, User Manual

45

General Standards Corporation, Phone: (256) 880-8787

Valid argument values are as follows.

Value Description
AI32SSC1M_LL_DOH_NO The board is not in a Low Latency Data on Hold state.
AI32SSC1M_LL_DOH_YES The board is in a Low Latency Data on Hold state.

4.8.2. AI32SSC1M_IOCTL_LL_HOLD

This service configures the hold register index for the Low Latency data retrieval operation. Refer to the board user

manual for additional information.

Usage

Argument Description
request AI32SSC1M_IOCTL_LL_HOLD

arg s32*

Valid argument values are from zero to one less than the number of board channels.

4.8.3. AI32SSC1M_IOCTL_LL_READ

This service retrieves the Low Latency registers according to the board’s current configuration and the mask field

in the referenced structure. The currently configured hold channel register is always read first. If the hold and

release channels are the same, then no additional action takes place. Otherwise, the channel data is read according to

the description given below for the mask field, followed by reading the release channel register.

WARNING: Reading device data should not be performed while using the Low Latency Read

IOCTL service. Interrupts are disabled while the service is active and would interfere with

BMDMA and DMDMA operations.

Usage

Argument Description
request AI32SSC1M_IOCTL_LL_READ

arg ai32ssc1m_ll_data_t*

Definition

typedef struct

{

 u32 mask;

 u32 data[32];

} ai32ssc1m_ll_data_t;

Fields Description

mask

This specifies the set of Low Latency registers to read. If a bit is set, then the corresponding Low

Latency register is retrieved. If a bit is clear, then the corresponding register is ignored. The bits

for the hold and release channels are ignored.
data This retrieved data is recorded here.

4.8.4. AI32SSC1M_IOCTL_LL_RELEASE

This service configures the release register index for the Low Latency data retrieval operation. Refer to the board

user manual for additional information.

16AI32SSC1M, Linux Device Driver, User Manual

46

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_LL_RELEASE

arg s32*

Valid argument values are from zero to one less than the number of board channels.

4.9. Time Tag IOCTL Services

The 16AI32SSC1M driver implements the following Time Tag specific IOCTL services. (For the common services

refer to section 4.7 on page 24.) Each service is described along with the applicable ai32ssc1m_ioctl()

function arguments.

4.9.1. AI32SSC1M_IOCTL_TT_ADC_CLK_SRC

This service configures the source for the Time Tag A/D sample clock.

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_ADC_CLK_SRC

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.

AI32SSC1M_TT_ADC_CLK_SRC_EXT_REF
This refers to the external Reference Clock Input

signal.
AI32SSC1M_TT_ADC_CLK_SRC_EXT_SAMP This refers to the external Sample Clock Input signal.
AI32SSC1M_TT_ADC_CLK_SRC_RAG This refers to the Rate-A Generator output.

4.9.2. AI32SSC1M_IOCTL_TT_ADC_ENABLE

This service enables or disables the Time Tag ADC clocking process.

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_ADC_ENABLE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_TT_ADC_ENABLE_NO This disables the ADC process.
AI32SSC1M_TT_ADC_ENABLE_YES This enables the ADC process.

4.9.3. AI32SSC1M_IOCTL_TT_BURST_SIZE

This service configures the size of a single burst when the Time Tag feature is enabled. The count is in scans, which

is an A/D conversion of all active channels.

16AI32SSC1M, Linux Device Driver, User Manual

47

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_BURST_SIZE

arg s32*

Valid argument values are from zero to 0xFFFF, or -1 to retrieve the current setting.

4.9.4. AI32SSC1M_IOCTL_TT_CHAN_MASK_GET

This service retrieves the current Time Tag active channel mask.

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_CHAN_MASK_GET

arg u32*

Argument values returned are in the range of zero to 0xFFFFFFFF. The value is defined to be a bitmap of the

channels to scan.

4.9.5. AI32SSC1M_IOCTL_TT_CHAN_MASK_SET

This service updates the Time Tag active channel mask.

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_CHAN_MASK_SET

arg u32*

Valid argument values are in the range of zero to 0xFFFFFFF, according to the number of installed channels. The

value is defined to be a bitmap of the channels to scan. The least significant bit refers to channel zero. The most

significant bit refers to channel 31. If a bit is set, then the channel is scanned. If a bit is clear, then the channel is not

scanned. An error is produced if attempting to enable a channel not present on the board.

4.9.6. AI32SSC1M_IOCTL_TT_CONST_REF_GET

This service retrieves the current Constant/Reference selection mask. If a bit is set, then the channel’s reference

value remains unchanged when triggered. The channel’s reference value is otherwise updated.

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_CONST_REF_GET

arg u32*

Argument values returned are in the range of zero to 0xFFFFFFFF.

4.9.7. AI32SSC1M_IOCTL_TT_CONST_REF_SET

This service updates the current Constant/Reference selection mask. If a bit is set, then the channel’s reference value

remains unchanged when triggered. The channel’s reference value is otherwise updated.

16AI32SSC1M, Linux Device Driver, User Manual

48

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_CONST_REF_SET

arg u32*

Valid argument values are in the range of zero to 0xFFFFFFFF, according to the number of channels on the board.

4.9.8. AI32SSC1M_IOCTL_TT_COUNTER

This service retrieves the current value of the 48-bit, 1us Time Tag Counter.

NOTE: This service may take up to about 20us to complete. This is because of the driver’s effort

to reduce the likelihood of a rollover occurring during the time interval between reading the lower

32-bits and the upper 16-bits, which are read sequentially. Reading of the lower 32-bits occurs

from about 8us to about 16us after the driver service begins execution.

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_COUNTER

arg ai32ssc1m_tt_counter_t*

Definition

typedef struct

{

 u32 lower;

 u16 upper;

 u16 reserved;

} ai32ssc1m_ll_data_t;

Fields Description
lower This field holds the lower 32-bits of the 48-bit counter value.
upper This field holds the upper 16-bits of the 48-bit counter value.
Reserved This field is reserved for future is set to zero.

4.9.9. AI32SSC1M_IOCTL_TT_ENABLE

This service enables or disables the Time Tag feature.

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_ENABLE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_TT_ENABLE_NO This disables the Time Tag feature.
AI32SSC1M_TT_ENABLE_YES This enables the Time Tag feature.

16AI32SSC1M, Linux Device Driver, User Manual

49

General Standards Corporation, Phone: (256) 880-8787

4.9.10. AI32SSC1M_IOCTL_TT_LOG_MODE

This service controls which channels log data to the input buffer.

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_LOG_MODE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_TT_LOG_MODE_ALL All channels log data to the input buffer.
AI32SSC1M_TT_LOG_MODE_TRIG Only triggered channels log data to the input buffer.

4.9.11. AI32SSC1M_IOCTL_TT_NRATE

This service configures the NRATE divider value for the Time Tag Rate Divider.

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_NRATE

arg s32*

Valid argument values are from 2 to 0xFFFFF.

4.9.12. AI32SSC1M_IOCTL_TT_REF_XX

This refers to the below listed services, which configure the reference value for the respective channel. Refer to the

board user manual for additional information.

Service Description
AI32SSC1M_IOCTL_TT_REF_00 Channel 0
AI32SSC1M_IOCTL_TT_REF_01 Channel 1
AI32SSC1M_IOCTL_TT_REF_02 Channel 2
AI32SSC1M_IOCTL_TT_REF_03 Channel 3
AI32SSC1M_IOCTL_TT_REF_04 Channel 4
AI32SSC1M_IOCTL_TT_REF_05 Channel 5
AI32SSC1M_IOCTL_TT_REF_06 Channel 6
AI32SSC1M_IOCTL_TT_REF_07 Channel 7
AI32SSC1M_IOCTL_TT_REF_08 Channel 8
AI32SSC1M_IOCTL_TT_REF_09 Channel 9
AI32SSC1M_IOCTL_TT_REF_10 Channel 10
AI32SSC1M_IOCTL_TT_REF_11 Channel 11
AI32SSC1M_IOCTL_TT_REF_12 Channel 12
AI32SSC1M_IOCTL_TT_REF_13 Channel 13
AI32SSC1M_IOCTL_TT_REF_14 Channel 14
AI32SSC1M_IOCTL_TT_REF_15 Channel 15
AI32SSC1M_IOCTL_TT_REF_16 Channel 16
AI32SSC1M_IOCTL_TT_REF_17 Channel 17
AI32SSC1M_IOCTL_TT_REF_18 Channel 18

16AI32SSC1M, Linux Device Driver, User Manual

50

General Standards Corporation, Phone: (256) 880-8787

AI32SSC1M_IOCTL_TT_REF_19 Channel 19
AI32SSC1M_IOCTL_TT_REF_20 Channel 20
AI32SSC1M_IOCTL_TT_REF_21 Channel 21
AI32SSC1M_IOCTL_TT_REF_22 Channel 22
AI32SSC1M_IOCTL_TT_REF_23 Channel 23
AI32SSC1M_IOCTL_TT_REF_24 Channel 24
AI32SSC1M_IOCTL_TT_REF_25 Channel 25
AI32SSC1M_IOCTL_TT_REF_26 Channel 26
AI32SSC1M_IOCTL_TT_REF_27 Channel 27
AI32SSC1M_IOCTL_TT_REF_28 Channel 28
AI32SSC1M_IOCTL_TT_REF_29 Channel 29
AI32SSC1M_IOCTL_TT_REF_30 Channel 30
AI32SSC1M_IOCTL_TT_REF_11 Channel 31

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_REF_XX

arg s32*

Valid argument values are in the range of zero to 0xFFFF, or -1 to retrieve the current setting.

4.9.13. AI32SSC1M_IOCTL_TT_REF_CLK_SRC

This service configures the source of the Time Tag reference clock.

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_REF_CLK_SRC

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_TT_REF_CLK_SRC_EXT This refers to the external Reference Clock Input signal.
AI32SSC1M_TT_REF_CLK_SRC_INT This refers to the internal rate generator.

4.9.14. AI32SSC1M_IOCTL_TT_RESET

This service resets the Time Tag counter to zero.

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_RESET

arg Not used.

4.9.15. AI32SSC1M_IOCTL_TT_RESET_EXT

This service enables or disables the Clock Reset Input cable signal.

16AI32SSC1M, Linux Device Driver, User Manual

51

General Standards Corporation, Phone: (256) 880-8787

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_RESET_EXT

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_TT_RESET_EXT_DISABLE The cable signal cannot reset the Time Tag counter.
AI32SSC1M_TT_RESET_EXT_ENABLE The cable signal can reset the Time Tag counter.

4.9.16. AI32SSC1M_IOCTL_TT_TAGGING

This service enables or disables insertion of the Time Tag header in the Input Buffer data stream.

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_TAGGING

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_TT_TAGGING_DISABLE The header is not inserted into the data stream.
AI32SSC1M_TT_TAGGING_ENABLE The header is inserted into the data stream.

4.9.17. AI32SSC1M_IOCTL_TT_THR_XX

This refers to the below listed services, which configure the threshold value for the respective channel. Refer to the

board user manual for additional information.

Service Description
AI32SSC1M_IOCTL_TT_THR_00 Channel 0
AI32SSC1M_IOCTL_TT_THR_01 Channel 1
AI32SSC1M_IOCTL_TT_THR_02 Channel 2
AI32SSC1M_IOCTL_TT_THR_03 Channel 3
AI32SSC1M_IOCTL_TT_THR_04 Channel 4
AI32SSC1M_IOCTL_TT_THR_05 Channel 5
AI32SSC1M_IOCTL_TT_THR_06 Channel 6
AI32SSC1M_IOCTL_TT_THR_07 Channel 7
AI32SSC1M_IOCTL_TT_THR_08 Channel 8
AI32SSC1M_IOCTL_TT_THR_09 Channel 9
AI32SSC1M_IOCTL_TT_THR_10 Channel 10
AI32SSC1M_IOCTL_TT_THR_11 Channel 11
AI32SSC1M_IOCTL_TT_THR_12 Channel 12
AI32SSC1M_IOCTL_TT_THR_13 Channel 13
AI32SSC1M_IOCTL_TT_THR_14 Channel 14
AI32SSC1M_IOCTL_TT_THR_15 Channel 15
AI32SSC1M_IOCTL_TT_THR_16 Channel 16
AI32SSC1M_IOCTL_TT_THR_17 Channel 17

16AI32SSC1M, Linux Device Driver, User Manual

52

General Standards Corporation, Phone: (256) 880-8787

AI32SSC1M_IOCTL_TT_THR_18 Channel 18
AI32SSC1M_IOCTL_TT_THR_19 Channel 19
AI32SSC1M_IOCTL_TT_THR_20 Channel 20
AI32SSC1M_IOCTL_TT_THR_21 Channel 21
AI32SSC1M_IOCTL_TT_THR_22 Channel 22
AI32SSC1M_IOCTL_TT_THR_23 Channel 23
AI32SSC1M_IOCTL_TT_THR_24 Channel 24
AI32SSC1M_IOCTL_TT_THR_25 Channel 25
AI32SSC1M_IOCTL_TT_THR_26 Channel 26
AI32SSC1M_IOCTL_TT_THR_27 Channel 27
AI32SSC1M_IOCTL_TT_THR_28 Channel 28
AI32SSC1M_IOCTL_TT_THR_29 Channel 29
AI32SSC1M_IOCTL_TT_THR_30 Channel 30
AI32SSC1M_IOCTL_TT_THR_11 Channel 31

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_THR_XX

arg s32*

Valid argument values are in the range of zero to 0xFFFF, or -1 to retrieve the current setting.

4.9.18. AI32SSC1M_IOCTL_TT_TRIG_MODE

This service configures the Time Tag triggering mode.

Usage

Argument Description
request AI32SSC1M_IOCTL_TT_TRIG_MODE

arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
AI32SSC1M_TT_TRIG_MODE_CONTIN This refers to the Free-Running mode.
AI32SSC1M_TT_TRIG_MODE_REF_TRIG This refers to the Referenced-Triggered mode.

16AI32SSC1M, Linux Device Driver, User Manual

53

General Standards Corporation, Phone: (256) 880-8787

5. The Driver

NOTE: Contact General Standards Corporation if additional driver functionality is required.

5.1. Files

The device driver files are summarized in the table below.

Description Files Location

Source Files *.c, *.h …

…/driver/
Header File 16ai32ssc1m.h

Driver File
16ai32ssc1m.ko †

16ai32ssc1m.o ‡

† This is for kernel versions 2.6 and later.

‡ This is for kernel versions 2.4 are earlier.

5.2. Build

NOTE: Building the driver requires installation of the kernel headers and possibly other packages.

The device driver is built via the Overall Make Script (section 2.7, page 13), but can be built separately following

the below steps.

1. Change to the directory where the driver and its sources are installed (…/driver/).

2. Remove existing build targets by issuing the below command.

make clean

3. Build the driver by issuing the below command.

make

NOTE: Due to the differences between the many Linux distributions some build errors may

occur. These errors may include system header location differences, which should be easily

corrected.

5.3. Startup

NOTE: The driver will have to be built before being used as it is provided in source form only.

The startup script used in this procedure is designed to load the device driver and create fresh device nodes. This is

accomplished by unloading the current driver, if loaded, and then loading the accompanying driver executable. In

addition, the script deletes and recreates the device nodes. This is done to ensure that the device nodes in use have

the same major number as assigned dynamically to the driver by the kernel, and so that the number of device nodes

corresponds to the number of boards identified by the driver.

5.3.1. Manual Driver Startup Procedures

Start the driver manually by following the below listed steps.

NOTE: The following steps may require elevated privileges.

16AI32SSC1M, Linux Device Driver, User Manual

54

General Standards Corporation, Phone: (256) 880-8787

1. Change to the directory where the driver sources are installed (…/driver/).

2. Install the driver module and create the device nodes by executing the below command. If any errors are

encountered then an appropriate error message will be displayed.

./start

NOTE: This script must be executed each time the host is booted.

NOTE: The 16AI32SSC1M device node major number is assigned dynamically by the kernel. The

minor numbers and the device node suffix numbers are index numbers beginning with zero, and

increase by one for each additional board installed.

3. Verify that the device driver module has been loaded by issuing the below command and examining the output.

The module name 16ai32ssc1m should be included in the output.

lsmod

4. Verify that the device nodes have been created by issuing the below command and examining the output. The

output should include one node for each installed board.

ls –l /dev/16ai32ssc1m.*

5.3.2. Automatic Driver Startup Procedures

Start the driver automatically with each system reboot by following the below listed steps.

1. Locate and edit the system startup script rc.local, which should be in the /etc/rc.d/ directory. Modify

the file by adding the below line so that it is executed with every reboot. The example is based on the driver

being installed in /usr/src/linux/drivers/, though it may have been installed elsewhere.

/usr/src/linux/drivers/16ai32ssc1m/driver/start

NOTE: For systemd installations the file rc.local may be located under the /etc/

directory rather than under /etc/rc.d/.

2. Load the driver and create the required device nodes by rebooting the system.

3. Verify that the driver is loaded and that the device nodes have been created. Do this by following the

verification steps given in the manual startup procedures.

5.3.2.1. File rc.local Not Present

Some distributions may not install a default version of rc.local. Some may not even create the directory

/etc/rc.d/. If the directory is not present, then it may be created. The directory must be created with the owner

and group set to root. The directory permissions must be set to rwxr-xr-x. If the file /etc/rc.d/rc.local

is not present, then it too may be created. The file must also be created with the owner and group set to root.

Additionally, the file permissions must also be set to rwxr-xr-x. After the directory and file are created as

described, reboot to verify boot time loading of the driver. Here is an example of a default version of rc.local.

#!/bin/bash

Add your local content here.

16AI32SSC1M, Linux Device Driver, User Manual

55

General Standards Corporation, Phone: (256) 880-8787

5.3.2.2. Default rc.local File Permissions

The rc.local script may fail to run at boot time because some distributions install a default version of the file

without execute permissions. Without execute permissions, boot time invocation of the script fails, which inhibits

boot time loading of the driver. If this is the case, then change the file permissions to rwxr-xr-x. After the file

permissions are adjusted as described, reboot to verify boot time loading of the driver.

5.3.2.3. systemd Installations

With the advent of the systemd startup implementation, rc.local may be accessed via a systemd startup

service. The service name may be rc-local, rc-local.service or something similar. This service may or

may not be enabled by default. If the service is disabled, then the script will not execute, which prevents boot time

loading of the driver. The service can be enabled with the below command line. After the service is enabled, reboot

to verify boot time loading of the driver.

systemctl enable rc-local

NOTE: For systemd installations the file rc.local may be located under the /etc/

directory rather than under /etc/rc.d/.

5.3.2.4. systemd and rc.local Timing

If the above steps have been performed but the driver still does not start then examine the dmesg output for driver

messages. If the output shows that the driver starts and immediately stops, then the problem may be timing. That is,

since systemd doesn’t serialize startup initialization as done in the past, driver loading may fail if required services

have not completed their own initialization. If this is the problem, then it may be corrected simply by inserting a

delay in rc.local prior to it calling the driver’s start script (i.e., sleep for one or more seconds).

5.3.2.5. SElinux Implications

If not disabled, then SElinux may prevent boot time loading of the driver. If this is the case, then it can be verified

and corrected using SElinux related tools and utilities. First, install the necessary software using the below

command. (As necessary, replace the yum command line with that which is available for your distribution.)

yum install setroubleshoot setools

Next, run the below command to determine if SElinux is preventing the driver from loading at boot time.

sealert –a /var/log/audit/audit.log

If SElinux is preventing the driver from loading, then the output from the above command should include a

reference to the driver’s start script, the insmod command that loads the driver or the name of the driver

executable. If so, then the output should also indicate the commands necessary to resolve the issue. The following is

an example of the instructions given when the culprit is insmod, which is the start script command that loads the

driver. After running these commands reboot the system to verify boot time loading of the driver.

ausearch -c 'insmod' --raw | audit2allow -M my-insmod

semodule -X 300 -i my-insmod.pp

5.4. Verification

Follow the below steps to verify that the driver has been properly installed and started.

16AI32SSC1M, Linux Device Driver, User Manual

56

General Standards Corporation, Phone: (256) 880-8787

1. Verify that the file /proc/16ai32ssc1m is present. If the file is present then the driver is loaded and

running. Verify the file’s presence by viewing its content with the below command.

cat /proc/16ai32ssc1m

5.5. Version

The driver version number can be obtained in a variety of ways. It is reported by the driver both when the driver is

loaded and when it is unloaded (depending on kernel configuration options, this may be visible only in places such

as /var/log/messages). It is reported in the text file /proc/16ai32ssc1m while the driver is loaded and

running. The version number is also given in the file release.txt in the root install directory.

5.6. Shutdown

Shutdown the driver following the below listed steps.

NOTE: The following steps may require elevated privileges.

1. If the driver is currently loaded then issue the below command to unload the driver.

rmmod 16ai32ssc1m

2. Verify that the driver module has been unloaded by issuing the below command. The module name

16ai32ssc1m should not be in the listed output.

lsmod

16AI32SSC1M, Linux Device Driver, User Manual

57

General Standards Corporation, Phone: (256) 880-8787

6. Document Source Code Examples

The source code examples included in this document are built into a statically linkable library usable with console

applications. The purpose of these files is to verify that the documentation samples compile and to provide a library

of working sample code to assist in a user’s learning curve and application development effort.

6.1. Files

The library files are summarized in the table below.

Description Files Location

Source Files *.c, *.h … …/docsrc/

Header File 16ai32ssc1m_dsl.h …/include/

Library File 16ai32ssc1m_dsl.a …/lib/

6.2. Build

The library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the

below steps.

1. Change to the directory where the documentation sources are installed (…/docsrc/).

2. Remove existing build targets by issuing the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make

4. Rebuild the Main Library (section 3.2.1, page 16).

6.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above

listed header file in each source file using a component of the library interface. At link time include the above listed

static library file with the objects being linked with the application.

16AI32SSC1M, Linux Device Driver, User Manual

58

General Standards Corporation, Phone: (256) 880-8787

7. Utilities Source Code

The API Library installation includes a body of utility source code designed to aid in the understanding and use of

the interface calls and IOCTL services. Utility sources are also included for device independent and common,

general-purpose services. Most of the utilities are implemented as visual wrappers around the corresponding services

to facilitate structured console output for the sample applications. The utility sources are compiled and linked into

static libraries to simplify their use. An additional purpose of these utility services is to provide a library of working

sample code to assist in a user’s learning curve and application development effort.

For each API function there is a corresponding utility source file with a corresponding utility service. As an

example, for the API function ai32ssc1m_open() there is the utility file open.c containing the utility function

ai32ssc1m_open_util(). The naming pattern is as follows: API function ai32ssc1m_xxxx(), utility file

name xxxx.c, utility function ai32ssc1m_xxxx_util(). Additionally, for each IOCTL code there is a

corresponding utility source file with a corresponding utility service. As an example, for IOCTL code

AI32SSC1M_IOCTL_QUERY there is the utility file util_query.c containing the utility function

ai32ssc1m_query(). The naming pattern is as follows: IOCTL code AI32SSC1M_IOCTL_XXXX, utility file

name util_xxxx.c, utility function ai32ssc1m_xxxx().

7.1. Files

The utility files are summarized in the table below.

Description Files Location

Source Files *.c, *.h … …/utils/

Header File 16ai32ssc1m_utils.h …/include/

Library Files

16ai32ssc1m_utils.a

gsc_utils.a

os_utils.a

plx_utils.a

…/lib/

7.2. Build

The libraries are built via the Overall Make Script (section 2.7, page 13), but can be built separately following the

below steps.

1. Change to the directory where the utility sources are installed (…/utils/).

2. Remove existing build targets by issuing the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make

4. Rebuild the Main Library (section 3.2.1, page 16).

7.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above

listed header file in each source file using a component of the library interface. At link time include the above listed

static library file with the objects being linked with the application.

16AI32SSC1M, Linux Device Driver, User Manual

59

General Standards Corporation, Phone: (256) 880-8787

8. Operating Information

This section explains some basic operational procedures for using the 16AI32SSC1M. This is in no way intended to

be a comprehensive guide. This is simply to address a very few issues relating to their use.

8.1. Debugging Aids

The driver package includes the following items useful for development and/or debugging aids.

8.1.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id

example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as

follows.

Description File Location

Application id …/id/

8.1.2. Detailed Register Dump

Among the utility services provided is a function to generate a detailed listing of device registers to the console.

When used, the function is typically used to verify device configuration. In these cases, the function should be called

after complete device configuration and before the first I/O call. When intended for sending to GSC tech support,

please set the detail arguments to 1. The function arguments are as follows. The utility location is given in the

subsequent table.

Argument Description
fd This is the file descriptor used to access the device.
detail If non-zero the register dump will include details of each register field.

Description File/Name Location

Function ai32ssc1m_reg_list() Source File

Source File util_reg.c …/utils/

Header File 16ai32ssc1m_utils.h …/include/

Library File 16ai32ssc1m_utils.a …/lib/

8.2. Analog Input Configuration

The basic steps for Analog Input configuration are illustrated in the utility function noted below. The table also gives

the location of the source file, the header file and the corresponding library containing the executable code. The

referenced files are included via the Main Header and Main Library.

Item Name/File Location

Function ai32ssc1m_config_ai() Source File

Source File util_config_ai.c …/utils/

Header File 16ai32ssc1m_utils.h …/include/

Library File 16ai32ssc1m_utils.a …/lib/

8.3. Data Transfer Modes

All device I/O requests move data through intermediate driver buffers on its way between the device and application

memory. The data is processed in chunks no larger than the size of this intermediate buffer. The process used to

16AI32SSC1M, Linux Device Driver, User Manual

60

General Standards Corporation, Phone: (256) 880-8787

perform this transfer is according to the I/O mode selection. Movement of data between the application buffers and

the intermediate driver buffers is performed by the kernel.

8.3.1. PIO - Programmed I/O

In this mode data is transferred using repetitive register accesses. This is most applicable for low throughput

requirements or for small transfer requests. The driver continues the operation until either the I/O request is fulfilled

or the I/O timeout expires, whichever occurs first. This is generally the least efficient mode, but for very small

transfers it is more efficient than DMA.

8.3.2. BMDMA - Block Mode DMA

For Block Mode DMA the driver initiates DMA transfers only after a sufficient volume of data has been received

into the input buffer. In this mode the volume is sufficient when the input buffer content satisfies the request or

when it meets or exceeds the threshold value. After that amount of data is in the input buffer the driver initiates a

DMA then sleeps until the DMA Done interrupt is received. Using this DMA mode, a user request typically consists

of numerous individual DMA transfers.

8.3.3. DMDMA - Demand Mode DMA

This DMA mode is similar to the block mode, except that the transfer is initiated immediately. Here however, the

actual movement of data occurs as the data becomes available in the buffer instead of after it has been accumulated.

Using this DMA mode, a user request typically consists of a single individual DMA transfer.

8.4. Low Latency Data Access

The Low Latency registers provide a mechanism for reading the most recent A/D data without having to wade

through all of the A/D data streaming from the board’s input buffer. The software interface provided by the API

Library includes an IOCTL service for reading the Low Latency registers. The actual service functionality is

implemented inside the device driver. This implementation includes overhead that is there to guarantee correct

functionality regardless of how an application may be interacting with the board. For the best performance however,

the driver disables interrupts while the registers are being read. This introduces the possibility of negative

interactions between the Low Latency registers read service and any other service that makes use of interrupts. This

primarily refers to the read API service and the wait IOCTL services.

An application may be able to significantly reduce the overhead and eliminate the negative interactions. This can be

achieved by designing the application so reading the Low Latency registers is done with exclusive access to the

device and by reading the Low Latency registers with a mechanism that bypasses the driver. One such mechanism

maps the board’s BAR2 region into application space (via /dev/mem) so the Low Latency registers can be read

directly via a u32* data type. (In tests at GSC this reduced the overhead from about 5.5 us to about 150 ns.

WARNING: Reading device data should not be performed while using the Low Latency Read

IOCTL service (section 4.8.3, page 45). Interrupts are disabled while the service is active and

would interfere with BMDMA and DMDMA operations.

16AI32SSC1M, Linux Device Driver, User Manual

61

General Standards Corporation, Phone: (256) 880-8787

9. Sample Applications

The driver archive includes a variety of sample and test applications located under the samples subdirectory.

While they are provided without support and without any external documentation, any problems reported will be

addressed as time permits. The applications are command line based and produce text output for display on a

console. All of the applications are built via the Overall Make Script (section 2.7, page 13), but each may be built

individually by changing to its respective directory and issuing the commands “make clean” and “make”. The

initial output from each application includes information on its supported command line arguments. The following

gives a brief overview of each application.

9.1. fsamp - Sample Rate - …/fsamp/

This application reports the device configuration required to produce a user specified sample rate.

9.2. id - Identify Board - …/id/

This application reports detailed board identification information. This can be used with tech support to help identify

as much technical information about the board as possible from software.

9.3. regs - Register Access - …/regs/

This application provides menu based interactive access to the board’s registers, and reports other pertinent

information to the console.

9.4. rxrate - Receive Rate - …/rxrate/

This application configures the board for its highest ADC sample rate then reads the input as fast as possible. The

purpose is to measure the peak sustainable input rate for the host, per the provided command line arguments.

9.5. savedata - Save Acquired Data - …/savedata/

This application configures the board for a modest sample rate, reads a megabyte of data, then saves the data to a

hex file.

9.6. stream - Stream Rx Data to Disk - …/stream/

This application uses multiple threads with an intermediate buffer manager to stream data from the device to a

binary data file. Numerous options are available for measuring performance of device reads, disk writes and buffer

handling. Refer to the application file readme.txt for example information.

9.7. wait - Wait Test - …/wait/

This application performs complete testing to verify the operation of the Wait Event options. This is similar to the

irq application, but encompasses more interactions with the board.

16AI32SSC1M, Linux Device Driver, User Manual

62

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

August 15, 2024

Updated to release version 1.4.111.50.0. Updated the kernel support table. Numerous minor

editorial updates. Renamed all Auto Cal content to Autocal. Renamed all Auto Cal Status

content to Autocal Status. Added a section describing the conversion of the static libraries

to shared libraries (section 3.2.3, page 17).

October 4, 2023

Updated to release version 1.3.105.47.0. Updated the information for the open and close

calls. Updated the kernel support table. Minor editorial changes. Updated the description of

the Input Buffer Clear service. Updated the description of the Autocalibration service.

July 19, 2022

Updated to release version 1.3.100.42.0. Expanded automatic startup information. Added

the stream sample application. Updated the kernel support table. Added section on

environment variables.

January 7, 2021

Updated to release version 1.2.92.35.0. Updated the kernel support table. Numerous minor

editorial changes. Some document reorganization. Added a licensing subsection. Added a

WAIT_EVENT note. Expanded automatic startup information.

May 1, 2019

Updated to release version 1.1.85.27.0. Updated the inside cover page. Updated the CPU

and kernel support section. Minor editorial changes. Updated Block Mode DMA macro and

associated information. Document reorganization.

February 20, 2018 Initial release, version 1.0.73.20.0.

